
Entropy and Entropy Sources in X9.82

John Kelsey, NIST, July 2004

Overview

- ? Entropy Sources in X9.82
- ? A Disclaimer....
- [?] Our Model of an Entropy Source
 - Nondeterministic Mechanism
 - Sampling/Measurement
 - Assessment
 - Conditioning/Buffering
 - Testing and Assurance
- [?] Open Issues

Entropy Sources in X9.82

- ? Any way to generate random bits has two parts:
 - Something nondeterministic, which provides all the ultimate unpredictability of the system
 - A deterministic generation mechanism, which provides uniform, independent output bits with all the required security properties.

Entropy Sources in X9.82 (2)

- [?] In X9.82, the nondeterministic part is called an *entropy source*. *This come in two flavors:*
- ? An entropy source....
 - Provides bitstrings that are not entirely determinstic
 - Provides assessments of the min-entropy of its outputs
- ? A conditioned entropy source...
 - Provides bitstrings that are expected to be full entropy—uniform, independent, balanced, etc.

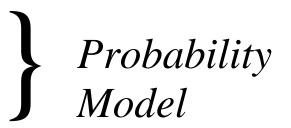
Entropy Sources, DRBGs and NRBGs

- [?] DRBG uses entropy source for seed material
 - Get_entropy(min-entropy, min-length, max-length)
 - Instantiate, Reseed, Generate (prediction resistance)
- ? NRBG uses entropy source constantly
 - DRBG reseeding between outputs of < *k* bits
 - DRBG \oplus conditioned entropy outputs
 - Conditioned entropy outputs

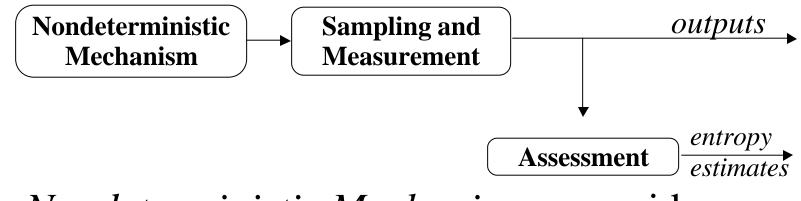
In Part 3, we talk about bits of *security* In Part 2, (here) we talk about bits of *entropy*

To Summarize....

- ? The entropy source is where we put the nondeterminstic parts of our designs
 - Everything else is deterministic
 - Most other stuff is easy to specify
 - We know how to analyze most everything else
- Assumption: Nothing outside the entropy source knows anything about its operations, except the claimed assessed entropy.
 - Conditioned Entropy Sources claim full entropy.

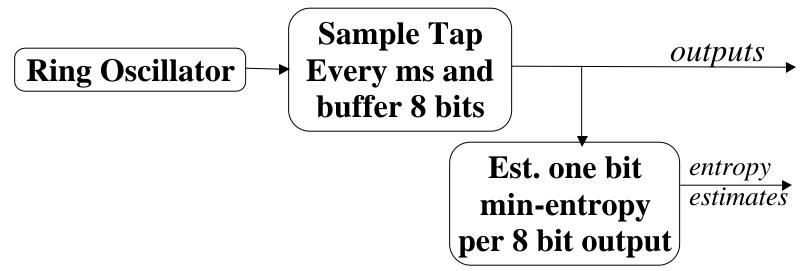

A Disclaimer....

- ? This is the part of the document we've done the least on
- [?] This includes many hard problems for standards and especially validation!
- ? Most of this presentation is subject to change as we understand the problems better


This is the part of X9.82 where we need THE MOST input!

Anatomy of an Entropy Source

Nondeterminsitic Process Sampling and Measurement Assessment Conditioning and Buffering



Basic Components of an Entropy Source

- ? Nondeterministic Mechanism—provides unpredictability
- ? Sampling and Measurement—converts the unpredictable events to bits in some wellunderstood way
- ? Assessment—estimates the min-entropy in the outputs

An Example of an Entropy Source

- [?] Unpredictability from phase noise in ring oscillator
- ? Sampling on a stable clock signal
- ? Fixed assessment based on model

Nondeterministic Mechanisms: Unpredictability

- ? Practical Requirement: There are limits to any attacker's ability to predict/model its behavior.
- ? Three broad categories:
 - Physics (noisy diode)
 - Insufficient Info (coin flips)
 - Too big/complex to model (human keypress timings)
- [?] To be useful, unpredictability must somehow be quantifiable.
 - Probability Models from Knowledge/Physics
 - Probability Models from Analysis of Data

Nondeterministic Mechanisms: Quantifying Unpredictability

- We use min-entropy as a measure of uncertainty in X9.82
 - -lg(max(P(event))))
 - Only the most probable outcome matters for minentropy
- ? Measures probability of attacker's best guess about an unknown value

Amount of unpredictability always based on best available model of process.

Min-Entropy Example:

- How Many Heads in Two Coin Flips?
 - [?] Flip 2 fair coins
 - P(0 heads) = 1 / 4 (TT)
 - P(1 head) = 1 / 2 (HT, TH)
 - P(2 heads) = 1 / 4 (HH)
 - [?] Min-entropy is based only on biggest prob.:
 - -lg(1 / 2) = 1 bit of min-entropy

Attacker's best guess has prob. 1/2; min-entropy=1

Nondeterministic Mechanisms: Performance

- ? Entropy Rate (bits min-entropy/sec):
 - Electronic systems tend to be fastest
 - OS loading and system level events slower
 - Human/computer interactions and simple physical events even slower
- [?] Cost and problems with handling source
 - Few Geiger-counter sources in use for crypto
 - Few automated "lotto" drawings in use for crypto

Nondeterministic Mechanisms: Modeling and Failure Detection

- [?] To be useful, must be able to be modeled
- ? Normal Behavior
 - Based on source of unpredictability
 - Can be very complicated model of physical source, or simple description of estimated min-entropy
- ? Failure Modes
 - Ideally, alternate models
- ? Environmental Limits/Conditions
 - Can be parameter in model, or limits

Nondeterministic Process: More Modeling Comments

- ? Not amenable to cookbook approach
 - Best model often research problem
 - Advanced statistical methods
 - Never a "last" statistical test or model to consider
- [?] We hope to give some guidance
 - Stable distributions relatively easy to handle
 - Decisions on sampling/measurement can lead to simpler models

The model determines assessed entropy, health tests, etc.

Nondeterministic Mechanisms: Examples In Use

- ? Ring oscillators
- ? Amplifier + Digitized voltage levels
- ? OS Loading (sample fast clock in tight loop)
- ? Hard drive access times (with cache misses)
- ? Mouse movements/timings
- ? Key press timings
- [?] Coins
- [?] Dice

Sampling and Measurement

- ? Entropy source produces bits.
- [?] Have to measure and digitize process
 - Sometimes inherent in process *Example: coin flips*
 - Measuring can introduce errors:
 - ? Noise
 - ? Systematic bias
- ? Can be a major hassle in some designs
 - Are you measuring what you think you're measuring?
 - How much of sample variability is entropy, how much is just complexity?

Sampling and Measurement: Modeling Issues

- Sampling / Measurement must be included in model:
- ? Sampling rate can solve some model problems
 - Example: Sampling voltage level/thermal noise source too fast gives correlated inputs; drop sample rate to fix
- Measurement technique can solve some model problems
 - Example: Measure difference in voltage drop from adjacent resistors to eliminate non-noise effects

Assessment

- [?] First, we have nondeterministic process
 - Justify why it's really nondeterminstic
- [?] Then we have model
 - Model includes process and sampling/measurement
- [?] Finally, we have to assess entropy
 - What are limits on best possible model?
 - Describe in terms of min-entropy
- [?] And we have to decide if something's wrong
 - Fail or stop outputting when things don't look right

Assessment with Fixed Model

- Simplest assessment: fixed model for all instances of entropy source
- ? In design/analysis, work out a model and get minentropy estimate
- ? Very common in the literature
 - Keystrokes
 - Ring Oscillator Samples
 - Coin Flips
 - Voltage measurements

Variable Assessment

- ? Can also change assessed entropy based on inputs seen lately
- ? Examples:
 - Keystroke estimation in PGP: ignore entropy from repeated keys
 - Change entropy estimates based on second derivative of mouse position, packet arrival time, etc.
 - Feed source outputs into general purpose compressor; alter assessments based on size of outputs.
 - Von Neumann unbiasing: size of output sequence determines assessment, but still output original sequence

Altering Model Parameters Over Time

- Can update some parameters in model over time to adjust assessments
- ? Example: source of biased, independent bits
 - Assess entropy based on bias
 - Can precompute table of probs/assessments per bit
- Could do this at startup, to get per-device variation
 - We don't know of any real-world systems that do this

Continuous Assessment and Limiting Outputs

- Alternative way to do variable assessment: Keep assessment same, limit rate of outputs
- Example: Only output sample when different than previous N samples
- Example: As measured bias increases, XOR
 together more and more sampled bits to make
 each bit of output

Conditioning: Two Approaches

Take biased/correlated bits from sampling and map to uniform, independent full-entropy bitstrings.

- Mathematical: use precise model of process and sampling
 - Example: Von Neumann Unbiasing of biased coins (Output 1 for HT, 0 for TH, and nothing otherwise)
- Hashing: assume only that distribution doesn't interact badly with process; leftover hash lemma
 - Example: Compute CRC of output bits, when enough are collected, assess as full entropy and output

Mathematical Conditioning

- Idea: Conditioning is based on probability model of samples from nondeterministic process
- ? Example: Von Neumann Unbiasing
 - 00, 11: output nothing
 - 10: output 1
 - 01: output 0
- Good News: If model correct, no other assumptions required; doesn't waste entropy
- Bad News: Fragile! If model is wrong, bits are skewed/correlated.

Hashing

- Idea: Condition bits by mapping input strings to outputs in a random way
 - Example: Compute SHA1 on sequence of measured keystroke timings.
 - Example: Compute CRC on sequence of sampled ring-oscillator bits.
- Good News: Don't have to know much about model
- Bad News: May be based on additional assumptions about algorithm or source, need more entropy (leftover hash lemma)

Buffering and Collecting Output

- ? Sometimes also necessary to shorten outputs
 - DRBG needs 512-bit seed with 128 bits min-entropy
 - Low-rate from sampling of nondeterministic mechanism
 - Possible Solution: Accumulate entropy with some checksum, e.g. CRC32.
 - How much analysis does this need?
- ? This is related to conditioning, but not identical to it.

Periodic Testing: Health Tests

- Purpose: Determine whether model still describes process and sampling well.
- ? Tests specific to model!
 - Relatively easy for stable distributions
 - Quite complicated otherwise
 - Look for changes in behavior from expected
 - Example: See if expected mean and sigma are consistent with observed data from ring oscillator.

Can include data before sampling, if available Should include data before accumulation

Health Tests and Conditioning

- [?] Mathematical conditioning (tuned to model):
 - Can test both input and output
 - Determine best test and cutoffs by simulation or analysis
 - Conditioning is tuned to model; tests on output are for uniform independent unbiased bitstrings.
- ? Hashing (model independent)
 - Can test only input
 - Tests specific to model

Continuous Testing....

- ? Some tests can run continuously
- ? Major requirements:
 - Cheap
 - Low rate of false positives
 - Accumulate information over time
- When a continuous test fails, the device shuts down or dies.
- [?] We have only scratched the surface here

Validation

- Not clear how validation lab should verify entropy source design
 - Documentation requirements nice, but who reads them at labs?
 - Cookbook statistical tests not so useful for complicated probability models
 - Can we require simple models (e.g., stable distributions) to make testing/validation easier?
- ? How much expertise can we expect from validation labs?

Validation Thoughts

- Validation requirements should depend on how critical entropy source is to system.
- ? Basic NRBG is most critical
 - Must do serious continuous tests
 - Must have very reliable design for nondeterministic processes
- ? Enhanced NRBGs and DRBGs
 - Less strenuous requirements if it keeps a seed file?
 - Reward conservative design?

Open Issues

[?] Most of this presentation is made of open issues