
Key Establishment Schemes
Workshop Document

October 2001

Outline

¤ Introduction
¤ Scope & Purpose
¤ Definitions
¤ Key Establishment Algorithm Classes
¤ Security Attributes
¤ Cryptographic Elements
¤ Key Agreement Schemes
¤ Key Transport
¤ Keys Derived from a “Master Key”
¤ Key Recovery

1

Introduction

¤ Many cryptographic algorithms (e.g., AES,
HMAC) require the establishment of shared
keying material in advance.

¤ Manual distribution of keying material is
inefficient and complex.

¤ Seek automated key establishment schemes.

Scope & Purpose

¤ Development of a Federal key agreement
schemes document based on
– ANSI X9.42 Agreement of Symmetric Keys

using Discrete Logarithm Cryptography

– ANSI X9.44 Key Agreement and Key
Transport using Factoring-Based Cryptography

(To be provided)

– ANSI X9.63 Key Agreement and Key
Transport using Elliptic Curve Cryptography

2

Definitions

¤ Approved
– FIPS approved or NIST Recommended

¤ Keying Material
–	 The data (e.g., keys and IVs) necessary to establish and

maintain cryptographic keying relationships.

¤ Shared Keying Material
–	 The keying material that is derived by applying a key

derivation function to the shared secret.

¤ Shared Secret
–	 A secret value computed using a prescribed algorithm

and combination of keys belonging to the participants
in the key establishment scheme.

General Symbols

H An approved hash function

[Text1],
[Text2]

An optional bit string that may be used during key
confirmation and that is sent between the parties
establishing keying material

U One entity of a key establishment process, or the bit
string denoting the identity of that entity

V The other entity of a key establishment process, or the
bit string denoting the identity of that entity

X||Y Concatenation of two strings X and Y

3

ANSI X9.42 Symbols

p, q, g The domain parameters

mod p The reduction modulo p on an integer value

rU, rV Party U or Party V’s ephemeral private key

tU, tV Party U or Party V’s ephemeral public key

xU, xV Party U or Party V’s static private key

yU, yV Party U or Party V’s static public key

Z A shared secret that is used to derive keying material using a
key derivation function

Z e An ephemeral shared secret that is computed using the Diffie-
Hellman primitive

Z s A static shared secret that is computed using the Diffie-
Hellman primitive

ANSI X9.63 Symbols

[X] Indicates that the inclusion of the bit string or
octet string X is optional

a, b Field elements that define the equation of an
elliptic curve

avf(P) The associate value of the elliptic curve point

de,U, de,V Party U’s and Party V’s ephemeral private keys

ds,U, ds,V Party U’s and Party V’s static private keys

FR An indication of the basis used

G A distinguished point on an elliptic curve

h The cofactor of the elliptic curve

4

ANSI X9.63 Symbols

n The order of the point G

q The field size

j A special point on an elliptic curve, called the point at infinity. The
additive identity of the elliptic curve group.

Qe,U, Qe,V Party U’s and Party V’s ephemeral public keys

Qs,U, Qs,V Party U’s and Party V’s static public keys

SEED An optional bit string that is present if the elliptic curve was randomly
generated

xP The x-coordinate of a point P.

yP The y-coordinate of a point P.

Z A shared secret that is used to derive key using a key derivation function

Ze An ephemeral shared secret that is computed using the Diffie-Hellman
primitive

Zs A static shared secret that is computed using the Diffie-Hellman primitive

Key Establishment Algorithm Classes

¤	 Cryptographic keying material may be electronically
established between parties using either key agreement or
key transport schemes.

¤	 During key agreement, the keying material to be
established is not sent; information is exchanged between
the parties that allow the calculation of the keying material.
Key agreement schemes use asymmetric (public key)
techniques.

¤	 During key transport, encrypted keying material is sent
from an initiator who generates the keying material to
another party. Key transport schemes use either symmetric
or public key techniques.

5

Security Attributes

¤ To be determined…

Cryptographic Elements
¤ Domain Parameters (Generation, Validation, and

Management)
¤ Private/Public Keys (Generation, PK Validation,

Management)
¤ Key Derivation Function
¤ Message Authentication Code
¤ Associate Value Function (Elliptic Curves Only)
¤ Cryptographic Hash Functions
¤ Random Number Generation
¤ Key Confirmation
¤ Calculation of Shared Secrets
¤ RSA Primitives (To be provided)
¤ Key Wrapping Primitive(s) (To be provided)

6

Domain Parameter Generation

¤ ANSI X9.42 Requirements
– (p,q,g) where p and q are prime, and g is the

generator of the q-order cyclic subgroup of
GF(p)

¤ ANSI X9.63 Requirements
– (q, FR, a, b, [SEED], G, n, h) where q (field

size), FR (basis used), a and b (field elements),
SEED (optional bit string), G (point), n (order
of the point G), and h (cofactor).

Domain Parameter Validation

¤ One of three methods must be employed
before use
– The party generates (and checks) the

parameters

– The party validates parameters as specified in
appropriate ANSI standards

– The party receives assurance from a trusted
party (e.g., a CA) that the parameters are valid
by one of the above methods

7

Domain Parameter Management

¤ Only authorized (trusted) parties should
generate domain parameters

¤ Key pairs must be associated with their
domain parameters

¤ Modification or substitution of domain
parameters may cause security risks

Private/Public Keys
¤ Key Pair Generation

–	 Static and ephemeral key pairs are generated using the
same primitives

– Private keys must be created using an approved RNG

¤ Public Key Validation
–	 Static public keys must be validated by the recipient, or

by an entity that is trusted by the recipient
–	 Each ephemeral public key must be validated by the

recipient before being used to derive a shared secret

¤ Key Pair Management
–	 Public/private key pairs must be correctly associated

with their corresponding domain parameters
–	 Static public keys must be obtained in a trusted manner
–	 Ephemeral keys must be destroyed immediately after

the shared secret is computed

8

Cryptographic Elements

¤ Key Derivation Function (KDF)
–	 Used to derive keying material from a shared secret

–	 Uses identities of communicating parties

¤ Message Authentication Code (MAC)
–	 A function of both a symmetric key and data

–	 MAC function used to provide key confirmation

¤ Associate Value Function (EC Only)
–	 Used by the MQV family of key agreement schemes to

compute an integer associated with an elliptic curve
point

Cryptographic Elements

¤ Cryptographic Hash Functions
– Use approved hash functions whenever

required.

¤ Random Number Generation
– Use approved random number generators

whenever required

¤ Key Confirmation
– Used to provide assurance that the parties have

derived the same keys

9

Calculation of Shared Secrets

¤ Use DH of ANSI X9.42 for dhHybrid1,
dhEphem, dhHybridOneFlow, dhOneFlow,
and dhStatic schemes

¤ Use Modified DH of ANSI X9.63 for Full
Unified Model, Ephemeral Unified Model,
1-Pass Unified Model, 1-Pass Diffie-
Hellman, and Static Unified Model
Schemes (Differs from ANSI X9.63)

Calculation of Shared Secrets

¤ Use MQV2 primitive of ANSI X9.42 for the
MQV2 scheme

¤ Use MQV1 primitive of ANSI X9.42 for MQV1
scheme

¤ Use MQV primitive of Section 5.5 of ANSI X9.63
for Full MQV and 1-Pass MQV schemes

¤ Shared Secrets
–	 must not be used directly as shared keying material.
–	 must be calculated by applying a key derivation

function to the shared secret.

10

Other Primitives

¤ RSA Primitives
– To be addressed later…

¤ Key Wrapping Primitive(s)
– To be addressed later…

Key Agreement Schemes Categories

¤ C(2): Two Party Participation
– Interactive, 2-way

– Each party generates an ephemeral key pair.

¤ C(1): One Party Participation
– Store-and-Forward, 1-way

– Only the initiator generates an ephemeral key pair.

¤ C(0): Static Keys Only
– Static (passive)

– No ephemeral keys are used.

11

Key Agreement Schemes Subcategories

¤	 C(2,2): Each party generates an ephemeral key pair and has a
static key pair.

¤	 C(2,0): Each party generates an ephemeral key pair; no static
keys are used.

¤	 C(1,2): The initiator generates an ephemeral key pair and has a
static key pair; the responder has a static key pair.

¤	 C(1,1): The initiator generates an ephemeral key pair, but has no
static key pair; the responder has only a static key pair.

¤	 C(0,2): Each party has only static keys.

Key Agreement Schemes
Subcategories
¤ Primitive: Either a DH or an MQV

primitive

¤ Arithmetic: Either FF as in ANSI X9.42 or
EC as in ANSI X9.63

¤ Example: dhHybrid1 can be classified as
C(2, 2, DH, FF)

12

Key Agreement Schemes

Category Subcategory Primitive

C(2) C(2,2) DH
C(2) C(2,2) DH

C(2) C(2,2) MQV
C(2) C(2,2) MQV
C(2) C(2,0) DH
C(2) C(2,0) DH

C(1) C(1,2) DH
C(1) C(1,2) DH

C(1) C(1,2) MQV
C(1) C(1,2) MQV
C(1) C(1,1) DH
C(1) C(1,1) DH

C(0) C(0,2) DH
C(0) C(0,2) DH

Arith.

FF
EC

FF
EC
FF
EC

FF
EC

FF
EC
FF
EC

FF
EC

Scheme Full
Classification

dhHybrid1 C(2,2,DH,FF)
Full Unified
Model

C(2,2,DH,EC)

MQV2 C(2,2,MQV,FF)
Full MQV C(2,2,MQV,EC)
dhEphem C(2,0,DH,FF)
Ephemeral
Unified Model

C(2,0,DH,EC)

dhHybridOneFlow C(1,2,DH,FF)
1-Pass Unified
Model

C(1,2,DH,EC)

MQV1 C(1,2,MQV,FF)
1-Pass MQV C(1,2,MQV,EC)
dhOneFlow C(1,1,DH,FF)
1-Pass Diffie-
Hellman

C(1,1,DH,EC)

dhStatic C(0,2,DH,FF)
Static Unified
Model

C(0,2,DH,EC)

Key Agreement Schemes Overview

¤ Each party in a key agreement process must
use the same domain parameters.

¤ These parameters must be established prior
to the initiation of the key agreement
process.

¤ Static public keys may be obtained from
other entity or trusted third party (e.g., a CA)

13

.

Two Party Participation C(2)

¤Each party generates an ephemeral key
pair and has a static key pair

¤Four C(2,2) schemes
– dhHybrid1

– Full Unified Model

– MQV2

– Full MQV

Figure 1: General Protocol when each
party has both static and ephemeral key
pairs

U’s Static Public Key

V’s Static Public Key

U	 V
U’s Ephemeral Public Key

V’s Ephemeral Public Key

1. U uses its static and ephemeral private	 1. V uses its static and ephemeral private
keys and V’s static and ephemeral keys and U’s static and ephemeral
public keys to compute a shared secret. public keys to compute a shared secret.

2. U invokes the Key Derivation Function	 2. V invokes the Key Derivation Function
using the shared secret. using the shared secret.

14

Table 4: dhHybrid1 Key Agreement
Scheme C(2,2,DH,FF)

Party U Party V
Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

1. Ephemeral private key rV

2. Ephemeral public key tV

Input (p, q, g), xU, yV, rU, tV (p, q, g), xV, yU, rV, tU

Computation pyZ xU

Vs mod=

ptrZ U

Ve mod=

pyZ xV

Us mod=

ptrZ V

Ue mod=

Derive Key
Material

Compute kdf(Z,OtherInput) using
Z = Ze || Zs

Compute kdf(Z,OtherInput) using
Z = Ze || Zs

Table 5: Full Unified Model Key

Agreement Scheme C(2,2,DH,EC)

Party U Party V
Static Data 1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data 1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

1. Ephemeral private key de,V

2. Ephemeral public key Qe,V

Input (q, FR a, b, [SEED], G, n, h),
de,U, Qe,V, ds,U, Qs,V

(q, FR, a, b, [SEED] G, n, h),
de,V, Qe,U, ds,V, Qs,U

Computation (xs, ys) = hds,UQs,V

(xe, ye) = hde,UQe,V

Zs = xs

Ze = xe

(xs, ys) = hds,VQs,U

(xe, ye) = hde,VQe,U

Zs = xs

Ze = xe

Derive Keying
Material

Compute kdf(Z,OtherInput) using
Z= Ze || Zs

Compute kdf(Z,OtherInput) using
Z= Ze|| Zs

15

Table 6: MQV2 Key Agreement
Scheme C(2,2,MQV,FF)

Party U Party V
Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

1. Ephemeral private key rV

2. Ephemeral public key tV

Input (p, q, g), xU, yV, rU, tU, tV (p, q, g), xV, yU, rV, tV, tU

Computation 1. w = Ø ||q ||/2ø

2. tU¢ = (tU mod 2w) + 2w

3. S U = (rU + tU¢ xU) mod q

4. tV¢ = (tV mod 2w) + 2w

5. () UV
St

VVMQV ytZ ' = mod p

1. w = Ø ||q ||/2ø

2. tV¢ = (tV mod 2w) + 2w

3. SV

()t

UUMQV ytZ ' = mod p.

Derive Keying
M a terial

Compute kdf(Z,OtherInput) using
Z = Z MQV

Compute kdf(Z,OtherInput) using
Z = Z MQV

Table 7: Full MQV Key Agreement
Scheme C(2,2,MQV,EC)

Party U Party V
Static Data 1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data 1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

1. Ephemeral private key de,V

2. Ephemeral public key Qe,V

Input (q, FR a, b, [SEED], G, n, h),
de,U, Qe,V, ds,U, Qe,U, Qs,V

(q, FR, a, b, [SEED] G, n, h),
de,V, Qe,U, ds,V, Qe,V, Qs,U

Computation 1. implicitsigU = (de,U +
avf(Qe,U)ds,U) mod n

2. (x, y) = h · implicitsigU · (Qe,V +
avf(Qe,V)Qs,V)

3. Z = x

1. implicitsigV = (de,V +
avf(Qe,V)ds,V) mod n

2. (x, y) = h · implicitsigV · (Qe,U +
avf(Qe,U)Qs,U)

3. Z = x
Derive Keying
Material

Compute kdf(Z,OtherInput) using
Z = x

Compute kdf(Z,OtherInput) using
Z = x

16

Two Party Participation

¤Each party generates an ephemeral key
pair; no static keys are used.

¤Two C(2,0) schemes
– dhEphem

– Ephemeral Unified Model

Figure 2: General protocol when each party
generates ephemeral key pairs; no static keys
are used

U’s Ephemeral Public Key

U V

V’s Ephemeral Public Key

1. U uses its ephemeral private key
and V’s ephemeral public key to
form a shared secret.

2. U invokes the Key Derivation
Function using the shared secret.

1. V uses its ephemeral private key
and U’s ephemeral public key to
form a shared secret.

2. V invokes the Key Derivation
Function using the shared secret.

17

Table 8: dhEphem Key Agreement
Scheme C(2,0,DH,FF)

Party U Party V
Static Data N/A N/A

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

1. Ephemeral private key rV

2. Ephemeral public key tV

Input (p, q, g), rU, tV (p, q, g), rV, tU

Computation ptZ rU
Ve mod= ptZ rV

Ue mod=

Derive Keying
Material

Compute kdf(Z,OtherInput) using
Z = Ze

Compute kdf(Z,OtherInput) using
Z = Ze

Table 9: Ephemeral Unified Model Key
Agreement Scheme C(2,0,DH,EC)

Party U Party V
Static Data N/A N/A

Ephemeral Data 1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

1. Ephemeral private key de,V

2. Ephemeral public key Qe,V

Input (q, FR a, b, [SEED], G, n, h),
de,U, Qe,V

(q, FR, a, b, [SEED] G, n, h),
deV, Qe,U

Computation (xe, ye) = hde,UQe,V

Ze = xe

(xe, ye) = hde,VQe,U

Ze = xe

Derive Keying
Material

Compute kdf(Z,OtherInput) using
Z = Ze

Compute kdf(Z,OtherInput) using
Z =Ze

18

.

private

One Party Participation

¤Initiator has a static key pair and
generates an ephemeral key pair;
Responder has a static key pair.

¤Four C(1,2) schemes
– dhHybridOneFlow
– 1-Pass Unified Model
– MQV1
– 1-Pass MVQ

Figure 3: General protocol when the Initiator
has both static and ephemeral key pairs, and
the Responder has only a static key pair

U’s Static Public Key

V’s Static Public Key

U	 V
U’s Ephemeral Public Key

1. U uses its static and ephemeral	 1. V uses its static private key and U’s static and
private keys and V’s static public ephemeral public key to form a shared secret
key to form a shared secret

2. U invokes the Key Derivation	 2. V invokes the Key Derivation Function using
Function using the shared secret the shared secret

19

Table 10: dhHybridOneFlow Key

Agreement Scheme C(1,2,DH,FF)

Party U Party V
Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

N/A

Input (p, q, g), xU, rU, yV (p, q, g), xV, yU, tU

Computation pyZ xU

Vs mod=

pyZ rU

Ve mod=

pyZ xV

Us mod=

ptZ xV

Ue mod=

Derive Keying
Material

Compute kdf(Z,OtherInput) using
Z = Ze || Zs

Compute kdf(Z,OtherInput) using
Z = Ze || Zs

Table 11: 1-Pass Unified Model Key
Agreement Scheme C(1,2,DH,EC)

Party U Party V
Static Data 1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data 1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

N/A

Input (q, FR, a, b, [SEED], G, n, h), ds,U,
de,U, Qs,V

(q, FR, a, b, [SEED], G, n, h), ds,V,
Qs,U, Qe,U

Computation (xs, ys) = h ds,U Qs,V

(xe, ye) = h de,U Qs,V

Zs = xs

Ze = xe

(xs, ys) = h ds,V Qs,U

(xe, ye) = h ds,V Qe,U

Zs = xs

Ze = xe

Derive Keying
Material

Compute kdf(Z,OtherInput) using
Z = Ze || Zs

Compute kdf(Z,OtherInput) using
Z = Ze || Zs

20

Table 12: MQV1 Key

 Agreement Scheme C(1,2,MQV,FF)

Party U Party V
Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

N /A

Input (p, q, g), xU, yV, rU, tU (p, q, g), xV, yU, tU

Computat ion 1. Ø 2øqw =

2. tU¢ = (tU mod 2 w) + 2w

3. S U = (rU + tU ¢xU) mod q

4. yV ¢ = (yV mod 2 w) + 2w

5. () mo d pyyZ UV
Sy

VVMQV

' =

1. Ø 2øqw =

2. yV¢ = (yV mod 2 w) + 2w

3. SV = (xV + yV¢xV) mod q

4. tU¢ = (tU mod 2 w) + 2w

5. () mo d pytZ VU
St

UUMQV

' =

Derive Keying
M a terial

Compute kdf(Z,OtherInput) using
Z = Z M Q V

Compute kdf(Z,OtherInput) using
Z = Z M Q V

Table 13:1-Pass MQV Model Key
Agreement Scheme C(1,2,MQV,EC)

Party U Party V
Static Data 1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data 1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

N/A

Input (q, FR, a, b, [SEED], G, n, h), de,U,
ds,U, Qe,U, Qs,V

(q, FR, a, b, [SEED], G, n, h), ds,V,
Qs,V, Qe,U, Qs,U

Computation 1. implicitsigU = (de,U +
avf(Qe,U)ds,U) mod n

2. (x, y) = h · implicitsigU · (Qs,V +
avf(Qs,V) Qs,V)

3. Z = x

1. implicitsigV = (ds,V +
avf(Qs,V)ds,V) mod n

2. (x, y) = h · implicitsigV · (Qe,U +
avf(Qe,U) Qs,U)

3. Z = x

Derive Keying
Material

Compute kdf(Z,OtherInput) using
Z = x

Compute kdf(Z,OtherInput) using
Z = x

21

One Party Participation

¤Initiator generates only an ephemeral
key pair; Responder has only a static
key pair.

¤Two C(1,1) schemes
– dhOneFlow

– 1-Pass Diffie-Hellman

Figure 4: General protocol when the Initiator
has only an ephemeral key pair, and the
Responder has only a static key pair

V’s Static Public Key

VU

U’s Ephemeral Public Key

1. U uses its ephemeral private key
and V’s static public key to form
a shared secret

2. U invokes the Key Derivation
Function using the shared secret

1. V uses its static private key and
U’s ephemeral public key to form
a shared secret

2. V invokes the Key Derivation
Function using the shared secret

22

Table 14: dhOneFlow Key Agreement
Scheme C(1,1,DH,FF)

Party U Party V
Static Data N/A 1. Static private key xV

2. Static public key yV

Ephemeral Data 1. Ephemeral private key rU

2. Ephemeral public key tU

N/A

Input (p, q, g), rU, yV (p, q, g), xV, tU

Computation pyZ rU

Ve mod= ptZ xV

Ue mod=

Derive Keying
Material

Compute kdf(Z,OtherInput) using
Z = Ze

Compute kdf(Z,OtherInput) using
Z = Ze

Table 15: 1-Pass Diffie-Hellman Model

Key Agreement Scheme C(1,1,DH,EC)

Party U Party V
Static Data N/A 1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data 1. Ephemeral private key de,U

2. Ephemeral public key Qe,U

N/A

Input (q, FR, a, b, [SEED], G, n, h), de,U,
Qs,V

(q, FR, a, b, [SEED], G, n, h), dsV,
Qe,U

Computation (x, y) = h de,U Qs,V

Z = x

(x, y) = h ds,V Qe,U

Z = x

Derive Keying
Material

Compute kdf(Z,OtherInput) using
Z = x

Compute kdf(Z,OtherInput) using
Z = x

23

Static Keys Only

¤Each party has only a static key pair

¤Two C(0,2) schemes
– dhStatic

– Static Unified Model

Figure 5: Each party has only a
static key pair

U’s Static Public Key

U	 V

V’s Static Public Key

1. U uses its static private key	 1. V uses its static private key

and V’s static public key to and U’s static public key to

form a shared secret form a shared secret

2. U invokes the Key Derivation 2. U invokes the Key Derivation
Function using the shared secret Function using the shared secret

24

Table 16: dhStatic Key Agreement
Scheme C(0,2,DH,FF)

Party U Party V
Static Data 1. Static private key xU

2. Static public key yU

1. Static private key xV

2. Static public key yV

Ephemeral
Data

N/A N/A

Input (p, q, g), xU, yV (p, q, g), xV, yU

Computation pyZ xU

Vs mod= pyZ xV

Us mod=

Derive Keying
Material

Compute kdf(Z,OtherInput)using
Z = Zs

Compute kdf(Z,OtherInput)using
Z =Zs

Table 17: Static Unified Model Key

Agreement Scheme C(0,2,DH,EC)

Party U Party V
Static Data 1. Static private key ds,U

2. Static public key Qs,U

1. Static private key ds,V

2. Static public key Qs,V

Ephemeral Data N/A N/A

Input (q, FR, a, b, [SEED], G, n, h), ds,U,
Qs,V

(q, FR, a, b, [SEED], G, n, h), ds,V,
Qs,U

Computation (xs, ys) = hds,UQs,V

Zs = xs

(xs, ys) = hds,VQs,U

Zs = xs

Derive Keying
Material

Compute kdf(Z,OtherInput) using
Z = Zs

Compute kdf(Z,OtherInput) using
Z = Zs

25

Topics to be Addressed

¤ Key Transport
– To be addressed

¤ Keys Derived from a “Master Key”
– Suggestions welcome

Key Recovery

¤ Some applications may desire to recover protected
data by first recovering the associated key

¤ Static key pairs may be saved (See Key
Management Guideline document)

¤ Static public keys may be saved (e.g., public key
certificates)

¤ Ephemeral public keys may be saved

¤ Ephemeral private keys must not be recoverable
or saved

26

Implementation Validation

¤ Implementations of schemes in the final
schemes document must be tested in order
to claim compliance

¤ For information on NIST’s testing program
see http://csrc.nist.gov/cryptval

Questions?

27

http://csrc.nist.gov/cryptval

Give me a break!

Discussion Topics

¤ Are there any situations which are not addressed
by at least one of the schemes in the document?

¤ Which schemes should use key confirmation?
¤ Should key confirmation ever be mandatory?
¤ Does it unnecessarily hinder any application to

require a distinction between initiator and
responder in a scheme?

¤ Should the identities of the initiator and responder
be used in the calculation of shared secrets?
(related to previous question)

28

Discussion Topics

¤ Should this document address broader forms of
key derivation (e.g., key derivation for multi-user
applications)?

¤ What are the most important key establishment
scheme attributes, and how should they be
presented? (Please bring your ideas)

¤ Are there any additional topics that should be
covered?

¤ Are there any additional appendices that should be
included?

Questions or Discussion?

29

Closing

¤ Thanks for coming and helping

¤ See http://www.nist.gov/kms

¤ We will let you know when report is posted

¤ Send comments to kmscomments@nist.gov

¤ Have a safe trip home

30

mailto:kmscomments@nist.gov
http://www.nist.gov/kms

