X9.82 Part 3 Number Theoretic DRBGs

Don B. Johnson
NIST RNG Workshop July 20, 2004

WHY?

- Asymmetric key operations are about $\mathbf{1 0 0}$ times slower than symmetric key or hash operations
- Why have 2 DRBGs based on hard problems in number theory?
- Certainly not expected to be chosen for performance reasons!

Some Possible Reasons

- Do not need lots of random bits, but want the potentially increased assurance
- Already using an asymmetric key algorithm and want to limit the number of algorithms that IF broken will break my system
- Have an asymmetric algorithm accelerator in the design already

Performance Versus

 Assurance- As performance is not likely THE reason an NT DRBG is included in a product
- Make the problem needing to be broken as hard as possible, within reason
- This increases the assurance that the DRBG will not be broken in the future, up to its security level

Quick Elliptic Curve Review

- An elliptic curve is a cubic equation in 2 variables X and Y which are elements of a field. If the field is finite, then the elliptic curve is finite
- Point addition is defined to form a group
- ECDLP Hard problem: given $P=n G$, find n where G is generator of $E C$ group and G has order of 160 bits or more

Elliptic Curve $y^{2}=x^{3}+a x+b$

Toy Example: The Field \mathbf{Z}_{23}

- The field Z_{23} has $\underline{23}$ elements from 0 to 22
- The " + " operation is addition modulo 23
- The "*" operation is multiplication mod 23
- As 23 is a prime this is a field (acts like rational numbers except it is finite)

The Group \mathbf{Z}_{23}^{*}

- $\mathrm{Z}^{*}{ }_{23}$ consists of the $\mathbf{2 2}$ elements of \mathbf{Z}_{23} excluding 0

$5^{0}=1$	$5^{8}=16$
$5^{1}=5$	$5^{9}=11$
$5^{2}=2$	$5^{10}=9$
$5^{3}=10$	$5^{11}=22$
$5^{4}=4$	$5^{12}=18$
$5^{5}=20$	$5^{13}=21$
$5^{6}=8$	$5^{14}=13$
$5^{7}=17$	$5^{15}=19$

$$
\begin{aligned}
& 5^{16}=3 \\
& 5^{17}=15 \\
& 5^{18}=6 \\
& 5^{19}=7 \\
& 5^{20}=12 \\
& 5^{21}=14 \\
& \text { And return } \\
& 5^{22}=1
\end{aligned}
$$

- The element 5 is called a generator
- The "group operation" is modular multiplication

Solutions to $y^{2}=x^{3}+x+1$ Over Z_{23}

$(0,1)$	$(6,4)$	$(12,19)$
$(0,22)$	$(6,19)$	$(13,7)$
$(1,7)$	$(7,11)$	$(13,16)$
$(1,16)$	$(7,12)$	$(17,3)$
$(3,10)$	$(9,7)$	$(17,20)$
$(3,13)$	$(9,16)$	$(18,3)$
$(4,0)$	$(11,3)$	$(18,20)$
$(5,4)$	$(11,20)$	$(19,5)$
$(5,19)$	$(12,4)$	$(19,18)$
\varnothing		

ECC DRBG Flowchart

additional input

If idimuliquif = Mill

Unlooped Flowchart

3 Facts and a Question

1. Randomness implies next bit unpredictability
2. The number of points on a curve is approximately the number of field elements
3. All points (X, Y) have a inverse ($X,-Y$) and at most 3 points are of form ($\mathrm{X}, 0$)
Q: Can I use the X -coordinate of a random point as random bits?

X-Coordinate Not Random

No, I cannot use a raw X-coordinate!
As most X-coordinates are associated with 2 different Y -coordinates, about half the X values have NO point on the curve,
Such X gaps can be considered randomly distributed on X -axis
Look at toy example to see what is going on

Toy Example of X Gaps

Possible X coordinate values: 0 to 22
X values appearing once: 4
Twice: 0, 1, 3, 5, 6, 7, 9, 11, 12, 13, 17, 18, 19
None: 2, 8, 10, 14, 15, 16, 20, 21, 22
An X coordinate in bits from 00000 to 10110
If I get first 4 bits of X value of 0100 a , I know a must be a 1 , as 9 exists but 8 does not

1-bit Predictability

- If output 4 bits as a random number, the next bit is completely predictable!
- This property also holds for 2-bit gaps, 3-bit gaps, etc. with decreasing frequency.
- Bad luck is not an excuse for an RBG to be predictable!
- The solution: Truncate the X-coordinate. Do not give all that info out. How much?

X Coordinate Truncation Table

Prime field
Binary Field, cofactor $=2$

Truncate at least 13 leftmost bits of x coordinate

Truncate at least 14 leftmost bits of x coordinate

Truncate at least 15 leftmost bits of x coordinate

Truncation

- This truncation will ensure no bias greater than $2^{* *-44}$
- Reseed every 10,000 iterations so bias effect is negligible
- To work with bytes, round up so remainder of X-coordinate is a multiple of 8 bits, this truncates from 16 to 19 bits

Quick RSA Review

- Choose odd public exponent e and primes p and q such that e has no common factor with p or q, set $n=p q$
- Find d such ed = $1 \bmod (p-1)(q-1)$
- Public key is (e, n), private key is (d, n)
- Hard to find d from (e, n) if $n>=1024$ bits
- ($\mathrm{M}^{\mathrm{e}} \bmod \mathrm{n}$) is hard to invert for most M

Micali-Schnorr DRBG

Unlooped Flowchart

Micali-Schnorr Truncation

- For MS truncation, we only use the RSA hard core bits as random bits
- This has high assurance that the number theory problem to be solved is as hard as possible!
- Reseed after 50,000 iterations

NIST/ANSI X9 Security Levels Table

Security Levels (in bits)	ECC (order of G in bits)	MS (RSA) (modulus in bits)
80	160	1024, 10 hardcore bits
112	224	2048, 11 hardcore bits
128	256	3072, 11 hardcore bits
192	384	Not specified

Number Theory DRBGs Summary

- 2 Number Theory DRBGs are specified based on ECC and RSA
- Use one for increased assurance, but do not expect it to be the fastest one possible
- No one has yet asked for an FFC DRBG, straightforward to design from ECC DRBG, but specifying algorithm and validation method has a cost

