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Abstract:  Random Number Generators1 (RNGs) are an important building block for
algorithms and protocols in cryptography.  They are paramount in the construction of
encryption keys and other cryptographic algorithm parameters.  In practice, statistical
testing is employed to gather evidence that a generator indeed produces numbers that
appear to be random.  Few resources are readily available to researchers in academia
and industry who wish to analyze their newly developed RNG.  To address this problem,
NIST has developed new metrics that may be employed to investigate the randomness of
cryptographic RNGs. In this paper, issues such as statistical test suites, evaluation
frameworks, and the interpretation of results are addressed.

1.0 Introduction

In computer security, suitable metrics are needed to investigate the degree of randomness
for binary sequences produced by cryptographic random number generators (RNGs).
Today, researchers are developing new hardware and software based RNGs.  However,
few standards address statistical analysis techniques that should be employed in practice.
This paper will:  (1) list statistical test suite sources, (2) illustrate several evaluation
approaches, (3) briefly describe the National Institute of Standards and Technology
(NIST) Statistical Test Suite and its application in the systematic evaluation of
cryptographic RNGs, (4) establish guidelines for the interpretation of test results, and
finally (5) express a few closing remarks.

2.0 Statistical Test Suites
         
 For those interested in analyzing their cryptographic RNG, several options are available.
Table 1 highlights batteries of statistical tests that are available or will be available in the
near future.

Table 1.  Batteries of Statistical Tests

Source/Affiliation Statistical Tests
1.  Donald Knuth/Stanford University The Art Of Computer Programming

Vol. 2 Seminumerical Algorithms

                                                          
1 Throughout this paper, the term, random number generators, refers to both hardware based RNGs and
software based RNGs, i.e., pseudo random number generators (PRNGs).



2.  George Marsaglia/Florida State University DIEHARD
3.  Helen Gustafson, et. al./
     Queensland University of Technology

Crypt-XS

4.  Alfred Menezes, et. al./CRC Press, Inc. Handbook of Applied Cryptography
5.  Andrew Rukhin, et. al./NIST ITL NIST Statistical Test Suite

In Donald Knuth’s book, The Art of Computer Programming, Seminumerical
Algorithms, Volume 2, he describes several empirical tests which include the:
frequency, serial, gap, poker, coupon collector's, permutation, run, maximum-of-t,
collision, birthday spacings, and serial correlation.  For further information, visit
http://www-cs-faculty.stanford.edu/~knuth/taocp.html.

The DIEHARD suite of statistical tests developed by George Marsaglia consists of
fifteen tests, namely the: birthday spacings, overlapping permutations, ranks of
31x31 and 32x32 matrices, ranks of 6x8 matrices, monkey tests on 20-bit Words,
monkey tests OPSO, OQSO, DNA, count the 1's in a stream of bytes, count the 1's in
specific bytes, parking lot, minimum distance, random spheres, squeeze, overlapp-
ing sums, runs, and craps.  Additional information may be found at http://stat.fsu.edu/
~geo\diehard.html

The Crypt-XS suite of statistical tests was developed by researchers at the Information
Security Research Centre at Queensland University of Technology in Australia.  Crypt-
XS tests include the frequency, binary derivative, change point, runs, sequence
complexity and linear complexity.  For additional information visit http://www.isrc.qut.
edu.au/cryptx/index.html.

The NIST Statistical Test Suite is the result of collaborations between the Computer
Security Division and the Statistical Engineering Division at NIST.  Statistical tests in the
package include the: frequency, block frequency, cumulative sums, runs, long runs,
Marsaglia's rank, spectral (based on the Discrete Fourier Transform), nonoverlapping
template matchings, overlapping template matchings, Maurer's universal statistical,
approximate entropy (based on the work of Pincus, Singer and Kalman), random
excursions (due to Baron and Rukhin), Lempel-Ziv complexity, linear complexity, and
serial.  Additional information may be found at http://www.itl.nist.gov/div893/staff/soto/
jshome.html.

3.0 Evaluation Approaches

Different approaches have been taken by designers of statistical tests.  Given a binary
sequence s, we want to establish whether or not s passed or failed a statistical test.  In this
paper we will compare three different viewpoints.



3.1 Case A: Threshold Values

One approach is to compute a test statistic for a binary sequence s and compare it to a
threshold value. The decision rule in this case states that a binary sequence fails this test
"whenever the value of c(s) falls below the threshold value." For example, the sequence
complexity test described in the Crypt-XS package is based on Lempel-Ziv compression.
Given s, we compute its sequence complexity, c(s).  In order to determine whether the
sequence passed this test, we need to compare c(s) with the threshold value, n/(log2 n).

3.2 Case B: Fixed Ranges

A second approach involves computing a test statistic for s as before.  However, in this
case, the decision rule states that "s fails a test if the test statistic falls outside of a range."
For example, if the frequency test is applied to a binary sequence s consisting of 800 bits,
and we define our test statistic to be the number of ones in s, we expect roughly 400
zeroes and 400 ones.  If the significance level is fixed at 5%, then s fails the test if the

number of ones falls outside the range 400 ± 1.96/2* 800 = [373,427].

3.3 Case C: Probability Values

A third approach involves computing a test statistic for s and its corresponding
probability value (P-value).  Typically, test statistics are constructed so that large values
of a statistic suggest a non-random sequence.  The P-value is the probability of obtaining
a test statistic as large or larger than the one observed if the sequence is random.  Hence,
small values (conventionally, P-values < 0.05 or P-values < 0.01) are interpreted as
evidence that a sequence is unlikely to be random. The decision rule in this case states
that "for a fixed significance value α, s fails the statistical test if its P-value < α."
Typically, α is taken to be a value in the interval [0.001,0.01].  For example, if s is a
sequence of 1,000,000 bits, and we apply a runs test, then our test statistic V, the total
number of runs, should be roughly 500,000.  Suppose V = 499996; then its P-value =
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= 0.994876, where n is the sequence length and π is the total

number of ones divided by n.  Clearly, s passes the test since the P-value is very close to
one.

Note:  This list is not exhaustive and was chosen to illustrate contrasting techniques.

The limitations of each of these cases are as follows:

Case A: The use of threshold values may not be a sufficiently stringent measure.  A
sequence complexity measure, which exceeds a threshold value, may be non-random.
Empirical evidence2 utilizing the SHA-1 generator suggests that for sequence lengths of
                                                          
2 Research work by Leung and Tavares [4] indicates that for 64 bit blocks, the expected sequence
complexity value is approximately 13, which agrees with our empirical results. An approximate expected



1,000,000, the mean is close to 50,778 which is far greater than the threshold value,
( )6

2
6 10log10ceil  = 50,172.  A 1,000,000, bit sequence counterexample was observed

using the file, canada.bit3.  The sequence consisting of 50.3726% zeroes and 49.6274%
ones, clearly fails a monobits test4, however, its sequence complexity measure of 50,553
would exceed 50,172, and hence, the sequence passes the Crypt-XS sequence complexity
test.

Case B: The use of fixed ranges implies that significance levels and acceptable ranges are
pre-computed.  If significance levels are modified in the future, the range values must be
recomputed.

Case C: The use of P-values is non-trivial in some cases, but has the added advantage
that they do not require the specification of the significance level, α.  Once a P-value has
been computed, the P-value can be compared to an arbitrary α.  Typically, P-values are
computed utilizing special functions such as the:
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where Q(a,0) = 1 and Q(a,∞) = 0.

Of course, it must be emphasized that Q(a,x) is not easily computed, especially for large
a, and one must resort to numerical methods to achieve accurate results.  Among these
three case scenarios, NIST chose case C for its statistical test suite due to its flexibility.

4.0 The NIST Statistical Test Suite

Let us proceed to describe the NIST test suite in more detail.  We begin by highlighting
our evaluation framework and then list the defects that each test was designed to detect.

                                                                                                                                                                            
value for sequence complexity was established by Mund [8]; however, our experiments suggest that for
larger sequence lengths, O(106), this may not be a good approximation.
3 This file may be found on Marsaglia’s Random Number CDROM, http://stat.fsu.edu/pub/diehard/cdrom/
4 A monobits test examines the distribution of zeroes and ones in a binary sequence.



4.1 The NIST Framework

The NIST framework, like many tests, is based on hypothesis testing.  A hypothesis test is
a procedure for determining if an assertion about a characteristic of a population is
reasonable.  In this case, the test involves determining whether or not a specific sequence
of zeroes and ones is random.  Table 2 illustrates the step by step process that is followed
in the evaluation of a single binary sequence.  Additional information on hypothesis
testing terminology may be found in the appendix.

Table 2.  Evaluation Procedure For A Single Binary Sequence

Step By Step Process Comments
1.  State your null hypothesis. Assume that the binary sequence is random.
2.  Compute a sequence test statistic. Testing is carried out at the bit level.
3.  Compute the P-value. P-value ∈∈ [0, 1].
4.  Compare the P-value to α. Fix α, where α ∈∈ (0.001, 0.01].  Success is

declared whenever P-value ≥ α; otherwise,
failure is declared.

4.2 The NIST Statistical Tests

Though much attention could be given in fully describing each of the statistical tests, we
will focus strictly on the types of defects that this battery of statistical tests was designed
to detect. Table 3 describes the general characteristics of each of the statistical tests.

Table 3.  Characteristics of the NIST Statistical Tests

Statistical Test Defect Detected
  1.  Frequency Too many zeroes or ones.
  2.  Cumulative Sums Too many zeroes or ones at the beginning of the

sequence.
  3.  Longest Runs Of Ones Deviation of the distribution of long runs of ones.
  4.  Runs Large (small) total number of runs indicates that the

oscillation5 in the bit stream is too fast (too slow).
  5.  Rank Deviation of the rank distribution from a corresponding

random sequence, due to periodicity6.
  6.  Spectral Periodic features in the bit stream.
  7.  Non-overlapping
       Template Matchings

Too many occurrences of non-periodic templates.

  8.  Overlapping
       Template Matchings

Too many occurrences of m-bit runs of ones.

  9.  Universal Statistical Compressibility7 (regularity).

                                                          
5 Oscillation refers to abrupt changes between runs of zeroes or runs of ones.
6 Periodicity refers to sub-sequences that repeat.



10.  Random Excursions Deviation from the distribution of the number of visits of
a random walk8 to a certain state.

11. Random Excursion
       Variant

Deviation from the distribution of the total number of
visits (across many random walks) to a certain state.

12.  Approximate Entropy Non-uniform distribution of m-length words.  Small
values of ApEn(m) imply strong regularity.

13.  Serial Non-uniform distribution of m-length words.  Similar to
Approximate Entropy.

14.  Lempel-Ziv Complexity More compressed than a truly random sequence.
15.  Linear Complexity Deviation from the distribution of the linear complexity9

for finite length (sub)strings.

5.0 Interpretation of Empirical Evidence

The principal problem lies in the many approaches that can be taken in order to determine
the effectiveness of a statistical test.  We begin by describing a set of numerical
experiments that was conducted utilizing the NIST developed statistical tests.

5.1 Numerical Experiments

Three pseudo-random number generators (G-SHA-1, Blum-Blum-Shub, Cubic
Congruential Generator) were selected10; along with five statistical tests, numerically
coded as (1 = frequency, 2 = cumulative sum, 3 = runs, 4 = spectral, 5 = approximate
entropy); a sequence length = 1,000,000; a sample size11 = 300; and a significance level,
α = 0.01.  For each generator, five statistical tests were applied to each binary sequence.
In all, this resulted in (300)(5)(3) = 4500 P-values.
 

5.2 Goodness of Fit Distributional Tests & Graphical Analysis of Empirical Results

Once the statistical tests had been applied, we wished to determine how well the
empirical results matched their theoretical counterparts.  This could be accomplished by
assessing the goodness of fit of the distribution of P-values to a uniform distribution.
This could be done in one of several ways.  One approach, involves taking the mean and
variance of the P-values and comparing it to the mean (0.5) and variance (1/12) for a
uniform distribution.  A second approach involves computing a chi-square statistic with
nine degrees of freedom based on the frequency counts of P-values among bins
determined by discretizing12 the unit interval by ten.

                                                                                                                                                                            
7 Compressibility refers to the existence of a sub-sequence that represents the entire sequence.
8 A 1-D random walk is a sequence of steps, each of whose characteristics is determined by chance.
9 Linear complexity is the length of the shortest linear feedback shift register that generates the sequence.
10 Selection was based on the inclusion of a cryptographically secure PRNG (Blum-Blum-Shub), an
excellent PRNG (SHA-1) and a poor PRNG (Cubic Congruential).
11 That is, 300 individual sequences were constructed, each consisting of 1,000,000 bits.
12 Discretizing the unit interval, i.e., subdividing [0,1] into ten equally spaced subintervals.



Figure 1 illustrates a histogram of P-values obtained from the runs test applied to three
hundred sequences generated utilizing G-SHA-1.

 Figure 1: Illustration of the Chi-Square Test to Evaluate Goodness of Fit

Figures 2-4 depict a graphical approach to facilitate the interpretation of empirical
results.  The x-axis consists of individual statistical tests, whereas the y-axis represents
the proportion of sequences that passed the corresponding statistical test at the chosen
significance level, α = 0.01.  Ideally, we expect to reject 1 out of every 100 binary
sequences, or equivalently, 99% of the sequences should pass (depicted as a solid line in
Figures 2-4).  However, realistically this won't necessarily be satisfied.  The minimum
acceptable proportion of binary sequences expected to pass a statistical test was

determined utilizing a confidence interval defined as ∃
∃( ∃)

p k
p p

n
±

−1
, where ∃p  = 1-α, is

the average P-value; k = 3 is the number of standards deviations, and n is the sample size.
The dashed line depicted in Figures 2-4 represents that lower bound (97.27%).

As we can see in Figure 2 and Figure 3, none of the proportions falls below this
threshold. However, in Figure 4, we see that all of our proportions fall below the
threshold.  This is indicative of a serious problem with this pseudo-random number
generator.  Further testing on different samples should be conducted to gather more
evidence that this is a poor PRNG.



Figure 4:
This graph depicts the empirical results for
the Cubic Congruential PRNG.

Figure 3:
This graph depicts the empirical results
for the Blum-Blum-Shub PRNG.

Figure 2:
This graph depicts the empirical results
for the G-SHA-1 PRNG.



6.0 Open Problems

Two problems that must be addressed include (a) the independence of the statistical tests,
and (b) the coverage or span of the statistical tests.

The independence of statistical tests seeks to determine whether or not there is any
redundancy in applying more tests than are indeed necessary.  The coverage or span of the
statistical tests seeks to address the problem of how many distinct types of non-random-
ness can be investigated, and to assess whether or not we have a sufficient number of
statistical tests to detect any deviation from randomness? To address this problem,
research is underway which involves the application of principal components analysis13.
The results seem promising and suggest that NIST has a test suite that contains a nearly
independent set of tests.
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Summary and Conclusion

Random number generators are an important link in the computer security chain.  They
are very important in the construction of encryption keys and other cryptographic
algorithm parameters.

In this paper, we have introduced new metrics, which may be employed to investigate the
randomness of cryptographic RNGs and thus gain additional confidence that random
number generators are acceptable from a statistical point of view.

We have described sources of statistical tests, discussed the different evaluation
techniques, illustrated numerical experiments conducted utilizing NIST statistical tests,
and addressed the problem of analysis of empirical results.

New statistical tests need to continuously be developed to gather evidence that RNGs are
of high quality.  The NIST Statistical Test Suite is applicable to both software and
hardware based RNGs.  In addition, the usage of statistical testing can be employed to
gain assurance in the proper implementation of cryptographic algorithms in software.

                                                          
13 In this context, principal components analysis refers to a methodology to assess correlations among the
statistical tests.
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Appendix.  Hypothesis Testing Terminology

Statistical Term Definition
test statistic A statistic upon which a test of a hypothesis is based.
null hypothesis The stated hypothesis.  In this case, the null hypothesis is that a

binary sequence is random.
alternative
hypothesis

An alternate hypothesis.  In our case any non-random
characteristic.

significance level Usually denoted as, α, it is the least upper bound of the
probability of an error of type I for all distributions consistent
with the null hypothesis.  In our case α ∈ [0.001, 0.01].

type I error The likelihood that a test rejects a binary sequence, that was in
fact, produced by an acceptable random number generator.

confidence interval An interval which is believed, with a pre-assigned degree of
confidence, to include the particular value of some parameter
being estimated.



BIOGRAPHY

In 1991, Juan earned his BS in Computational Mathematics from the University of Puerto
Rico at Humacao.  In 1993, he went on to earn his MS in Applied Mathematics from the
State University of New York at Stony Brook.  In the 1993-1994 academic year, Juan was
a mathematics instructor at Catonsville Community College in Catonsville, MD.  In 1996,
he earned an MS in computer science from the University of Delaware.  Prior to joining
the Computer Security Division at NIST he was employed as a software engineer at
Lockheed-Martin Management & Data Systems in Valley Forge, PA, conducting research
and development in computer vision and image understanding.  At NIST, Juan has been
collaborating with a technical working group on developing statistical tests to evaluate
the randomness of binary sequences. His current research interests are in cryptography,
applied mathematics and computer algebra.


	Statistical Testing of Random Number Generators
	Introduction
	Statistical Test Suites
	Evaluation Approaches
	The NIST Statistical Test Suite
	Interpretation of Empirical Evidence
	Open Problems
	Acknowledgments
	Summary and Conclusion
	References
	Appendix. Hypothesis Testing Terminology

	Table of Contents

