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Abstract

This paper discusses some aspects of selecting and testing random and pseudorandom number generators.
The outputs of such generators may be used in many cryptographic applications, such as the generation of
key material. Generators suitable for use in cryptographic applications may need to meet stronger
requirements than for other applications. In particular, their outputs must be unpredictable in the absence
of knowledge of the inputs. Some criteria for characterizing and selecting appropriate generators are
discussed in this document. The subject of statistical testing and its relation to cryptanalysis is also
discussed, and some recommended statistical tests are provided. These tests may be useful as a first step
in determining whether or not a generator is suitable for a particular cryptographic application. However,
no set of statistical tests can absolutely certify a generator as appropriate for usage in a particular
application, i.e., statistical testing cannot serve as a substitute for cryptanalysis. The design and
cryptanalysis of generators is outside the scope of this paper.

Key words: random number generator, hypothesis test, P-value
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Introduction to Random Number Testing

The need for random and pseudorandom numbers arises in many cryptographic applications. For
example, common cryptosystems employ keys that must be generated in a random fashion. Many
cryptographic protocols also require random or pseudorandom inputs at various points, e.g., for auxiliary
quantities used in generating digital signatures, or for generating challenges in authentication protocols.

This document discusses the randomness testing of random number and pseudorandom number
generators that may be used for many purposes including cryptographic, modeling and simulation
applications. The focus of this document is on those applications where randomness is required for
cryptographic purposes. A set of statistical tests for randomness is described in this document. The
National Institute of Standards and Technology (NIST) believes that these procedures are useful in
detecting deviations of a binary sequence from randomness. However, a tester should note that apparent
deviations from randomness may be due to either a poorly designed generator or to anomalies that appear
in the binary sequence that is tested (i.e., a certain number of failures is expected in random sequences
produced by a particular generator). It is up to the tester to determine the correct interpretation of the test
results. Refer to Section 4 for a discussion of testing strategy and the interpretation of test results.

1.1 General Discussion

There are two basic types of generators used to produce random sequences: random number generators
(RNGs - see Section 1.1.3) and pseudorandom number generators (PRNGs - see Section 1.1.4). For
cryptographic applications, both of these generator types produce a stream of zeros and ones that may be
divided into substreams or blocks of random numbers.

1.1.1 Randomness

A random bit sequence could be interpreted as the result of the flips of an unbiased “fair” coin with sides
that are labeled “0” and “1,” with each flip having a probability of exactly 2 of producing a “0” or “1.”
Furthermore, the flips are independent of each other: the result of any previous coin flip does not affect
future coin flips. The unbiased “fair” coin is thus the perfect random bit stream generator, since the “0”
and “1” values will be randomly distributed (and [0,1] uniformly distributed). All elements of the
sequence are generated independently of each other, and the value of the next element in the sequence
cannot be predicted, regardless of how many elements have already been produced.

Obviously, the use of unbiased coins for cryptographic purposes is impractical. Nonetheless, the
hypothetical output of such an idealized generator of a true random sequence serves as a benchmark for
the evaluation of random and pseudorandom number generators.

1.1.2 Unpredictability

Random and pseudorandom numbers generated for cryptographic applications should be unpredictable.
In the case of PRNGs, if the seed is unknown, the next output number in the sequence should be
unpredictable in spite of any knowledge of previous random numbers in the sequence. This property is
known as forward unpredictability. It should also not be feasible to determine the seed from knowledge
of any generated values (i.e., backward unpredictability is also required). No correlation between a seed
and any value generated from that seed should be evident; each element of the sequence should appear to
be the outcome of an independent random event whose probability is 1/2.

To ensure forward unpredictability, care must be exercised in obtaining seeds. The values produced by a
PRNG are completely predictable if the seed and generation algorithm are known. Since in many cases
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the generation algorithm is publicly available, the seed must be kept secret and should not be derivable
from the pseudorandom sequence that it produces. In addition, the seed itself must be unpredictable.

1.1.3 Random Number Generators (RNGs)

The first type of sequence generator is a random number generator (RNG). An RNG uses a non-
deterministic source (i.e., the entropy source), along with some processing function (i.e., the entropy
distillation process) to produce randomness. The use of a distillation process is needed to overcome any
weakness in the entropy source that results in the production of non-random numbers (e.g., the occurrence
of long strings of zeros or ones). The entropy source typically consists of some physical quantity, such as
the noise in an electrical circuit, the timing of user processes (e.g., key strokes or mouse movements), or
the quantum effects in a semiconductor. Various combinations of these inputs may be used.

The outputs of an RNG may be used directly as a random number or may be fed into a pseudorandom
number generator (PRNG). To be used directly (i.e., without further processing), the output of any RNG
needs to satisfy strict randomness criteria as measured by statistical tests in order to determine that the
physical sources of the RNG inputs appear random. For example, a physical source such as electronic
noise may contain a superposition of regular structures, such as waves or other periodic phenomena,
which may appear to be random, yet are determined to be non-random using statistical tests.

For cryptographic purposes, the output of RNGs needs to be unpredictable. However, some physical
sources (e.g., date/time vectors) are quite predictable. These problems may be mitigated by combining
outputs from different types of sources to use as the inputs for an RNG. However, the resulting outputs
from the RNG may still be deficient when evaluated by statistical tests. In addition, the production of
high-quality random numbers may be too time consuming, making such production undesirable when a
large quantity of random numbers is needed. To produce large quantities of random numbers,
pseudorandom number generators may be preferable.

1.1.4 Pseudorandom Number Generators (PRNGs)

The second generator type is a pseudorandom number generator (PRNG). A PRNG uses one or more
inputs and generates multiple “pseudorandom” numbers. Inputs to PRNGs are called seeds. In contexts
in which unpredictability is needed, the seed itself must be random and unpredictable. Hence, by default,
a PRNG should obtain its seeds from the outputs of an RNG; i.e., a PRNG requires a RNG as a
companion.

The outputs of a PRNG are typically deterministic functions of the seed; i.e., all true randomness is
confined to seed generation. The deterministic nature of the process leads to the term “pseudorandom.”
Since each element of a pseudorandom sequence is reproducible from its seed, only the seed needs to be
saved if reproduction or validation of the pseudorandom sequence is required.

Ironically, pseudorandom numbers often appear to be more random than random numbers obtained from
physical sources. If a pseudorandom sequence is properly constructed, each value in the sequence is
produced from the previous value via transformations that appear to introduce additional randomness. A
series of such transformations can eliminate statistical auto-correlations between input and output. Thus,
the outputs of a PRNG may have better statistical properties and be produced faster than an RNG.

1.1.5 Testing

Various statistical tests can be applied to a sequence to attempt to compare and evaluate the sequence to a
truly random sequence. Randomness is a probabilistic property; that is, the properties of a random
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sequence can be characterized and described in terms of probability. The likely outcome of statistical
tests, when applied to a truly random sequence, is known a priori and can be described in probabilistic
terms. There are an infinite number of possible statistical tests, each assessing the presence or absence of
a “pattern” which, if detected, would indicate that the sequence is nonrandom. Because there are so many
tests for judging whether a sequence is random or not, no specific finite set of tests is deemed “complete.”
In addition, the results of statistical testing must be interpreted with some care and caution to avoid
incorrect conclusions about a specific generator (see Section 4).

A statistical test is formulated to test a specific null hypothesis (HO). For the purpose of this document,
the null hypothesis under test is that the sequence being tested is random. Associated with this null
hypothesis is the alternative hypothesis (Ha), which, for this document, is that the sequence is not
random. For each applied test, a decision or conclusion is derived that accepts or rejects the null
hypothesis, i.e., whether the generator is (or is not) producing random values, based on the sequence that
was produced.

For each test, a relevant randomness statistic must be chosen and used to determine the acceptance or
rejection of the null hypothesis. Under an assumption of randomness, such a statistic has a distribution of
possible values. A theoretical reference distribution of this statistic under the null hypothesis is
determined by mathematical methods. From this reference distribution, a critical value is determined
(typically, this value is "far out" in the tails of the distribution, say out at the 99 % point). During a test, a
test statistic value is computed on the data (the sequence being tested). This test statistic value is
compared to the critical value. If the test statistic value exceeds the critical value, the null hypothesis for
randomness is rejected. Otherwise, the null hypothesis (the randomness hypothesis) is not rejected (i.e.,
the hypothesis is accepted).

In practice, the reason that statistical hypothesis testing works is that the reference distribution and the
critical value are dependent on and generated under a tentative assumption of randomness. If the
randomness assumption is, in fact, true for the data at hand, then the resulting calculated test statistic
value on the data will have a very low probability (e.g., 0.01 %) of exceeding the critical value.

On the other hand, if the calculated test statistic value does exceed the critical value (i.e., if the low
probability event does in fact occur), then from a statistical hypothesis testing point of view, the low
probability event should not occur naturally. Therefore, when the calculated test statistic value exceeds
the critical value, the conclusion is made that the original assumption of randomness is suspect or faulty.
In this case, statistical hypothesis testing yields the following conclusions: reject Hy (randomness) and
accept H, (non-randomness).

Statistical hypothesis testing is a conclusion-generation procedure that has two possible outcomes, either
accept Hy (the data is random) or accept H, (the data is non-random). The following 2 by 2 table relates
the true (unknown) status of the data at hand to the conclusion arrived at using the testing procedure.

CONCLUSION
TRUE SITUATION Accept Hy Accept H, (reject Hy)
Data is random (Hj is true) No error Type I error
Data is not random (H, is true) Type II error No error

If the data is, in truth, random, then a conclusion to reject the null hypothesis (i.e., conclude that the data
is non-random) will occur a small percentage of the time. This conclusion is called a Type I error. If the
data is, in truth, non-random, then a conclusion to accept the null hypothesis (i.e., conclude that the data is
actually random) is called a Type II error. The conclusions to accept Hy when the data is really random,
and to reject Hy when the data is non-random, are correct.
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The probability of a Type I error is often called the level of significance of the test. This probability can
be set prior to a test and is denoted as a. For the test, a is the probability that the test will indicate that the
sequence is not random when it really is random. That is, a sequence appears to have non-random
properties even when a “good” generator produced the sequence. Common values of a in cryptography
are about 0.01.

The probability of a Type II error is denoted as . For the test, £ is the probability that the test will
indicate that the sequence is random when it is not; that is, a “bad” generator produced a sequence that
appears to have random properties. Unlike a, £ is not a fixed value. f can take on many different values
because there are an infinite number of ways that a data stream can be non-random, and each different
way yields a different 5. The calculation of the Type II error £ is more difficult than the calculation of o
because of the many possible types of non-randomness.

One of the primary goals of the following tests is to minimize the probability of a Type II error, i.e., to
minimize the probability of accepting a sequence being produced by a generator as good when the
generator was actually bad. The probabilities o and f§ are related to each other and to the size n of the
tested sequence in such a way that if two of them are specified, the third value is automatically
determined. Practitioners usually select a sample size n and a value for a (the probability of a Type I
error — the level of significance). Then a critical point for a given statistic is selected that will produce the
smallest f# (the probability of a Type Il error). That is, a suitable sample size is selected along with an
acceptable probability of deciding that a bad generator has produced the sequence when it really is
random. Then the cutoff point for acceptability is chosen such that the probability of falsely accepting a
sequence as random has the smallest possible value.

Each test is based on a calculated test statistic value, which is a function of the data. If the test statistic
value is S and the critical value is ¢, then the Type I error probability is P(S > ¢ || H, is true) = P(reject H, |
H, is true), and the Type I error probability is P(S = ¢ || H, is false) = P(accept Hy | Hyis false). The test
statistic is used to calculate a P-value that summarizes the strength of the evidence against the null
hypothesis. For these tests, each P-value is the probability that a perfect random number generator would
have produced a sequence less random than the sequence that was tested, given the kind of non-
randomness assessed by the test. If a P-value for a test is determined to be equal to 1, then the sequence
appears to have perfect randomness. A P-value of zero indicates that the sequence appears to be
completely non-random. A significance level (a) can be chosen for the tests. If P-value = o, then the
null hypothesis is accepted; i.e., the sequence appears to be random. If P-value < o, then the null
hypothesis is rejected; i.e., the sequence appears to be non-random. The parameter o denotes the
probability of the Type I error. Typically, a is chosen in the range [0.001, 0.01].

. An a of 0.001 indicates that one would expect one sequence in 1000 sequences to be rejected by
the test if the sequence was random. For a P-value > 0.001, a sequence would be considered to be
random with a confidence of 99.9%. For a P-value < 0.001, a sequence would be considered to be non-
random with a confidence of 99.9%.

. An ¢ 0of 0.01 indicates that one would expect 1 sequence in 100 sequences to be rejected. A P-
value > 0.01 would mean that the sequence would be considered to be random with a confidence of 99%.
A P-value < 0.01 would mean that the conclusion was that the sequence is non-random with a confidence
of 99%.

For the examples in this document, a has been chosen to be 0.01. Note that, in many cases, the

parameters in the examples do not conform to the recommended values; the examples are for illustrative
purposes only.
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1.1.6 Considerations for Randomness, Unpredictability and Testing

The following assumptions are made with respect to random binary sequences to be tested:

1. Uniformity: At any point in the generation of a sequence of random or pseudorandom
bits, the occurrence of a zero or one is equally likely, i.e., the probability of each is
exactly 1/2. The expected number of zeros (or ones) is n/2, where n = the sequence

length.

2. Scalability: Any test applicable to a sequence can also be applied to subsequences
extracted at random. If a sequence is random, then any such extracted subsequence
should also be random. Hence, any extracted subsequence should pass any test for

randomness.

3. Consistency: The behavior of a generator must be consistent across starting values
(seeds). It is inadequate to test a PRNG based on the output from a single seed, or an
RNG on the basis of an output produced from a single physical output.

1.2 Definitions

Term

Definition

Asymptotic Analysis

A statistical technique that derives limiting approximations for functions
of interest.

Asymptotic Distribution

The limiting distribution of a test statistic arising when n approaches
infinity.

Bernoulli Random
Variable

A random variable that takes on the value of one with probability p and the
value of zero with probability /-p.

Binary Sequence

A sequence of zeroes and ones.

Binomial Distribution

A random variable is binomially distributed if there is an integer n and a
probability p such that the random variable is the number of successes in
independent Bernoulli experiments, where the probability of success in a
single experiment is p. In a Bernoulli experiment, there are only two
possible outcomes.

Bit String

A sequence of bits.

Block

A subset of a bit string. A block has a predetermined length.

Central Limit Theorem

For a random sample of size n from a population with mean u and
variance o’, the distribution of the sample means is approximately normal
with mean u and variance o’/n as the sample size increases.

Complementary Error
Function

See Erfc.

Confluent Hypergeometric
Function

The confluent hypergeometric function is defined as

F(b) 1 t a-1 b-a-1
D(ahy;z)=——— | et (-1t dt,0 b.
(@b = oo 1) e

Critical Value

The value that is exceeded by the test statistic with a small probability
(significance level). A "look-up" or calculated value of a test statistic (i.e.,
a test statistic value) that, by construction, has a small probability of
occurring (e.g., 5 %) when the null hypothesis of randomness is true.

Cumulative Distribution
Function (CDF) F(x)

A function giving the probability that the random variable X is less than or
equal to x, for every value x. That is,
F(x)=PX =< x).
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Entropy

A measure of the disorder or randomness in a closed system. The entropy
of uncertainty of a random variable X with probabilities p,, ..., p, 1s

defined to be H(Y) = — 3. p, log ;.
i=1

Entropy Source

A physical source of information whose output either appears to be
random in itself or by applying some filtering/distillation process. This
output is used as input to either a RNG or PRNG.

Erfc

The complementary error function erfc(z) is defined in Section 5.5.3. This
function is related to the normal cdf.

Geometric Random
Variable

A random variable that takes the value &, a non-negative integer with
probability p*(I-p). The random variable x is the number of successes
before a failure in an infinite series of Bernoulli trials.

Global Structure/Global
Value

A structure/value that is available by all routines in the test code.

igamc The incomplete gamma function Q(a,x) is defined in Section 5.5.3.
Incomplete Gamma See the definition for igamc.
Function

Hypothesis (Alternative)

A statement H, that an analyst will consider as true (e.g., H,: the sequence
is non-random) if and when the null hypothesis is determined to be false.

Hypothesis (Null)

A statement H,about the assumed default condition/property of the
observed sequence. For the purposes of this document, the null hypothesis
H, is that the sequence is random. If H) is in fact true, then the reference
distribution and critical values of the test statistic may be derived.

Kolmogorov-Smirnov Test

A statistical test that may be used to determine if a set of data comes from
a particular probability distribution.

Level of Significance (&)

The probability of falsely rejecting the null hypothesis, i.e., the probability
of concluding that the null hypothesis is false when the hypothesis is, in
fact, true. The tester usually chooses this value; typical values are 0.05,
0.01 or 0.001; occasionally, smaller values such as 0.0001 are used. The
level of significance is the probability of concluding that a sequence is
non-random when it is in fact random. Synonyms: Type I error, « error.

Linear Dependence

In the context of the binary rank matrix test, linear dependence refers to m-
bit vectors that may be expressed as a linear combination of the linearly
independent m-bit vectors.

Maple An interactive computer algebra system that provides a complete
mathematical environment for the manipulation and simplification of
symbolic algebraic expressions, arbitrary extended precision mathematics,
two- and three-dimensional graphics, and programming.

MATLAB An integrated, technical computer environment that combines numeric

computation, advanced graphics and visualization, and a high level
programming language. MATLAB includes functions for data analysis and
visualization; numeric and symbolic computation; engineering and
scientific graphics; modeling, simulation and prototyping; and
programming, application development and a GUI design.

Normal (Gaussian)
Distribution

A continuous distribution whose density function is given by

1/ x-u ?
1
f(xu;0) = — 2( o ) , where u and o are location and scale
A 2m0

parameters.
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P-value

The probability (under the null hypothesis of randomness) that the chosen
test statistic will assume values that are equal to or worse than the
observed test statistic value when considering the null hypothesis. The P-
value is frequently called the “tail probability.”

Poisson Distribution - §3.8

Poisson distributions model (some) discrete random variables. Typically,
a Poisson random variable is a count of the number of rare events that
occur in a certain time interval.

Probability Density
Function (PDF)

A function that provides the "local" probability distribution of a test
statistic. From a finite sample size n, a probability density function will be
approximated by a histogram.

Probability Distribution

The assignment of a probability to the possible outcomes (realizations) of
a random variable.

Pseudorandom Number

A deterministic algorithm which, given a truly random binary sequence of

Generator (PRNG) length %, outputs a binary sequence of length / >> k& which appears to be
random. The input to the generator is called the seed, while the output is
called a pseudorandom bit sequence.

Random Number A mechanism that purports to generate truly random data.

Generator (RNG)

Random Binary Sequence

A sequence of bits for which the probability of each bit being a “0” or “1”
is 2. The value of each bit is independent of any other bit in the sequence,
i.e., each bit is unpredictable.

Random Variable

Random variables differ from the usual deterministic variables (of science
and engineering) in that random variables allow the systematic
distributional assignment of probability values to each possible outcome.

Rank (of a matrix)

Refers to the rank of a matrix in linear algebra over GF(2). Having
reduced a matrix into row-echelon form via elementary row operations, the
number of nonzero rows, if any, are counted in order to determine the
number of linearly independent rows or columns in the matrix.

Run An uninterrupted sequence of like bits (i.e., either all zeroes or all ones).

Seed The input to a pseudorandom number generator. Different seeds generate
different pseudorandom sequences.

SHA-1 The Secure Hash Algorithm defined in Federal Information Processing
Standard 180-1.

Standard Normal See the definition in Section 5.5.3. This is the normal function for mean =

Cumulative Distribution
Function

0 and variance = 1.

Statistically Independent
Events

Two events are independent if the occurrence of one event does not affect
the chances of the occurrence of the other event. The mathematical
formulation of the independence of events A and B is the probability of the
occurrence of both A and B being equal to the product of the probabilities
of A and B (i.e., P(4 and B) = P(A)P(B)).

Statistical Test (of a

A function of the data (binary stream) which is computed and used to

Hypothesis) decide whether or not to reject the null hypothesis. A systematic statistical
rule whose purpose is to generate a conclusion regarding whether the
experimenter should accept or reject the null hypothesis H,.

Word A predefined substring consisting of a fixed pattern/template (e.g., 010,

0110).
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1.3 Abbreviations

Abbreviation Definition
ANSI American National Standards Institute
FIPS Federal Information Processing Standard
NIST National Institute of Standards and Technology
RNG Random Number Generator
SHA-1 Secure Hash Algorithm

1.4 Mathematical Symbols

In general, the following notation is used throughout this document. However, the tests in this document
have been designed and described by multiple authors who may have used slightly different notation.
The reader is advised to consider the notation used for each test separate from that notation used in other

tests.

Symbol Meaning

[x] The floor function of x; for a given real positive x, [x /= x-g, where /x|
is a non-negative integer, and 0 =g < 1.

a The significance level.

d The normalized difference between the observed and expected number of frequency
components. See Sections 2.6 and 3.6.

Vi (0bs); A measure of how well the observed values match the expected value. See Sections

V27, (obs) 2.11 and 3.11.

Ef] The expected value of a random variable.

€ The original input string of zero and one bits to be tested.

& The i bit in the original sequence &.

H, The null hypothesis; i.e., the statement that the sequence is random.

log(x) The natural logarithm of x: log(x) = log.(x) = In(x).

fog2(4) Defined as In(x) , Where [n is the natural logarithm.

In(2)

M The number of bits in a substring (block) being tested.

N The number of M-bit blocks to be tested.

n The number of bits in the stream being tested.

fu The sum of the log, distances between matching L-bit templates, i.e., the sum of the
number of digits in the distance between L-bit templates. See Sections 2.9 and 3.9.

T 3.14159... unless defined otherwise for a specific test.

o The standard deviation of a random variable = | f(x - uY f(x)dx .

o The variance of a random variable = (standard deviation)”.

Sobs The observed value which is used as a statistic in the Frequency test.

S, The n™ partial sum for values X; = {-1, +1}; i.e., the sum of the first n values of X,

2 The summation symbol.

D Standard Normal Cumulative Distribution Function (see Section 5.5.3).

= The total number of times that a given state occurs in the identified cycles. See
Section 2.15 and 3.15.

X The elements of the string consisting of =1 that is to be tested for randomness, where

X =2¢-1.
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X

The [theoretical] chi-square distribution; used as a test statistic; also, a test statistic
that follows the ¥’ distribution.

X (obs) The chi-square statistic computed on the observed values. See Sections 2.2, 2.4, 2.5,
2.7,2.8,2.10,2.12, 2.14, and the corresponding sections of Section 3.

V, The expected number of runs that would occur in a sequence of length » under an
assumption of randomness See Sections 2.3 and 3.3.

V,(obs) The observed number of runs in a sequence of length n. See Sections 2.3 and 3.3.
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2. Random Number Generation Tests

The NIST Test Suite is a statistical package consisting of 15 tests that were developed to test the
randomness of (arbitrarily long) binary sequences produced by either hardware or software based
cryptographic random or pseudorandom number generators. These tests focus on a variety of different
types of non-randomness that could exist in a sequence. Some tests are decomposable into a variety of
subtests. The 15 tests are:

The Frequency (Monobit) Test,

Frequency Test within a Block,

The Runs Test,

Tests for the Longest-Run-of-Ones in a Block,
The Binary Matrix Rank Test,

The Discrete Fourier Transform (Spectral) Test,
The Non-overlapping Template Matching Test,
The Overlapping Template Matching Test,

9. Maurer's "Universal Statistical" Test,

10. The Linear Complexity Test,

11. The Serial Test,

12. The Approximate Entropy Test,

S A o e

13. The Cumulative Sums (Cusums) Test,
14. The Random Excursions Test, and
15. The Random Excursions Variant Test.

This section (Section 2) consists of 15 subsections, one subsection for each test. Each subsection provides
a high level description of the particular test. The corresponding subsections in Section 3 provide the
technical details for each test.

Section 4 provides a discussion of testing strategy and the interpretation of test results. The order of the
application of the tests in the test suite is arbitrary. However, it is recommended that the Frequency test
be run first, since this supplies the most basic evidence for the existence of non-randomness in a
sequence, specifically, non-uniformity. If this test fails, the likelihood of other tests failing is high.
(Note: The most time-consuming statistical test is the Linear Complexity test; see Sections 2.10 and
3.10).

Section 5 provides a user's guide for setting up and running the tests, and a discussion on program layout.
The statistical package includes source code and sample data sets. The test code was developed in ANSI
C. Some inputs are assumed to be global values rather than calling parameters.

A number of tests in the test suite have the standard normal and the chi-square ( X2 ) as reference

distributions. If the sequence under test is in fact non-random, the calculated test statistic will fall in
extreme regions of the reference distribution. The standard normal distribution (i.e., the bell-shaped
curve) is used to compare the value of the test statistic obtained from the RNG with the expected value of
the statistic under the assumption of randomness. The test statistic for the standard normal distribution is
of the form z = (x - u)/o, where x is the sample test statistic value, and u and o are the expected value
and the variance of the test statistic. The X2 distribution (i.e., a left skewed curve) is used to compare the

goodness-of-fit of the observed frequencies of a sample measure to the corresponding expected
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frequencies of the hypothesized distribution. The test statistic is of the form % = E ((0i —-€ )2 / ¢ ),

where o; and ¢; are the observed and expected frequencies of occurrence of the measure, respectively.

For many of the tests in this test suite, the assumption has been made that the size of the sequence length,
n, is large (of the order 10° to 10”). For such large sample sizes of , asymptotic reference distributions
have been derived and applied to carry out the tests. Most of the tests are applicable for smaller values of
n. However, if used for smaller values of n, the asymptotic reference distributions would be inappropriate
and would need to be replaced by exact distributions that would commonly be difficult to compute.

Note: For many of the examples throughout Section 2, small sample sizes are used for illustrative
purposes only, e.g., n = 10. The normal approximation is not really applicable for these examples.

2.1 Frequency (Monobit) Test

211 Test Purpose

The focus of the test is the proportion of zeroes and ones for the entire sequence. The purpose of this test

is to determine whether the number of ones and zeros in a sequence are approximately the same as would

be expected for a truly random sequence. The test assesses the closeness of the fraction of ones to 2, that
is, the number of ones and zeroes in a sequence should be about the same. All subsequent tests depend on
the passing of this test.

2.1.2 Function Call
Frequency(n), where:

n The length of the bit string.
Additional input used by the function, but supplied by the testing code:

€ The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; € = ¢, €, ..., &,

2.1.3 Test Statistic and Reference Distribution

Sobs: The absolute value of the sum of the X; (where, X; =2¢ - 1 = £1) in the sequence divided
by the square root of the length of the sequence.

The reference distribution for the test statistic is half normal (for large n). (Note: If z (where
z =S5, A2;see Section 3.1) is distributed as normal, then |z| is distributed as half normal.) If the

sequence is random, then the plus and minus ones will tend to cancel one another out so that the test
statistic will be about 0. If there are too many ones or too many zeroes, then the test statistic will tend to
be larger than zero.

2.1.4 Test Description

(1) Conversion to +1: The zeros and ones of the input sequence (&) are converted to values of —1 and
+1 and are added together to produce S, = X, + X, +---+X , where X; = 2¢,— 1.
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For example, if ¢ = 1011010101, then n=10and S, = [ + (-1) + [ + 1 + (-1) + [ + (-1) + 1 +
1)+1=2.

S,
2) Compute the test statistic s, = ——
n

2
For the example in this section, s, = |—_ =.632455532.
10

3) Compute P-value = erfc ( Zobs ) , where erfc is the complementary error function as defined in
A2

Section 5.5.3.

.632455532
For the example in this section, P-value = erfc (—_) =(.527089.

A2

2.1.5 Decision Rule (at the 1% Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.1.6 Conclusion and Interpretation of Results

Since the P-value obtained in step 3 of Section 2.1.4 is = 0.01 (i.e., P-value = 0.527089), the conclusion is
that the sequence is random.

Note that if the P-value were small (< 0.01), then this would be caused by |Sn| or |S | being large.

obs

Large positive values of S, are indicative of too many ones, and large negative values of S, are indicative
of too many zeros.

2.1.7 Input Size Recommendation
It is recommended that each sequence to be tested consist of a minimum of 100 bits (i.e., n = 100).

2.1.8 Example

(input) €=11001001000011111101101010100010001000010110100011
00001000110100110001001100011001100010100010111000

(input) n=100
(processing)  S;p0 =-16
(processing)  Sops = 1.6

(output) P-value = 0.109599

(conclusion)  Since P-value = 0.01, accept the sequence as random.
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2.2 Frequency Test within a Block

2.21 Test Purpose

The focus of the test is the proportion of ones within M-bit blocks. The purpose of this test is to determine
whether the frequency of ones in an M-bit block is approximately M/2, as would be expected under an
assumption of randomness. For block size M=1, this test degenerates to test 1, the Frequency (Monobit)
test.

2.2.2 Function Call
BlockFrequency(M,n), where:

M The length of each block.
n The length of the bit string.
Additional input used by the function, but supplied by the testing code:

€ The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; € = ¢, &, ..., &,.

2.2.3 Test Statistic and Reference Distribution

XZ (obs): A measure of how well the observed proportion of ones within a given M-bit
block match the expected proportion (1/2).

The reference distribution for the test statistic is a %~ distribution.
2.2.4 Test Description

(1) Partition the input sequence into N = {% non-overlapping blocks. Discard any unused bits.

For example, if n = 10, M = 3 and € = 0110011010, 3 blocks (N = 3) would be created,
consisting of 011, 001 and 101. The final 0 would be discarded.

LS

EichM+j

~
Il

2) Determine the proportion 7; of ones in each M-bit block using the equation 7; = I,

forl =i<N.

For the example in this section, &; = 2/3, m, = 1/3, and 73 = 2/3.

N
(3) Compute the X2 statistic: x’(obs) = 4 ME (- )",
i=1

For the example in this section, % (0bs) = 4 x 3 x (%—%) + %—%) + %—%)) =1.
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4) Compute P-value = igame (N/2, x’(obs)/2) , where igamc is the incomplete gamma function for
Q(a,x) as defined in Section 5.5.3.

Note: When comparing this section against the technical description in Section 3.2, note that

O(a,x) = I-P(a,x).

3 1
For the example in this section, P-value = igamce (33) =0.801252.

2.2.5 Decision Rule (at the 1% Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.2.6 Conclusion and Interpretation of Results

Since the P-value obtained in step 4 of Section 2.2.4 is = 0.01 (i.e., P-value = 0.801252), the conclusion is
that the sequence is random.

Note that small P-values (< 0.01) would have indicated a large deviation from the equal proportion of
ones and zeros in at least one of the blocks.

2.2.7 Input Size Recommendation

It is recommended that each sequence to be tested consist of a minimum of 100 bits (i.e., n = 100). Note
that n = MN. The block size M should be selected such that M =20, M > .01n and N < 100.

2.2.8 Example

(input) €=11001001000011111101101010100010001000010110100011
00001000110100110001001100011001100010100010111000

(input) n=100

(input) M=10
(processing) N =10
(processing)  x’ =7.2

(output) P-value = 0.706438

(conclusion)  Since P-value = 0.01, accept the sequence as random.

2.3 Runs Test

2.3.1 Test Purpose

The focus of this test is the total number of runs in the sequence, where a run is an uninterrupted sequence
of identical bits. A run of length k consists of exactly & identical bits and is bounded before and after with
a bit of the opposite value. The purpose of the runs test is to determine whether the number of runs of
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ones and zeros of various lengths is as expected for a random sequence. In particular, this test determines
whether the oscillation between such zeros and ones is too fast or too slow.

2.3.2 Function Call
Runs(n), where:

n The length of the bit string.
Additional inputs for the function, but supplied by the testing code:

€ The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; € = ¢, &, ..., &,.

2.3.3 Test Statistic and Reference Distribution

Va(obs): The total number of runs (i.e., the total number of zero runs + the total number of
one-runs) across all n bits.

The reference distribution for the test statistic is a %~ distribution.

2.3.4 Test Description
Note: The Runs test carries out a Frequency test as a prerequisite.

.E
(1) Compute the pre-test proportion s of ones in the input sequence: & = L .
n
For example, if ¢ = 1001101011, then n=10 and 7t = 6/10 = 3/5.
) Determine if the prerequisite Frequency test is passed: If it can be shown that |n -1, |z, then the

Runs test need not be performed (i.e., the test should not have been run because of a failure to
pass test 1, the Frequency (Monobit) test). If the test is not applicable, then the P-value is set to

0.0000. Note that for this test, = -2 has been pre-defined in the test code.

An

For the example in this section, since v = 2 5 = 0.63246 then |- 12| =|3/5-1/2|=0.1 <,
A

and the test is not run.

Since the observed value 7 is within the selected bounds, the runs test is applicable.

3) Compute the test statistic 7, (obs) = njjr(k )+1, where r(k)=0 if &,=¢,.;, and r(k)=1 otherwise.

k=1

Since e=10011010 11, then
Vig(obs)=(1+0+1+0+1+1+1+1+0)+1=7.

|V, (obs)=2nm(1-m)|

4) Compute P-value = erfc —
2+ 2nx(1-m)
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3

{03

For the example, P-value = erfc 3 3 =0.147232.
2¢ 2e10e2ef1-2
5( 5

2.3.5 Decision Rule (at the 1% Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.3.6 Conclusion and Interpretation of Results

Since the P-value obtained in step 4 of Section 2.3.4 is = 0.01 (i.e., P-value = 0.147232), the conclusion is
that the sequence is random.

Note that a large value for V,(obs) would have indicated an oscillation in the string which is too fast; a
small value would have indicated that the oscillation is too slow. (An oscillation is considered to be a
change from a one to a zero or vice versa.) A fast oscillation occurs when there are a lot of changes, e.g.,
010101010 oscillates with every bit. A stream with a slow oscillation has fewer runs than would be
expected in a random sequence, e.g., a sequence containing 100 ones, followed by 73 zeroes, followed by
127 ones (a total of 300 bits) would have only three runs, whereas 150 runs would be expected.

2.3.7 Input Size Recommendation
It is recommended that each sequence to be tested consist of a minimum of 100 bits (i.e., n = 100).

2.3.8 Example

(input) £€=11001001000011111101101010100010001000010110100011
00001000110100110001001100011001100010100010111000

(input) n=100

(input) 7=0.02
(processing) &= 0.42
(processing)  V,(obs) = 52
(output) P-value = 0.500798

(conclusion)  Since P-value = 0.01, accept the sequence as random.

2.4 Test for the Longest Run of Ones in a Block

241 TestPurpose

The focus of the test is the longest run of ones within M-bit blocks. The purpose of this test is to
determine whether the length of the longest run of ones within the tested sequence is consistent with the
length of the longest run of ones that would be expected in a random sequence. Note that an irregularity in
the expected length of the longest run of ones implies that there is also an irregularity in the expected
length of the longest run of zeroes. Therefore, only a test for ones is necessary. See Section 4.4.

2-7



A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2.4.2 Function Call
LongestRunOfOnes(n), where:

n The length of the bit string.
Additional input for the function supplied by the testing code:

The sequence of bits as generated by the RNG or PRNG being tested; this exists as a global structure at
the time of the function call; e = ¢;, &, ..., &,.

M The length of each block. The test code has been pre-set to accommodate three values for
M: M =8 M = 128 and M = 10" in accordance with the following values of sequence
length, n:
Minimumn | M
128 8
6272 128

750,000 10*

N The number of blocks; selected in accordance with the value of M.

2.4.3 Test Statistic and Reference Distribution

X (obs): A measure of how well the observed longest run length within M-bit blocks
matches the expected longest length within M-bit blocks.

The reference distribution for the test statistic is a %~ distribution.

2.4.4 Test Description
(1) Divide the sequence into M-bit blocks.

2) Tabulate the frequencies v; of the longest runs of ones in each block into categories, where each
cell contains the number of runs of ones of a given length.

For the values of M supported by the test code, the v; cells will hold the following counts:

vi | M=8 M =128 M = 10*
Vo <1 <4 <10
Vi 2 5 11
\f) 3 6 12
V3 =4 7 13
\Z 8 14
Vs =9 15
Ve =16

For an example, see Section 2.4.8.
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K (v.— N, )?
3) Compute y?°(obs) = D (V’N—n’) , Where the values for o; are provided in Section 3.4. The
i=0 42

values of K and N are determined by the value of M in accordance with the following table:

M| K |N

8 3 |16
128 | 5 | 49
10 | 6 | 75

For the example of 2.4.8,

2 P 5 ,
2 (obs) = (A=16(2148)]  (9-16(3672))° (3-16(2305)7° (0-16(1875)] _, corcos
16(2148) 16(3672) 16(.2305 16(.1875)
2

For the example, P-value = igamc(%,%) = 0.180598.

2.4.5 Decision Rule (at the 1% Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.4.6 Conclusion and Interpretation of Results

For the example in Section 2.4.8, since the P-value = 0.01 (P-value = 0.180609), the conclusion is that the
sequence is random. Note that large values of y’(obs) indicate that the tested sequence has clusters of
ones.

2.4.7 Input Size Recommendation

It is recommended that each sequence to be tested consists of a minimum of bits as specified in the table
in Section 2.4.2.

2.4.8 Example
For the case where K =3 and M = 8:

(input) €=11001100000101010110110001001100111000000000001001

00110101010001000100111101011010000000110101111100
1100111001101101100010110010

(input) n=128

(processing)  Subblock Max-Run Subblock Max-Run
11001100  (2) 00010101 (D
01101100  (2) 01001100 2)
11100000  (3) 00000010 (1
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01001101  (2) 01010001 (1)
00010011 (2) 11010110 (2)
10000000 (1) 11010111 (3)
11001100 (2) 11100110 (3)
11011000  (2) 10110010  (2)

(processing) Vo =4, v; =9, v, =3; v,=0; x’ = 4.882457
(output) P-value = 0.180609

(conclusion)  Since the P-value is = 0.01, accept the sequence as random.

2.5 Binary Matrix Rank Test

251 Test Purpose

The focus of the test is the rank of disjoint sub-matrices of the entire sequence. The purpose of this test is
to check for linear dependence among fixed length substrings of the original sequence. Note that this test
also appears in the DIEHARD battery of tests [7].

2.5.2 Function Call
Rank(n), where:

n The length of the bit string.
Additional input used by the function supplied by the testing code:

The sequence of bits as generated by the RNG or PRNG being tested; this exists as a global structure at
the time of the function call; e = ¢, ¢, ..., &,.

M The number of rows in each matrix. For the test suite, M has been set to 32. If other
values of M are used, new approximations need to be computed.

0] The number of columns in each matrix. For the test suite, O has been set to 32. If other
values of Q are used, new approximations need to be computed.

2.5.3 Test Statistic and Reference Distribution

X (obs): A measure of how well the observed number of ranks of various orders match the
expected number of ranks under an assumption of randomness.

The reference distribution for the test statistic is a % distribution.

2.5.4 Test Description

(1) Sequentially divide the sequence into M+Q-bit disjoint blocks; there will exist N = such

MQ
blocks. Discarded bits will be reported as not being used in the computation within each block.

Collect the M-Q bit segments into M by Q matrices. Each row of the matrix is filled with
successive Q-bit blocks of the original sequence .
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2)

3)

“

)

For example, if n =20, M = Q = 3, and ¢ = 01011001001010101101, then partition the stream
into N = l " } = 2 matrices of cardinality M-Q (3+3 = 9). Note that the last two bits (0 and 1)

33
0 1 0 0 1 0
will be discarded. The two matricesare [/ [ 0| and [/ 0 I|. Note that the first matrix
0 1 0 0 1 1

consists of the first three bits in row 1, the second set of three bits in row 2, and the third set of
three bits in row 3. The second matrix is similarly constructed using the next nine bits in the
sequence.

Determine the binary rank ( R, ) of each matrix, where ¢ = 1,..., N . The method for determining
the rank is described in Appendix A.

For the example in this section, the rank of the first matrix is 2 (R; = 2), and the rank of the
second matrix is 3 (R, = 3).

Let F), = the number of matrices with R, = M (full rank),
F).; = the number of matrices with R, = M-I (full rank - 1),

N — Fy - Fy.; = the number of matrices remaining.

For the example in this section, Fy; = F; = I (R, has the full rank of 3), Fy.; = F, = 1 (R; has rank
2), and no matrix has any lower rank.

Compute

x* (obs) =

(F,, —0.2888N)’ L i -0.5776N)* JWN-Fy —Fy -0.1336N)*
0.2888N 0.5776 N 0.1336N '

For the example in this section,
£ (obs) = (1-0.2888+2) . (1-0.5776+2) . (2-1-1-0.13362)
0.2888 2 0.5776*2 0.1336+2

=0.596953.

—x*(obs)/2

Compute P —value = e . Since there are 3 classes in the example, the P-value for the

2
example is equal to igamc(l,%d)s)) .

o . 0.596953/
For the example in this section, P-value = e 2 = 0.741948.

2.5.5 Decision Rule (at the 1% Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.
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2.5.6 Conclusion and Interpretation of Results

Since the P-value obtained in step 5 of Section 2.5.4 is = 0.01 (P-value = 0.741948), the conclusion is that
the sequence is random.

Note that large values of x?(obs) (and hence, small P-values) would have indicated a deviation of the
rank distribution from that corresponding to a random sequence.

2.5.7 Input Size Recommendation

The probabilities for M = Q = 32 have been calculated and inserted into the test code. Other choices of
M and Q may be selected, but the probabilities would need to be calculated. The minimum number of
bits to be tested must be such that n = 38MQ (i.e., at least 38 matrices are created). For M = Q = 32, each
sequence to be tested should consist of a minimum of 38,912 bits.

2.5.8 Example
(input) € = the first 100,000 binary digits in the expansion of e

(input) n= 100000, M = Q=32 (NOTE: 672 BITS WERE DISCARDED.)
(processing) N=97

(processing)  Fy =23, Fi.; =60, N —Fy— Fy =14

(processing)  x’ = 1.2619656

(output) P-value = 0.532069

(conclusion)  Since P-value = 0.01, accept the sequence as random.

2.6 Discrete Fourier Transform (Spectral) Test

2.6.1 Test Purpose

The focus of this test is the peak heights in the Discrete Fourier Transform of the sequence. The purpose
of this test is to detect periodic features (i.e., repetitive patterns that are near each other) in the tested
sequence that would indicate a deviation from the assumption of randomness. The intention is to detect
whether the number of peaks exceeding the 95 % threshold is significantly different than 5 %.

2.6.2 Function Call
DiscreteFourierTransform(n), where:

n The length of the bit string.
Additional input used by the function, but supplied by the testing code:

€ The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; € = ¢, €, ..., &,
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2.6.3 Test Statistic and Reference Distribution

d: The normalized difference between the observed and the expected number of frequency
components that are beyond the 95 % threshold.

The reference distribution for the test statistic is the normal distribution.

2.6.4 Test Description

(1) The zeros and ones of the input sequence (&) are converted to values of —1 and +1 to create the
sequence X = x;, X, ..., X, Where x; = 2¢;— 1.

For example, if n = [0 and ¢ = 1001010011,then X=1,-1,-1,1,-1,1,-1,-1, 1, 1.

2) Apply a Discrete Fourier transform (DFT) on X to produce: S = DFT(X). A sequence of
complex variables is produced which represents periodic components of the sequence of bits at
different frequencies (see Section 3.6 for a sample diagram of a DFT result).

3) Calculate M = modulus(S’) = |S'|, where S’ is the substring consisting of the first n/2 elements in
S, and the modulus function produces a sequence of peak heights.

1
4) Compute 7= (log W)n = the 95 % peak height threshold value. Under an assumption of

randomness, 95 % of the values obtained from the test should not exceed 7.

®)] Compute N, = .95n/2. N, is the expected theoretical (95 %) number of peaks (under the
assumption of randomness) that are less than 7.

For the example in this section, Ny=4.75.
(6) Compute N, = the actual observed number of peaks in M that are less than 7.

For the example in this section, N, = 4.

(7) Compute d = (N, — Ny) )
\n(.95)(.05)/4
o (4-475)
For the example in this section, d = =-2.176429.
|10(.95)(.05)/4
\d

)] Compute P-value = erfc _E )

For the example in this section, P-value = erfc(@) = 0.029523.

\
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2.6.5 Decision Rule (at the 1% Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.6.6 Conclusion and Interpretation of Results

Since the P-value obtained in step 8 of Section 2.6.4 is = 0.01 (P-value = 0.029523), the conclusion is that
the sequence is random.

A d value that is too low would indicate that there were too few peaks (< 95%) below T, and too many
peaks (more than 5%) above T.

2.6.7 Input Size Recommendation
It is recommended that each sequence to be tested consist of a minimum of 1000 bits (i.e., n = 1000).

2.6.8 Example

(input) €=11001001000011111101101010100010001000010110100011
00001000110100110001001100011001100010100010111000

(input) n=100
(processing) N, =46
(processing)  N,=47.5
(processing)  d=-1.376494
(output) P-value = 0.168669

(conclusion)  Since P-value = 0.01, accept the sequence as random.

2.7 Non-overlapping Template Matching Test

2.71 Test Purpose

The focus of this test is the number of occurrences of pre-specified target strings. The purpose of this
test is to detect generators that produce too many occurrences of a given non-periodic (aperiodic) pattern.
For this test and for the Overlapping Template Matching test of Section 2.8, an m-bit window is used to
search for a specific m-bit pattern. If the pattern is not found, the window slides one bit position. If the
pattern is found, the window is reset to the bit after the found pattern, and the search resumes.

2.7.2 Function Call
NonOverlappingTemplateMatching(m,n)

m The length in bits of each template. The template is the target string.
n The length of the entire bit string under test.

Additional input used by the function, but supplied by the testing code:
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€ The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; € = ¢, &, ..., &,.
B The m-bit template to be matched; B is a string of ones and zeros (of length m) which is

defined in a template library of non-periodic patterns contained within the test code.
M The length in bits of the substring of € to be tested.

N The number of independent blocks. N has been fixed at 8 in the test code.

2.7.3 Test Statistic and Reference Distribution

X (obs): A measure of how well the observed number of template “hits” matches the
expected number of template “hits” (under an assumption of randomness).

The reference distribution for the test statistic is the y’ distribution.

2.7.4 Test Description
(1) Partition the sequence into N independent blocks of length M.

For example, if ¢ = 10100100101110010110, then n = 20. If N = 2 and M = 10, then the two
blocks would be 1010010010 and 1110010110.

2) Let W; (j=1, ..., N) be the number of times that B (the template) occurs within the block j. Note
thatj = I,...,N. The search for matches proceeds by creating an m-bit window on the sequence,
comparing the bits within that window against the template. If there is no match, the window
slides over one bit , e.g., if m = 3 and the current window contains bits 3 to 5, then the next
window will contain bits 4 to 6. If there is a match, the window slides over m bits, e.g., if the
current (successful) window contains bits 3 to 5, then the next window will contain bits 6 to 8.

For the above example, if m = 3 and the template B = 001, then the examination proceeds as

follows:
Block 1 Block 2
Bit Positions Bits W, Bits W,
1-3 101 0 111 0
2-4 010 0 110 0
3-5 100 0 100 0
4-6 001 (hit) Increment to 1 001 (hit) Increment to 1
5-7 Not examined Not examined
6-8 Not examined Not examined
7-9 001 Increment to 2 011 1
8-10 010 (hit) 2 110 1
Thus, W,=2,and W, =1.
3) Under an assumption of randomness, compute the theoretical mean u and variance o’:
I 2m-1
u=(M-m+1)/2" o’ =M(2—m— ;nz,n )
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For the example in this section, u = (10-3+1)/2° = 1, and ¢ =10 (L—ﬂ) =0.46875 .

23 22'3
g @V MY

4) Compute y?°(obs) =

@-1)+Q-1F _ 140 _ oons

For the example in this section, ¥ (0bs) =
0.46875 0.46875

2
(5) Compute P-value = igamce [%@] . Note that multiple P-values will be computed, i.e.,

one P-value will be computed for each template. For m = 9, up to 148 P-values may be
computed; for m = 10, up to 284 P-values may be computed.

2 2.133333
For the example in this section, P-value = igamc (2 ,T) = 0.344154.

2.7.5 Decision Rule (at the 1% Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.7.6 Conclusion and Interpretation of Results

Since the P-value obtained in step 5 of Section 2.7.4 is = 0.01 (P-value = 0.344154), the conclusion is that
the sequence is random.

If the P-value is very small (< 0.01), then the sequence has irregular occurrences of the possible template
patterns.

2.7.7 Input Size Recommendation

The test code has been written to provide templates for m = 2, 3,...,10. It is recommended that m = 9 or
m = 10 be specified to obtain meaningful results. Although N = &§ has been specified in the test code, the
code may be altered to other sizes. However, N should be chosen such that N < 700 to be assured that the
P-values are valid. Additionally, be sure that M > 0.01 *n and N = [n/M .

2.7.8 Example
For a template B = 000000001 whose size is m = 9:

(input) ¢ = 2% bits produced by the G-SHA-1 generator'
(input) n=2%,B = 000000001
(processing)  u = 255.984375 and o’= 247.499999

(processing) W, =259, W, =229, Wy =271; Wy= 245, Ws=272; Ws= 262,
W,=259; and W= 246

! Defined in Federal Information Processing Standard (FIPS) 186-2.
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(processing)  x’(obs) = 5.999377
(output) P-value = 0.647302

(conclusion)  Since the P-value = (.01, accept the sequence as random.

2.8 Overlapping Template Matching Test

2.8.1 Test Purpose

The focus of the Overlapping Template Matching test is the number of occurrences of pre-specified target
strings. Both this test and the Non-overlapping Template Matching test of Section 2.7 use an m-bit
window to search for a specific m-bit pattern. As with the test in Section 2.7, if the pattern is not found,
the window slides one bit position. The difference between this test and the test in Section 2.7 is that
when the pattern is found, the window slides only one bit before resuming the search.

2.8.2 Function Call
OverlappingTemplateMatching(m,n)

m The length in bits of the template — in this case, the length of the run of ones.
n The length of the bit string.

Additional input used by the function, but supplied by the testing code:

€ The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; € = ¢, &, ..., &,.

B The m-bit template to be matched.

K The number of degrees of freedom. K has been fixed at 5 in the test code.

M The length in bits of a substring of ¢ to be tested. M has been set to 1032 in the test code.

N The number of independent blocks of n. N has been set to 968 in the test code.

2.8.3 Test Statistic and Reference Distribution

X (obs): A measure of how well the observed number of template “hits” matches the expected
number of template “hits” (under an assumption of randomness).

The reference distribution for the test statistic is the x’ distribution.

2.8.4 Test Description
(1) Partition the sequence into N independent blocks of length M.

For example, if ¢ = 10111011110010110100011100101110111110000101101001, then n = 50.

IfK =2 M=10and N =5, then the five blocks are 1017101111, 0010110100, 0111001011,
1011111000, and 0101101001 .
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2

)

4)

Calculate the number of occurrences of B in each of the N blocks. The search for matches
proceeds by creating an m-bit window on the sequence, comparing the bits within that window
against B and incrementing a counter when there is a match. The window slides over one bit after
each examination, e.g., if m = 4 and the first window contains bits 42 to 45, the next window
consists of bits 43 to 46. Record the number of occurrences of B in each block by incrementing
an array v; (where i = 0,...5), such that v, is incremented when there are no occurrences of B in a
substring, v; is incremented for one occurrence of B,...and v;s is incremented for 5 or more
occurrences of B.

For the above example, if m =2 and B = 11, then the examination of the first block (/1011101111)
proceeds as follows:

Bit Positions Bits No. of occurrences of B =11
1-2 10 0
2-3 01 0
3-4 11 (hit) Increment to 1
4-5 11 (hit) Increment to 2
5-6 10 2
6-7 01 2
7-8 11 (hit) Increment to 3
8-9 11 (hit) Increment to 4
9-10 11 (hit) Increment to 5

Thus, after block 1, there are five occurrences of 11, vs is incremented, and vy =0, vi =0, v,=0,
V3:0,V4:0, andv5= 1.

In a like manner, blocks 2-5 are examined. In block 2, there are 2 occurrences of 11; v, is
incremented. In block 3, there are 3 occurrences of 11; v; is incremented. In block 4, there are 4
occurrences of 11; v, is incremented. In block 5, there is one occurrence of 11; v, is incremented.

Therefore, vp=0, v;=1, v, =1, v;=1,v,= 1, v;= 1 after all blocks have been examined.

Compute values for A and 7 that will be used to compute the theoretical probabilities ;

corresponding to the classes of v,
A= (M-m+1)/2" n=An"2.

For the example in this section, A = (10-2+1)/2° = 2.25, and n = A/2=1.125.

2 2 (Vi _N”i)z
Compute x“(obs) =Y N—’ where my= 0.364091, ;= 0.185659, m, = 0.139381, ;
i=0 1

1

=0.100571, ;= 0.070432 and 715 = 0.139865 as specified in Section 3.8.

For the example in this section, the values of 7; were recomputed, since the example doesn’t fit

the requirements stated in Section 2.8.7. The example is intended only for illustration. The values
of mare: my= 0.324652, m; = 0.182617, m,= 0.142670, w3 = 0.106645, ;= 0.077147, and 5 =
0.166269.
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(0-590.324652) . (1-5+0.182617) . (1-590.142670)° N

x°(obs) =
50.324652 5%0.182617 590.142670
(1-5°0.106645) . (1-5%0.077147) N (1-5+0.166269) 3167720,
520.106645 520.077147 50.166269
2
®)] Compute P-value = igamce E,WJ .

5 3.167729
For the example in this section, P-value = igamc (E’T) =0.274932.

2.8.5 Decision Rule (at the 1% Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.8.6 Conclusion and Interpretation of Results

Since the P-value obtained in step 4 of Section 2.8.4 is = 0.01 (P-value = 0.274932), the conclusion is that
the sequence is random.

Note that for the 2-bit template (B = 11), if the entire sequence had too many 2-bit runs of ones, then: 1)
vs would have been too large, 2) the test statistic would be too large, 3) the P-value would have been
small (< 0.01) and 4) a conclusion of non-randomness would have resulted.

2.8.7 Input Size Recommendation

The values of K, M and N have been chosen such that each sequence to be tested consists of a minimum
of 10° bits (i.e., n = 10°). Various values of m may be selected, but for the time being, NIST recommends
m = 9 or m = 10. If other values are desired, please choose these values as follows:

* n=MN.

* N should be chosen so that N ¢ (min ;) > 5.

* A=(M-m+1)/2" =2

* m should be chosen so that m ~log, M

* Choose K so that K = 2A. Note that the s; values would need to be recalculated for values of

K other than 5.

2.8.8 Example
(input) ¢ = the binary expansion of e up to 1,000,000 bits

(input) n=1000000,B=111111111

(processing) Vo =329, v; =164, v,=150,v;=111;v,=78;and vs= 136
(processing)  x’(obs) = 8.965859

(output) P-value = 0.110434

(conclusion)  Since the P-value = (0.01, accept the sequence as random.
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2.9 Maurer’s “Universal Statistical” Test

291 Test Purpose

The focus of this test is the number of bits between matching patterns (a measure that is related to the
length of a compressed sequence). The purpose of the test is to detect whether or not the sequence can be
significantly compressed without loss of information. A significantly compressible sequence is
considered to be non-random.

2.9.2 Function Call
Universal(L, Q, n), where

L The length of each block. Note: the use of L as the block size is not consistent with the
block size notation (M) used for the other tests. However, the use of L as the block size
was specified in the original source of Maurer's test.

Q The number of blocks in the initialization sequence.
n The length of the bit string.
Additional input used by the function, but supplied by the testing code:

€ The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; € = ¢, &, ..., &,.

2.9.3 Test Statistic and Reference Distribution

I The sum of the log, distances between matching L-bit templates, i.e., the sum of the number of
digits in the distance between L-bit templates.

The reference distribution for the test statistic is the half-normal distribution (a one-sided variant of the
normal distribution) as is also the case for the Frequency test in Section 2.1.

2.9.4 Test Description

(1) The n-bit sequence (¢) is partitioned into two segments: an initialization segment consisting of O
L-bit non-overlapping blocks, and a test segment consisting of K L-bit non-overlapping blocks.
Bits remaining at the end of the sequence that do not form a complete L-bit block are discarded.
The first O blocks are used to initialize the test. The remaining K blocks are the test blocks (K =

[n/L] - Q).
Initialization Segment Test Segment
«—— O bits » < Kx [ bits——»€-Discard -»
| Z-bits | L-bits | ... | L-bits | L-bits | L-bits | L-bits | ... | L-bits | LZ-bits |
« % bits »
«—— (O Blocks > K Blocks »

2-20



A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS

2

3)

For example, if ¢ = 01011010011101010111,thenn =20.1fL =2and Q =4, then K = [n/L] -
0=[20/2] - 4 = 6. The initialization segment is 01011010; the test segment is 011101010111.
The L-bit blocks are shown in the following table:

Block Type Contents
1 01
Initialization 01
Segment 10
10
01
Test Segment 11
01
01
01
11

N=RI--HEN RE- NIV R SRR

—
<

Using the initialization segment, a table is created for each possible L-bit value (i.e., the L-bit
value is used as an index into the table). The block number of the last occurrence of each L-bit
block is noted in the table (i.e., For i from / to O, T;= i, where j is the decimal representation of
the contents of the i L-bit block).

For the example in this section, the following table is created using the 4 initialization blocks.

Possible L-bit Value
00 01 10 11
(savedin 7y) | (savedin 7;) | (savedin 75) | (saved in 7%)
Initialization 0 2 4 0

Examine each of the K blocks in the test segment and determine the number of blocks since the
last occurrence of the same L-bit block (i.e., i — T;). Replace the value in the table with the
location of the current block (i.e., 7;= 7). Add the calculated distance between re-occurrences of
the same L-bit block to an accumulating /og, sum of all the differences detected in the K blocks
(i.e., sum = sum + log,(i — T)).

For the example in this section, the table and the cumulative sum are developed as follows:

For block 5 (the 1* test block): 5 is placed in the “01” row of the table (i.e., T;), and
sum=log,(5-2) = 1.584962501.

For block 6: 6 is placed in the “11” row of the table (i.e., T3), and sum = 1.584962501 +
log,(6-0) = 1.584962501 + 2.584962501 = 4.169925002.

For block 7: 7 is placed in the “01” row of the table (i.e., 7;), and sum = 4.169925002 +
log,(7-5) = 4.169925002 + 1 = 5.169925002.

For block 8: 8 is placed in the “01” row of the table (i.e., T;), and sum = 5.169925002 +
logy(8-7) = 5.169925002 + 0 = 5.169925002.

For block 9: 9 is placed in the “01” row of the table (i.e., 7;), and sum = 5.169925002 +
log>(9-8) = 5.169925002 + 0 = 5.169925002.
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For block 10: 10 is placed in the “11” row of the table (i.e., T3), and sum = 5.169925002
+ log,(10-6) = 5.169925002 + 2 = 7.169925002.

The states of the table are:

Iteration | Possible L-bit Value
Block 00 | 01 | 10 | 11
4 0 2 4 0
5 0 5 4 0
6 0 5 4 6
7 0 7 4 6
8 0 8 4 6
9 0 9 4 6
10 0 9 4 10

0+K
4) Compute the test statistic: f,, = é log,(i~T;), where T} is the table entry corresponding to
i=0+1 ‘

the decimal representation of the contents of the i™ L-bit block.

7.169925002
For the example in this section, f, = f =1.1949875.

®)] Compute P-value = erfc If n =P eCt_edValue(L) |

] , Where erfc is defined in Section 5.5.3, and

\20’

expectedValue(L) and o are taken from a table of precomputed values® (see the table below).
Under an assumption of randomness, the sample mean, expectedValue(L), is the theoretical
expected value of the computed statistic for the given L-bit length. The theoretical standard

variance(L) 0.8 (4+32)K_3L

deviation is given by o =c¢ , where ¢=0.7 ——+
L L 15

L | expectedValue | variance L expectedValue | variance
6 5.2177052 2.954 12 11.168765 3.401

7 6.1962507 3.125 13 12.168070 3.410
8 7.1836656 3.238 14 13.167693 3.416
9 8.1764248 3.311 15 14.167488 3.419
10 9.1723243 3.356 16 15.167379 3.421
11 10.170032 3.384

1.1949875-1.5374383
For the example in this section, P-value = erfc | — | = 0.767189. Note
|2 1338 |

that the expected value and variance for L = 2 are not provided in the above table, since a block of
length two is not recommended for testing. However, this value for L is easy to use in an

? From the “Handbook of Applied Cryptography.”
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example. The value for the expected value and variance for the case where L = 2, although not
shown in the above table, were taken from the indicated reference’.

2.9.5 Decision Rule (at the 1% Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.9.6 Conclusion and Interpretation of Results

Since the P-value obtained in step 5 of Section 2.9.4 is = 0.01 (P-value = 0.767189), the conclusion is that
the sequence is random.

Theoretical expected values for ¢ have been computed as shown in the table in step (5) of Section 2.9.4.
If f, differs significantly from expectedValue(L), then the sequence is significantly compressible.

2.9.7 Input Size Recommendation

This test requires a long sequence of bits (n = (Q + K)L) which are divided into two segments of L-bit
blocks, where L should be chosen so that 6 <L < 6. The first segment consists of Q initialization blocks,
where Q should be chosen so that O = 10 ¢ 2". The second segment consists of K test blocks, where K =
[n/L]-Q ~1000 ¢ 2". The values of L, Q and n should be chosen as follows:

n L | 0=10°2"
> 387,840 6 640
= 904,960 7 1280
> 2,068,480 8 2560
>4,654,080 9 5120
> 10,342,400 10 10240
>22,753,280 | 11 20480

=49,643,520 12 40960
= 107,560,960 13 81920
=231,669,760 14 163840
=496,435,200 15 327680
=1,059,061,760 | 16 655360

2.9.8 Example

(input) ¢ = A binary string constructed using G-SHA-1*
(input) n=1048576,L =7, Q0 = 1280
(note) Note: 4 bits are discarded.

(processing) ¢ =0.591311, 0= 0.002703, K = 148516, sum = 919924.038020
(processing)  f, = 6.194107, expectedValue = 6.196251, o= 3.125

(output) P-value =0.427733

? From the “Handbook of Applied Cryptography.”
* Defined in FIPS 186-2.
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(conclusion)  Since P-value = 0.01, accept the sequence as random.

2.10 Linear Complexity Test

2.10.1 Test Purpose

The focus of this test is the length of a linear feedback shift register (LFSR). The purpose of this test is to
determine whether or not the sequence is complex enough to be considered random. Random sequences
are characterized by longer LFSRs. An LFSR that is too short implies non-randomness.

2.10.2 Function Call
LinearComplexity(M, n), where:

M The length in bits of a block.
n The length of the bit string.

Additional input used by the function, but supplied by the testing code:

€ The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; € = ¢, €, ..., &,
K The number of degrees of freedom; K = 6 has been hard coded into the test.

2.10.3 Test Statistic and Reference Distribution

X (obs): A measure of how well the observed number of occurrences of fixed length LFSRs
matches the expected number of occurrences under an assumption of randomness.

The reference distribution for the test statistic is the x’ distribution.

2.10.4 Test Description
(1) Partition the n-bit sequence into N independent blocks of M bits, where n = MN.

(2) Using the Berlekamp-Massey algorithm®, determine the linear complexity L, of each of the N
blocks (i = 1,...,N). L;is the length of the shortest linear feedback shift register sequence that
generates all bits in the block i. Within any L;-bit sequence, some combination of the bits, when
added together modulo 2, produces the next bit in the sequence (bit L; + ).

For example, if M = 13 and the block to be tested is /701011110001, then L; = 4, and the
sequence is produced by adding the 1% and 2™ bits within a 4-bit subsequence to produce the next
bit (the 5" bit). The examination proceeded as follows:

> Defined in The Handbook of Applied Cryptography; A. Menezes, P. Van Oorschot and S. Vanstone; CRC Press, 1997.
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(M

4)

6))

(6)

)

Bit1 | Bit2 | Bit3 | Bit4 | Bit5

The first 4 bits and the resulting 5" bit | 1 1 0 1 0
Bits 2-5 and the resulting 6" bit 1 0 1 0 1
Bits 3-6 and the resulting 7" bit 0 1 0 1 1
Bits 4-7 and the resulting 8" bit 1 0 1 1 1
Bits 5-8 and the resulting 9™ bit 0 1 1 1 1
Bits 6-9 and the resulting 10" bit 1 1 1 1 0
Bits 7-10 and the resulting 11" bit 1 1 1 0 0
Bits 8-11 and the resulting 12" bit 1 1 0 0 0
Bits 9-12 and the resulting 13" bit 1 0 0 0 1

For this block, the trial feedback algorithm works. If this were not the case, other feedback
algorithms would be attempted for the block (e.g., adding bits 1 and 3 to produce bit 5, or adding
bits 1, 2 and 3 to produce bit 6, etc.).

Under an assumption of randomness, calculate the theoretical mean u:

M, b)) W3+29)_
2 36 M

u

=6.777222.

Y3+ ) 342
For the example in this section, u = £+ @Jr( 1) - Q 3 9)
2 36 513

M- 2

For each substring, calculate a value of 7;, where T;

For the example, T; = (= 1) (4= 6.777222)+ /) = 2.999444.
Record the T; values in vy, ..., vs as follows:
If: T, <-2.5 Increment v, by one
25<T;=-1.5 Increment v; by one
-1.5< T, =-0.5 Increment v, by one
05<T; <05 Increment v; by one
05<T, =15 Increment v, by one
1.5<T; <25 Increment v; by one
T,>25 Increment v by one
K (v. — N
Compute Xz(obs) = E(V’N—n’)z , where my= 0.010417, 7;=0.03125, m=0.125, m3= 0.5,
i=0 T

m=0.25 75 = 0.0625, 5= 0.020833 are the probabilities computed by the equations in Section
3.10.

2
Compute P-value = igamc [g%) .
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2.10.5 Decision Rule (at the 1% Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.10.6 Conclusion and Interpretation of Results

If the P-value were < 0.01, this would have indicated that the observed frequency counts of 7; stored in
the v;bins varied from the expected values; it is expected that the distribution of the frequency of the T;
(in the v; bins) should be proportional to the computed s; as shown in step (6) of Section 2.10.5.

2.10.7 Input Size Recommendation

Choose n = 10°. The value of M must be in the range 500= M <5000, and N = 200 for the ;(2 result to be
valid (see Section 3.10 for a discussion).

2.10.8 Example
(input) € = “the first 1,000,000 binary digits in the expansion of e ”

(input) n = 1000000 = 10°, M = 1000

(processing) vo=11;v;=31;v,=116;v; =501, v, =258 vs=57;v¢=26
(processing)  x’(obs) = 2.700348

(output) P-value = 0.845406

(conclusion)  Since the P-value = (.01, accept the sequence as random.

2.11 Serial Test
2.11.1 Test Purpose

The focus of this test is the frequency of all possible overlapping m-bit patterns across the entire
sequence. The purpose of this test is to determine whether the number of occurrences of the 2" m-bit
overlapping patterns is approximately the same as would be expected for a random sequence. Random
sequences have uniformity; that is, every m-bit pattern has the same chance of appearing as every other
m-bit pattern. Note that for m = 1, the Serial test is equivalent to the Frequency test of Section 2.1.

2.11.2 Function Call
Serial(m,n), where:

m The length in bits of each block.
n The length in bits of the bit string.
Additional input used by the function, but supplied by the testing code:

€ The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; € = ¢, €, ..., &,
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2.11.3 Test Statistic and Reference Distribution

Vi (obs) and V7, (obs): A measure of how well the observed frequencies of m-bit patterns match
the expected frequencies of the m-bit patterns.

The reference distribution for the test statistic is the y’ distribution.

2.11.4 Test Description

(1) Form an augmented sequence ¢": Extend the sequence by appending the first m-/ bits to the end
of the sequence for distinct values of n.

For example, given n = 10 and ¢ = 0011011101. If m = 3, then ¢’ =001101110100.1f m = 2,
then e =00110111010.1f m = 1, then ¢” = the original sequence 0011011101.

2) Determine the frequency of all possible overlapping m-bit blocks, all possible overlapping (m-1)-
bit blocks and all possible overlapping (m-2)-bit blocks. Let v; ; denote the frequency of the m-

m

bit pattern i;...7,, let v; ;  denote the frequency of the (m-1)-bit pattern i;...i,.;; and let

'llll

Vi, denote the frequency of the (m-2)-bit pattern i;...i,,...

Loty

For the example in this section, when m = 3, then (m-1) =2, and (m-2) = 1. The frequency of all
3-bit blocks is: Yooo = 0, Voo = ], Voio = 1, Voi1 = 2, Vioo = ], Vior = 2 Viio = 2, Vi = 0. The
frequency of all possible (m-1)-bit blocks is: vgp= 1, vo; = 3, vip= 3 v;; = 3. The frequency of all
(m-2)-bit blocks is: vp=4, v; = 6.

(3) Compute: wfn=2 D (vi,..‘i _L) _2 S -n
n ~ m i

- 2 -
5 om 2 n om 2 5
wm—Z - . 2 Vijedyy ~ 2m—2 B E Vij.d,, -
- 2

For the example in this section,
3

v,u23=5—0(0+]+]+4+]+4+4+1)—]0=]2.8—]0=2.8

2

Y= 12—0(1+9+9+9)—10=ll.2—10=1.2

Y= f—0(16+36) -10=104-10=0.4
4) Compute: lefn =1/J,2n —l/)fn_, , and
VI W, 2

For the example in this section,

Vyl =yl -yl =W -W =28-12=16
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Vil =yl —2y7 eyl =W 2w+ w2 =28-2(1.2)+04=0.8

(5) Compute: P-valuel = igamc (ZM_Z,VUJi) and

P-value? = igame (2’”‘3,V21pfn) .

For the example in this section,

1.

P-valuel = igamc (2,76) =0.9057
0.8

P-value2 = igamc(l,T) = (.8805.

2.11.5 Decision Rule (at the 1% Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.11.6 Conclusion and Interpretation of Results

Since the P-value obtained in step 5 of Section 2.11.4 is = 0.01 (P-valuel = 0.808792 and P-value2 =
0.670320), the conclusion is that the sequence is random.

Note that if V’y7,, or V4, had been large then non-uniformity of the m-bit blocks is implied.

2.11.7 Input Size Recommendation
Choose m and n such that m < [log, n[-2.

2.11.8 Example
(input) € = 1,000,000 bits from the binary expansion of e

(input) m=2; n=1000000= 10°

(processing)  #0s = 499971, #1s = 500029
#00s = 250116; #01s = #10s = 249855, #11s = 250174

(processing)  y7> = 0.343128; y7, = 0.003364; v’y = 0.000000
(processing) V', = 0.339764; V', = 0.336400
(output)P-value; = 0.843764; P-value, = 0.561915

(conclusion)  Since both P-valuel and P-value2 were = 0.01, accept the sequences as random for both
tests.
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2.12 Approximate Entropy Test

2.12.1 Test Purpose

As with the Serial test of Section 2.11, the focus of this test is the frequency of all possible overlapping
m-bit patterns across the entire sequence. The purpose of the test is to compare the frequency of
overlapping blocks of two consecutive/adjacent lengths (m and m+1) against the expected result for a
random sequence.

2.12.2 Function Call
ApproximateEntropy(m,n), where:

m The length of each block — in this case, the first block length used in the test. m+1 is the
second block length used.

n The length of the entire bit sequence.
Additional input used by the function, but supplied by the testing code:

€ The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; € = ¢, &, ..., €.

2.12.3 Test Statistic and Reference Distribution

X (obs): A measure of how well the observed value of ApEn(m) (see step 6 in Section 2.12.4)
matches the expected value.

The reference distribution for the test statistic is the y’ distribution.

2.12.4 Test Description

(1) Augment the n-bit sequence to create n overlapping m-bit sequences by appending m-1 bits from
the beginning of the sequence to the end of the sequence.

For example, if ¢ = 0100110101 and m = 3, then n = 10. Append the 0 and 1 at the beginning of
the sequence to the end of the sequence. The sequence to be tested becomes 010011010101
(Note: This is done for each value of m.)

(2) A frequency count is made of the n overlapping blocks (e.g., if a block containing &;to &,.; is
examined at time j, then the block containing &, to & 4, is examined at time j+/). Let the count

of the possible m-bit ((m+1)-bit) values be represented as C}", where i is the m-bit value.

For the example in this section, the overlapping m-bit blocks (where m = 3) become 010, 100,
001,011,110, 101,010, 101, 010, and 101. The calculated counts for the 2" =2 =8 possible m-
bit strings are:

#000 = 0, #001 = 1, #010 = 3, #011 = 1, #100 = 1, #101 = 3, #110 = 1, #111 =0

€) Compute C/" = # for each value of i.
n
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4)

)

(6)

(7

For example in this section, C*pgp= 0, C'pp; = 0.1, Cy19= 0.3, Cy;; =0.1, C*159= 0.1, C*19;= 0.3,
C3110: 01, C3111 = 0.

21
Compute (p(m) = Smlogm; ,where m = C’;, and j=log;i.

i=

For the example in this section, ¢ = 0(log 0) + 0.1(log 0.1) + 0.3(log 0.3) + 0.1(log 0.1) +
0.1(log 0.1) + 0.3(log 0.3) + 0.1(log 0.1) + O(log 0) = -1.64341772.

Repeat steps 1-4, replacing m by m+1.

Step 1: For the example in this section, m is now 4, the sequence to be tested becomes
0100110101010.

Step 2: The overlapping blocks become 0100, 1001, 0011, 0110, 1101, 1010, 0101, 1010, 0101,
1010. The calculated values are: #0011 =1, #0100 =1, #0101 =2, #0110 =1, #1001 =1, #1010
=3, #1101 = 1, and all other patterns are zero.

Step 3: C40()11 = C40100 = C40110 = C41001 = C41101 = 01, C4010] = 02, C41010 = 03, and all other
values are zero.

Step 4: ¢ =0+ 0+ 0 +0.1(log 0.01) + 0.1(log 0.01) + 0.2(log 0.02) + 0.1(log 0.01) + 0 + 0 +
0.1(log 0.01) +0.3(log 0.03) + 0+ 0+ 0.1(log 0.01) + 0 + 0) = -1.83437197.

Compute the test statistic: x° = 2n/log 2 — ApEn(m)] , where ApEn(m) = o™ — @™V .

For the example in this section,
ApEn(3) = -1.643418 — (-1.834372) = 0.190954
X =2°10(0.693147-0.190954) = 0.502193

2
Compute P-value = igame(2"", XT ).

52 0502193

For the example in this section, P-value = igamc( ) =0.261961.

2.12.5 Decision Rule (at the 1% Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.12.6 Conclusion and Interpretation of Results

Since the P-value obtained in step 7 of Section 2.12.4 is = 0.01 (P-value = 0.261961), the conclusion is
that the sequence is random.

Note that small values of ApEn(m) would imply strong regularity (see step 6 of Section 2.12.4). Large
values would imply substantial fluctuation or irregularity.

2.12.7 Input Size Recommendation
Choose m and n such that m < [log, n[-5.
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2.12.8 Example

(input) €=11001001000011111101101010100010001000010110100011
00001000110100110001001100011001100010100010111000

(input) m=2;n=100
(processing)  ApEn(m) = 0.665393
(processing)  x’(obs) = 5.550792
(output) P-value =0.235301

(conclusion)  Since P-value = (.01, accept the sequence as random.

2.13 Cumulative Sums (Cusum) Test

2.13.1 Test Purpose

The focus of this test is the maximal excursion (from zero) of the random walk defined by the cumulative
sum of adjusted (-1, +1) digits in the sequence. The purpose of the test is to determine whether the
cumulative sum of the partial sequences occurring in the tested sequence is too large or too small relative
to the expected behavior of that cumulative sum for random sequences. This cumulative sum may be
considered as a random walk. For a random sequence, the excursions of the random walk should be near
zero. For certain types of non-random sequences, the excursions of this random walk from zero will be
large.

2.13.2 Function Call
CumulativeSums(mode,n), where:

n The length of the bit string.
Additional input for the function, but supplied by the testing code:

€ The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; € = ¢, €, ..., &,.

mode A switch for applying the test either forward through the input sequence (mode = 0) or
backward through the sequence (mode = I).

2.13.3 Test Statistic and Reference Distribution

A The largest excursion from the origin of the cumulative sums in the corresponding (-1, +1)
sequence.

The reference distribution for the test statistic is the normal distribution.

2.13.4 Test Description

(1) Form a normalized sequence: The zeros and ones of the input sequence (¢) are converted to
values X; of —1 and +1 using X; = 2¢;— 1.
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For example, if ¢ = 1011010111, then X =1, (-1), 1, 1, (-1), 1, (-1), 1, 1, 1.

2) Compute partial sums S; of successively larger subsequences, each starting with X; (if mode = 0)
or X, (if mode = 1I).

Mode = 0 (forward) Mode =1 (backward)
S] :X1 SI :Xn
S =X + X, S, =X, + X,
S; =X, + X0 + X S; =X, + X, + X2
Si=X;+ X+ X+ .+ X, Si=X, + X, t X0+ ...+ Xiss
Sn :X1 +X2 +X3 + ... +Xk + ...+Xn Sn :Xn +)(n—1 +Xn_2 + ... +Xk_1 + ...+X1

That is, S; = Si.; + X} for mode 0, and S; = Si.; + X,,.+1 for mode 1.
For the example in this section, when mode = 0Oand X = 1, (-1), 1, 1, (-1), 1, (-1), 1, 1, 1, then:

S]ZI

S=1+(-1)=0

S;=1+(-1)+1=1

Sy=1+-)+1+1=2
Ss=1+CD)+1+1+(-1)=1
Ss=1+C)+1+1+¢-1)+1=2
S;=1+C-D)+1+1+CD)+1+(-1)=1
Ss=1+C-D)+1+1+CD)+1+-1)+1=2
So=1+C-D+I1+1+C-)+1+-)+1+1=3
Sp=1+-D+1+1+C-D+1+-D+1+1+1=4

3) Compute the test statistic z =max 4.,|Si|, where max,__,|Si| is the largest of the absolute values of
the partial sums S;.

For the example in this section, the largest value of Sy is 4, so z = 4.

(4)  Compute P-value = 1 - (g 4 4 [cp( 4k J’_l)z) - cp( (4 -1} )] +

AN AN
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where @ is the Standard Normal Cumulative Probability Distribution Function as defined in
Section 5.5.3.

For the example in this section, P-value = 0.4116588.

2.13.5 Decision Rule (at the 1% Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.13.6 Conclusion and Interpretation of Results

Since the P-value obtained in step 4 of Section 2.13.4 is = 0.01 (P-value = 0.411658), the conclusion is
that the sequence is random.

Note that when mode = 0, large values of this statistic indicate that there are either “too many ones” or
“too many zeros” at the early stages of the sequence; when mode = 1, large values of this statistic indicate
that there are either “too many ones” or “too many zeros” at the late stages. Small values of the statistic
would indicate that ones and zeros are intermixed too evenly.

2.13.7 Input Size Recommendation
It is recommended that each sequence to be tested consist of a minimum of 100 bits (i.e., n = 100).

2.13.8 Example

(input) £=11001001000011111101101010100010001000010110100011
00001000110100110001001100011001100010100010111000

(input) n=100

(input) mode = 0 (forward) | mode = 1 (reverse)

(processing)  z=1.6 (forward) || z = 1.9 (reverse)

(output) P-value = 0.219194 (forward) || P-value = 0.114866 (reverse)

(conclusion) Since P-value > 0.01, accept the sequence as random.

2.14 Random Excursions Test

2.14.1 Test Purpose

The focus of this test is the number of cycles having exactly K visits in a cumulative sum random walk.
The cumulative sum random walk is derived from partial sums after the (0,1) sequence is transferred to
the appropriate (-1, +1) sequence. A cycle of a random walk consists of a sequence of steps of unit length
taken at random that begin at and return to the origin. The purpose of this test is to determine if the
number of visits to a particular state within a cycle deviates from what one would expect for a random
sequence. This test is actually a series of eight tests (and conclusions), one test and conclusion for each of
the states: -4, -3, -2, -1 and +1, +2, +3, +4.
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2.14.2 Function Call
RandomExcursions(n), where:

n The length of the bit string.
Additional input used by the function, but supplied by the testing code:

€ The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; € = ¢, &, ..., €,

2.14.3 Test Statistic and Reference Distribution

X (obs): For a given state x, a measure of how well the observed number of state visits within a
cycle match the expected number of state visits within a cycle, under an assumption of

randomness.

The reference distribution for the test statistic is the y’ distribution.

2.14.4 Test Description

(1) Form a normalized (-1, +1) sequence X: The zeros and ones of the input sequence (¢) are changed
to values of —1 and +1 via X; = 2¢;— 1.

For example, if e=0110110101, thenn = 10and X=-1, 1, 1,-1, 1, 1,-1, 1, -1, 1.

2) Compute the partial sums S; of successively larger subsequences, each starting with X;. Form the
set S= {S;}.
S] = X]
S2 = X] + X2

S3:X1 +X2 +X3
Sk:X1 +X2 +X3+ +Xk

S,,IX] +X2 +X3+ +Xk+ ...+Xn

For the example in this section,

S]Z-] 55:2
S;=0 S;=1
S3:1 58:2
Sy=0 Sy =1
S5:] S10:2

ThesetS={-1,0,1,0,1,2,1,2,1,2}.

3) Form a new sequence §' by attaching zeros before and after the set S. That is, S = 0, 54, 53, ..., Sy,
0.
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“

)

For the example in this section, S'=0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 0. The resulting random walk is
shown below.

Example Random Walk (S')

Let J = the total number of zero crossings in S, where a zero crossing is a value of zero in S'' that
occurs after the starting zero. J is also the number of cycles in S’, where a cycle of S’ is a
subsequence of S'consisting of an occurrence of zero, followed by no-zero values, and ending
with another zero. The ending zero in one cycle may be the beginning zero in another cycle. The
number of cycles in S is the number of zero crossings. If J < 500, discontinue the test’.

For the example in this section, if $'= {0,-1,01,0, 1,2, 1,2, 1, 2, 0}, then J = 3 (there are zeros
in positions 3, 5 and 12 of §’). The zero crossings are easily observed in the above plot. Since J =
3, there are 3 cycles, consisting of {0, -1, 0}, {0, 1,0} and {0, 1,2, 1,2, 1, 2, 0}.

For each cycle and for each non-zero state value x having values -4 <x <-/and [ sx <4,
compute the frequency of each x within each cycle.

For the example in this section, in step 3, the first cycle has one occurrence of —1, the second
cycle has one occurrence of 1, and the third cycle has three occurrences each of 1 and 2. This can
be visualized using the following table.

Cycles
State Cycle 1 Cycle 2 Cycle 3
X 0,-1,0) 0,1,0 0,1,2,1,2,1,2,0)
-4 0 0 0
-3 0 0 0
-2 0 0 0
-1 1 0 0
1 0 1 3
2 0 0 3
3 0 0 0
4 0 0 0

6 J times the minimum of the probabilities found in the table in Section 3.14 must be = 5 in order to satisfy the empirical rule for

Chi-square computations.
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(6)

)

For each of the eight states of x, compute v,(x) = the total number of cycles in which state x
occurs exactly k£ times among all cycles, for k = 0, 1, ..., 5 (for k=5, all frequencies = 5 are

5
stored in vs(x)). Note that Y v, (x)=J.
k=0

For the example in this section,

*  vy(-1) = 2 (the —1 state occurs exactly 0 times in two cycles),
vi(-1) = I (the —1 state occurs only once in 1 cycle), and
va(-1) = v3(-1) = vy(-1) = vs(-1) = 0 (the —1 state occurs exactly {2, 3, 4, =5} times
in 0 cycles).

* vy(l) = I (the 1 state occurs exactly 0 times in 1 cycle),
v;(1) = 1 (the 1 state occurs only once in 1 cycle),
vs3(1) = I (the 1 state occurs exactly three times in 1 cycle), and
vio(1) = vy(1) = vs(1) = 0 (the 1 state occurs exactly {2, 4, =5} times in 0 cycles).

*  vy(2) = 2 (the 2 state occurs exactly 0 times in 2 cycles),
vs3(2) = I (the 2 state occurs exactly three times in 1 cycle), and
vi(2) = vy(2) = vy(2) = vs(2) = 0 (the 1 state occurs exactly {1, 2, 4, =5} times in 0
cycles).

*  vy(-4) = 3 (the -4 state occurs exactly 0 times in 3 cycles), and
Vi(-4) = vo(-4) = v3(-4) = v,(-4) = vs(-4) = 0 (the -4 state occurs exactly {1, 2, 3, 4,
=5} times in 0 cycles).

Andsoon....

This can be shown using the following table:

Number of Cycles
State x 0 1 2 3 4 5
-4 3 0 0 0 0 0
-3 3 0 0 0 0 0
-2 3 0 0 0 0 0
-1 2 1 0 0 0 0
1 1 1 0 1 0 0
2 2 0 0 1 0 0
3 3 0 0 0 0 0
4 3 0 0 0 0 0

S (vi(x)=Jmy(x))
=0 Jrp(x)
where m;(x) is the probability that the state x occurs & times in a random distribution (see Section
3.14 for a table of m; values). The values for s(x) and their method of calculation are provided in
Section 3.14. Note that eight ” statistics will be produced (i.e., for x = -4, -3, -2, -1, 1, 2, 3, 4).

>

For each of the eight states of x, compute the test statistic x°(obs)=
k
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For example in this section, when x = 1,
> (1-3(0.5)° L= 3(0.25))? , (0-3(0. 125))? L= 3(0.0625))* , (0-3(0.03 12))? , (0-3(0.03 12))?

3(0.5) 3(0.25) 3(0.125) 3(0.0625) 3(0.0312) 3(0.0312)
=4.333033

®) For each state of x, compute P-value = igame(5/2, x° (obs )/2 ). Eight P-values will be
produced.

5 4.333033
For the example when x = 1, P-value = igamc (3,—) = 0.502529.

2

2.14.5 Decision Rule (at the 1% Level)

If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.14.6 Conclusion and Interpretation of Results

Since the P-value obtained in step 8 of Section 2.14.4 is = 0.01 (P-value = 0.502529), the conclusion is
that the sequence is random.

Note that if x’(obs) were too large, then the sequence would have displayed a deviation from the
theoretical distribution for a given state across all cycles.

2.14.7 Input Size Recommendation
It is recommended that each sequence to be tested consist of a minimum of 1,000,000 bits (i.e., n = 10°).

2.14.8 Example
(input) € = "the binary expansion of e up to 1,000,000 bits"

(input) n = 1000000 = 10°

(processing)  J = 1490

2

State=x X P-value Conclusion
-4 3.835698 0.573306 Random
-3 7.318707 0.197996 Random
-2 7.861927 0.164011 Random
-1 15.692617 0.007779 Non-random
+1 2.485906 0.778616 Random
+2 5.429381 0.365752 Random
+3 2.404171 0.790853 Random
+4 2.393928 0.792378 Random

(conclusion)  For seven of the states of x, the P-value is = 0.01, and the conclusion would be that the
sequence was random. However, for one state of x (x = -1), the P-value is < 0.01, so the
conclusion would be that the sequence is non-random. When contradictions arise, further
sequences should be examined to determine whether or not this behavior is typical of the
generator.
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2.15 Random Excursions Variant Test

2.15.1 Test Purpose

The focus of this test is the total number of times that a particular state is visited (i.e., occurs) in a
cumulative sum random walk. The purpose of this test is to detect deviations from the expected number
of visits to various states in the random walk. This test is actually a series of eighteen tests (and
conclusions), one test and conclusion for each of the states: -9, -8, ..., -1 and +1, +2, ..., +9.

2.15.2 Function Call
RandomExcursionsVariant(n), where:

n The length of the bit string; available as a parameter during the function call.
Additional input used by the function, but supplied by the testing code:

€ The sequence of bits as generated by the RNG or PRNG being tested; this exists as a
global structure at the time of the function call; € = ¢, €, ..., &,

2.15.3 Test Statistic and Reference Distribution

& For a given state x, the total number of times that the given state is visited during the
entire random walk as determined in step 4 of Section 2.15.4.

The reference distribution for the test statistic is the half normal (for large 7). (Note: If & is distributed as
normal, then |& is distributed as half normal.) If the sequence is random, then the test statistic will be
about 0. If there are too many ones or too many zeroes, then the test statistic will be large.

2.15.4 Test Description

(1) Form the normalized (-1, +1) sequence X in which the zeros and ones of the input sequence (¢)
are converted to values of —1 and +1 via X = X}, X,, ..., X,, where X; = 2¢,— 1.

For example, if ¢ =0110110101,thenn =I10and X=-1,1,1,-1, 1, 1,-1, 1, -1, 1.

(2) Compute partial sums S; of successively larger subsequences, each starting with x;. Form the set S
= {Sl} .
S] = X]
S, =X+ X

S3:X1 +X2 +X3
Sk:XI +X2 +X3+... +Xk

Sn:XI +X2 +X3+... +Xk+~'-+)(n
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3)

4)

)

For the example in this section,

S]Z-] S6:2
S;=0 S;=1
S3:1 58:2
Sy=0 So=1
S5:] S]():Z

ThesetS={-1,0,1,0,1,2,1,2,1,2}.

Form a new sequence §' by attaching zeros before and after the set S. That is, S = 0, 54, 55, ..., Sy,
0.

For the example, S'=0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 0. The resulting random walk is shown below.

Example Random Walk (S')

For each of the eighteen non-zero states of x, compute &(x) = the total number of times that state x
occurred across all J cycles.

For the example in this section, &-1) = 1, §(1) = 4, &2) = 3, and all other &(x) = 0.

() -]

—————|. Eighteen P-values are computed. See
2J(4x -2)

For each &(x), compute P-value = erfc[

Section 5.5.3 for the definition of erfc.

[4-3

For the example in this section, when x = 1, P-value = erfc| ————= |= 0.683091.
\2°30)1-2)

2.15.5 Decision Rule (at the 1% Level)
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.15.6 Conclusion and Interpretation of Results
Since the P-value obtained in step 7 of Section 2.15.4 is = 0.01 for the state x = 1 (P-value = 0.683091),
the conclusion is that the sequence is random.
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2.15.7 Input Size Recommendation
It is recommended that each sequence to be tested consist of a minimum of 1,000,000 bits (i.e., n = 10°).

2.15.8 Example
(input) ¢ = "the binary expansion of e up to 1,000,000 bits"

(input) n = 1000000 = 10°

(processing) J = 1490

State(x) | Counts | P-value Conclusion
-9 1450 0.858946 Random
-8 1435 0.794755 Random
-7 1380 0.576249 Random
-6 1366 0.493417 Random
-5 1412 0.633873 Random
-4 1475 0.917283 Random
-3 1480 0.934708 Random
-2 1468 0.816012 Random
-1 1502 0.826009 Random
+1 1409 0.137861 Random
+2 1369 0.200642 Random
+3 1396 0.441254 Random
+4 1479 0.939291 Random
+5 1599 0.505683 Random
+6 1628 0.445935 Random
+7 1619 0.512207 Random
+8 1620 0.538635 Random
+9 1610 0.593930 Random

(conclusion)  Since the P-value = 0.01 for each of the eighteen states of x, accept the sequence as
random.
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3. Technical Description of Tests

This section contains the mathematical background for the tests in the NIST test suite. Each subsection
corresponds to the appropriate subsection in Section 2. The relevant references for each subsection are
provided at the end of that subsection.

3.1 Frequency (Monobits) Test

The most basic test is that of the null hypothesis: in a sequence of independent identically distributed
Bernoulli random variables (X's or €'s, where X =2¢-1,and so S, = X; + ... + X, =2(¢; + ... + &,) — n), the
probability of ones is 1/2. By the classic De Moivre-Laplace theorem, for a sufficiently large number of
trials, the distribution of the binomial sum, normalized by~ 7 , is closely approximated by a standard
normal distribution. This test makes use of that approximation to assess the closeness of the fraction of
I's to 1/2. All subsequent tests are conditioned on having passed this first basic test.

The test is derived from the well-known limit Central Limit Theorem for the random walk, S, =X; + ... +
X,. According to the Central Limit Theorem,

ne AR \2m Y

This classical result serves as the basis of the simplest test for randomness. It implies that, for positive z,

S
P(+—==2)=29(7)-1.
AN
According to the test based on the statistic s = |Sn |/ \; , evaluate the observed value |s(0bs)|=
|X D, n|/ A 1, and then calculate the corresponding P-value, which is
2[1 - (I)(|s(0bs)|)] = erfc(|s(0bs)|/ A ;). Here, erfc is the (complementary) error function

erfc(z) = i—jme‘”zalz,t.
AT

References for Test

[1] Kai Lai Chung, Elementary Probability Theory with Stochastic Processes. New York: Springer-
Verlag, 1979 (especially pp. 210-217).

[2] Jim Pitman, Probability. New York: Springer-Verlag, 1993 (especially pp. 93-108).

3.2 Frequency Test within a Block

The test seeks to detect localized deviations from the ideal 50% frequency of 1's by decomposing the test
sequence into a number of nonoverlapping subsequences and applying a chi-square test for a
homogeneous match of empirical frequencies to the ideal 1/2. Small P-values indicate large deviations
from the equal proportion of ones and zeros in at least one of the substrings. The string of 0's and 1's (or
equivalent -1's and 1's) is partitioned into a number of disjoint substrings. For each substring, the
proportion of ones is computed. A chi-square statistic compares these substring proportions to the ideal
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1/2. The statistic is referred to a chi-squared distribution with the degrees of freedom equal to the number
of substrings.

The parameters of this test are M and N, so that n = MN, i.e., the original string is partitioned into N
substrings, each of length M. For each of these substrings, the probability of ones is estimated by the
observed relative frequency of 1's, 7, i =1,...,N. The sum

2

PO Y B |
X(obs)—4M§{:ri 2]

under the randomness hypothesis has the X*-distribution with N degrees of freedom. The reported P-
value is

® —u/2. N/2-1 * —u_ N/2-1
sz(obS)e U du _ fxz(obx)/Ze u du9 _ igamc(ﬂ X*(obs)
(N /2)2"V"? I'(N/2) 27 2

).

References for Test

[1] Nick Maclaren, “Cryptographic Pseudo-random Numbers in Simulation,” Cambridge Security
Workshop on Fast Software Encryption. Dec. 1993. Cambridge, U.K.: R. Anderson, pp. 185-190.

(2] Donald E. Knuth, The Art of Computer Programming. Vol 2: Seminumerical Algorithms. 3rd ed.
Reading, Mass: Addison-Wesley, 1998 (especially pp. 42-47).

(3] Milton Abramowitz and Irene Stegun, Handbook of Mathematical Functions: NBS Applied
Mathematics Series 55. Washington, D.C.: U.S. Government Printing Office, 1967.

3.3 Runs Test

This variant of a classic nonparametric test looks at “runs” defined as substrings of consecutive 1's and
consecutive 0's, and considers whether the oscillation among such homogeneous substrings is too fast or
too slow.

The specific test used here is based on the distribution of the total number of runs, V,. For the fixed
proportion JT = E E; /n (which by the Frequency test of Section 3.1 must have been established to be
J

2

=—).
An

1
close to 0.5: |1 — —

lim P (Vn —Enn(l —JT)

<7)=D(2). 2
n—> 2nnm(1-) 2 @ @

To evaluate V,, define fork=1,....n-1, r(k) =0 if ¢, =¢,,, and r(k)=1if ¢ =¢_,. Then
n-1
V, = Ek—l r(k) +1. The P-value reported is

V., (0bs) - 2nz(1- )|

erfe 27 2na(1-m)
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Large values of V, (obs) indicate oscillation in the string of &'s which is too fast; small values indicate
oscillation which is too slow.

References for Test

[1] Jean D. Gibbons, Nonparametric Statistical Inference, 2nd ed. New York: Marcel Dekker, 1985
(especially pp. 50-58).

[2] Anant P. Godbole and Stavros G. Papastavridis, (ed), Runs and patterns in probability: Selected
papers. Dordrecht: Kluwer Academic, 1994.

3.4 Test for the Longest Run of Ones in a Block

The length of the longest consecutive subsequence (run) of ones is another characteristic that can be used
for testing randomness. A string of length n, such that n = MN, must be partitioned into N substrings,
each of length M. For the test based on the length of the longest run of ones v ; within the j-th substring

of size M, K + 1 classes are chosen (depending on M). For each of these substrings, one evaluates the
frequencies Vv,,Vv,,...,V,(V, +V, +...+ vV, = N, i.e., the computed values of the longest run of ones

within each of these substrings belonging to any of the K + 1 chosen classes). If there are 7 ones and M -
r zeroes in the m-bit block, then the conditional probability that the longest string of ones Vv in this block

is less than or equal to m has the following form with U = min(M - r + 1,[%}) (see [1]):
m+

P(v=mlr)= LE(_I)j(M—‘r+ IJ(M— Jjim+ 1))’
J

M\ & M-r
=
.

P(vsm)=2(ﬂr4)P(vsm|r)2iM. 3)

so that

The theoretical probabilities 7,,7,,...,7T, of these classes are determined from [3].

The empirical frequencies v,,i =0,...,K are conjoined by the X -statistic

(Vi_Nﬂi)z
X = E N,

1

>

K
i=0

which, under the randomness hypothesis, has an approximate X*-distribution with K degrees of freedom.
The reported P-value is
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fxz(abs)e-u/zuk/z—wu o E M
r(knp % T2 )

with P(a,x) denoting the incomplete gamma function as expressed in Section 3.2.

The following table contains selected values of K and M with the corresponding probabilities obtained
from [3]. Cases K=3, M=8; K=5, M=128; and K=6, M=10000 are currently embedded in the test suite

code.

K=3, M=8
classes probabilities
{v=1} m,=0.2148
{v=2} 7 =0.3672
{v=3} m, = 0.2305
{v=4} m; = 0.1875
K=5, M=128
classes probabilities
{v=4} 1, =0.1174
{v=5} mt; =0.2430
{v=06} 7, = 0.2493
{v=T} 73 =0.1752
{v=8} iy =0.1027
{v=9} ms=0.1124
K=5, M=512
classes probabilities
{v=6} T, =0.1170
{v=T} 7 = 0.2460
{v=8} m, = 0.2523
{v=9} w3 =0.1755
{v=10} 7y =0.1027
{v=11} ms=0.1124
K=5, M=1000
classes probabilities
{v=7} w,=0.1307
{v=8} m; = 0.2437
{v=9} 7, =0.2452
{v=10} m;=0.1714
{v=11} 7y = 0.1002
{v=12} 75 = 0.1088
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K=6, M=10000
classes probabilities
{v=10} 7, = 0.0882
{v=11} ;= 0.2092
{v=12} m, =0.2483
{v=13} ;= 0.1933
{v=14} s =0.1208
{v=15} ms = 0.0675
{v=16} s =0.0727

Large values of X? indicate that the sequence has clusters of ones; the generation of “random" sequences
by humans tends to lead to small values of v, (see [3, p. 55]).

References for Test

[1] F. N. David and D. E. Barton, Combinatorial Chance. New York: Hafner Publishing Co., 1962, p.
230.

[2] Anant P. Godbole and Stavros G. Papastavridis (ed), Runs and Patterns in Probability: Selected
Papers. Dordrecht: Kluwer Academic, 1994,

[3] Pal Revesz, Random Walk in Random and Non-Random Environments. Singapore: World
Scientific, 1990.

3.5 Binary Matrix Rank Test

Another approach to testing for randomness is to check for linear dependence among fixed-length
substrings of the original sequence: construct matrices of successive zeroes and ones from the sequence,
and check for linear dependence among the rows or columns of the constructed matrices. The deviation of
the rank - or rank deficiency - of the matrices from a theoretically expected value gives the statistic of
interest.

This test is a specification of one of the tests coming from the DIEHARD [1] battery of tests. It is based
on the result of Kovalenko [2] and also formulated by Marsaglia and Tsay [3]. The result states that the
rank R of the M x Q random binary matrix takes values » =0, 1, 2, ..., m where m = min(M,Q) with
probabilities

p, = 2r<Q+M—r)—MQﬁ (1 — zi_Q)(l,_ 2 ) .
' i=0 1-27

The probability values are fixed in the test suite code for M = Q = 32. The number M is then a parameter
of this test, so that ideally n = M°N, where N is the new “sample size.” In practice, values for M and N are
chosen so that the discarded part of the string, n - NM’, is fairly small.

The rationale for this choice is that
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=1
Py = H[l —5] =0.2888...,

j=1

Pyt =~2py ~0.5776...,
Py = 4% ~0.1284...

and all other probabilities are very small (= 0.005) when M = 10.

For the N square matrices obtained, their ranks R,,[ =1,...,N are evaluated, and the frequencies
F,.F,_,,and N-F, —F, | of the values M, M-1 and of ranks not exceeding M-2 are determined:

F, =#{R, = M},
F,_, =#{R =M -1}.

To apply the X -test, use the classical statistic

» _(F, —0.2888N)’ G ~0.5776N)’ L WN-F, -F,, ~0.1336N)’
0.2888N 0.5776N 0.13336N

>

which, under the null (randomness) hypothesis, has an approximate X*-distribution with 2 degrees of
freedom. The reported P-value is CXp{—Xz(ObS)/ 2}.

Interpretation of this test: large values of X*(obs) indicate that the deviation of the rank distribution from
that corresponding to a random sequence is significant. For example, pseudo random matrices produced
by a shift-register generator formed by less than M successive vectors systematically have rank R, = M,

while for truly random data, the proportion of such occurrences should be only about 0.29.
References for Test

[1] George Marsaglia, DIEHARD: a battery of tests of randomness.
http://www.stat.fsu.edu/pub/diehard/.

[2] I. N. Kovalenko (1972), “Distribution of the linear rank of a random matrix,” Theory of
Probability and its Applications. 17, pp. 342-346.

[3] G. Marsaglia and L. H. Tsay (1985), “Matrices and the structure of random number sequences,”

Linear Algebra and its Applications. Vol. 67, pp. 147-156.

3.6 Discrete Fourier Transform (Specral) Test

The test described here is based on the discrete Fourier transform. It is a member of a class of procedures
known as spectral methods. The Fourier test detects periodic features in the bit series that would indicate
a deviation from the assumption of randomness.

Let x; be the & bit, where k = 1, ..., n. Assume that the bits are coded -1 and +1. Let
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fi= ixk exp(27,(k-1)j/n),

k=1

where exp(2m'kj/n) = cos(Zthj/n) + isin(2ﬂkj/n),j =0,...,n—1,and i =~ —1. Because of the
symmetry of the real to complex-value transform, only the values from 0 to (n/2 - 1) are considered. Let
mod; be the modulus of the complex number f;. Under the assumption of the randomness of the series x;, a
confidence interval can be placed on the values of mod,. More specifically, 95 percent of the values of

1
mod; should be less than i = (log ﬁ)n . A P-value based on this threshold comes from the binomial

distribution. Let N; be the number of peaks less than /4. Only the first n/2 peaks are considered. Let Ny =
95N/2 and d = (N, = N,)/4/n(0.95)(0.05)/4 . The P-value is

|
A2

o)

where ¢(x) is the cumulative probability function of the standard normal distribution.

Other P-values based on the series f; or mod; that are sensitive to departures from randomness are
possible. However, the primary value of the transform comes from a plot of the series mod,. In the
accompanying figure, the top plot shows the series of mod; for 4096 bits generated from a satisfactory
generator. The line through the plot is the 95% confidence boundary. The P-value for this series is
0.8077. The bottom plot shows a corresponding plot for a generator that produces bits that are
statistically dependent in a periodic pattern. In the bottom plot, significantly greater than 5% of the
magnitudes are beyond the confidence boundary. In addition, there is a clear structure in the magnitudes
that is not present in the top plot. The P-value for this series is 0.0001.

References for Test

[1] R. N. Bracewell, The Fourier Transform and Its Applications. New York: McGraw-Hill, 1986.

2] W. Killman, J. Schiith, W. Thumser, and I. Uludag, A Note Concerning the DFT Test in NIST
Special Publication 800-22, T-Systems, Systems Integration, July 2004.

[3] S. Kim, K, Umeno, and A. Hasegawa, Corrections of the NIST Statistical Test Suite for
Randomness, Cryptology ePrint Archive, Report 2004/018, 2004.
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3.7 Non-Overlapping Template Matching Test
This test rejects sequences exhibiting too many or too few occurrences of a given aperiodic pattern.

Let B= (810 yous ,82) be a given word (template or pattern, i.e., a fixed sequence of zeros and ones) of

length m. This pattern is to be chosen as if it were a parameter of the test. We consider a test based on
patterns for fixed length m. A table of selected aperiodic words out of such patterns form =2, ..., 8 is
provided at the end of this section.

The set of periods of B

0
j+k

B={j,lsjsm—1,s =€2,k=1,...,m—j},

plays an important role. For example, when B corresponds to a run of m ones, B = {1,. o, = 1}. For the

B above, B =, and B is an aperiodic pattern (i.e., it cannot be written as CC...CC' for a pattern C
shorter than B with C' denoting a prefix of C). In this situation, occurrences of B in the string are non-
overlapping.

In general, let W = W (m, M) be the number of occurrences of the given pattern B in the string. Note
that the statistic ¥ is defined also for patterns B with B = (J. The best way to calculate W is as the sum,

n-m+l

W = EI((SH,H =& k= 1,...,m).
in1

The random variables [ (81. il = sg,k =1,... ,m) are m-dependent, so that the Central Limit Theorem

+

holds for W. The mean and variance of the approximating normal distribution have the following form,

_n—m+1
2m

For the test suite code, M and N are chosen so that n = MN and N = 8. Partition the original string into N
blocks of length M. Let W; =W ,(m,M) be the number of occurrences of the pattern B in the block j, for

j=1,...,N.

Let u=EW,=(M-m+ 1)27". Then, for large M, W;has a normal distribution with mean u and
variance o’ so that the statistic

2
N (W -
X2 (0bs) = E% )
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has an approximate X*-distribution with N degrees of freedom. Report the P-value as

I_P(N X (obs))‘

b

2 2

The test can be interpreted as rejecting sequences exhibiting irregular occurrences of a given non-periodic
pattern.

References for Test

[1] A. D. Barbour, L. Holst, and S. Janson, Poisson Approximation (1992). Oxford: Clarendon Press
(especially Section 8.4 and Section 10.4).

Aperiodic Templates for small values of 2<m <5

m=2 | m=3 m=4 m=>5
01 001 0001 00001
10 011 0011 00011

100 | 0111 00101
110 1000 01011
1100 00111
1110 01111
11100
11010
10100
11000
10000
11110
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Aperiodic Templates for small values of 6 <m <8

m==6 m=7 m=28
000001 0000001 00000001
000011 0000011 00000011
000101 0000101 00000101
000111 0000111 00000111
001011 0001001 00001001
001101 0001011 00001011
001111 0001101 00001101
010011 0001111 00001111
010111 0010011 00010011
011111 0010101 00010101
100000 | 0010111 00010111
101000 | 0011011 00011001
101100 | 0011101 00011011
110000 | 0011111 00011101
110010 | 0100011 00011111
110100 | 0100111 00100011
111000 | 0101011 00100101
111010 | 0101111 00100111
111100 | 0110111 00101011
111110 | 0111111 00101101
1000000 00101111
1001000 00110101
1010000 00110111
1010100 00111011
1011000 00111101
1011100 00111111
1100000 01000011
1100010 01000111
1100100 01001011
1101000 01001111
1101010 01010011
1101100 01010111
1110000 01011011
1110010 01011111
1110100 01100111
1110110 01101111
1111000 01111111
1111010 10000000
1111100 10010000
1111110 10011000
10100000
10100100
10101000
10101100
10110000
10110100
10111000
10111100
11000000
11000010
11000100
11001000
11001010
11010000
11010010
11010100
11011000
11011010
11011100
11100000
11100010
11100100
11100110
11101000
11101010
11101100
11110000
11110010
11110100
11110110
11111000
11111010
11111100
11111110
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3.8 Overlapping Template Matching Test

This test rejects sequences which show too many or too few occurrences of m-runs of ones, but can be
easily modified to detect irregular occurrences of any periodic pattern B.

To implement this test, parameters M and N are determined so that n = MN, i.e., the original string is
partitioned into N blocks, each of length M.

Let WJ. =W j(m,n) be the number of (possibly overlapping) runs of ones of length m in the jth block.

The asymptotic distribution of W, is the compound Poisson distribution (the so-called Polya-Aeppli law,
see[1]):

Eexp{th} — exp )ﬁL_ll) (%)
-e

when (M -m+ 1)2_”‘ — A >0 (¢is areal variable).

The corresponding probabilities can be expressed in terms of the confluent hypergeometric function
@ =, F,. If U denotes a random variable with the compound Poisson asymptotic distribution, then f