

The Key Agreement Schemes

 Validation System (KASVS)

December 23, 2008

Sharon S. Keller

National Institute of Standards and Technology

Information Technology Laboratory

Computer Security Division

TABLE OF CONTENTS

1 Introduction ... 3
2 Scope... 3
3 Conformance... 4
4 Definitions and Abbreviations .. 4

4.1 Definitions .. 4
4.2 Abbreviations .. 5

5 Design Philosophy of Key Agreement Schemes Validation System 6
6 Key Agreement Scheme Validation System (KASVS) Test 6

6.1 Configuration Information ... 7
6.2 The Function Test .. 15

6.2.1 Key Confirmation Not Supported .. 15
6.2.2 Key Confirmation Supported .. 16

6.3 The Validity Test... 18
6.3.1 Key Confirmation Not Supported .. 18
6.3.2 Key Confirmation Supported .. 20

Appendix A References ... 22

1 Introduction
This document, The Key Agreement Scheme (KAS) Validation System (KASVS), specifies
the procedures involved in validating implementations of the Key Agreement Schemes,
and, if applicable, Key Confirmation as specified in SP 800-56A, Recommendation for
Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography [1]. The
KASVS is designed to perform automated testing on Implementations Under Test (IUTs).

This document defines the purpose, the design philosophy, and the high-level description
of the validation process for each key agreement scheme, either alone or accompanied
with key confirmation. It includes specifications for the two categories of tests that make
up the KASVS, i.e., the Function test and the Validity test. The requirements and
administrative procedures to be followed by those seeking formal validation of an
implementation of SP800-56A are presented. The requirements described include a
specification of the data communicated between the IUT and the KASVS, the details of
the tests that the IUT must pass for formal validation, and general instruction for
interfacing with the KASVS.

A set of KAS test vectors is available on the http://csrc.nist.gov/cryptval/ website for
testing purposes.

2 Scope

This document specifies the tests required to validate implementations of SP 800-56A for
conformance to the key agreement schemes, either alone or accompanied with key
confirmation, as specified in [1]. When applied to an Implementation Under Test (IUT),
the KASVS provides testing to determine the correctness of the implementation of the
key agreement scheme specifications and, if applicable, the key confirmation
specifications. As detailed in the Recommendation, Discrete Logarithm Cryptography
(DLC) includes Finite Field Cryptography (FFC) and Elliptic Curve Cryptography
(ECC). A separate validation test suite has been designed for each of these types of
cryptography. These validation test suites contain validation testing for each key
agreement scheme. The validation testing verifies that an IUT has implemented the
components of the key agreement scheme according to the specifications in the
Recommendation. These components include the calculation of the DLC primitives (the
shared secret value Z) and the calculation of the derived keying material (DKM) via the
Key Derivation Function (KDF). If key confirmation is supported, the validation test
suite also verifies that an IUT has implemented the components of key confirmation as
specified in the Recommendation. This includes the parsing of the DKM, the generation
of MacData and the calculation of MacTag.

The KASVS validation process requires the definition of all assurances included in the
implementation. These assurances are described in SP 800-56A, Section 5.5.2, 5.6.2, and
5.6.3.

The KASVS validation process also requires prerequisite testing of the underlying
algorithms used in the implementation. They include:

1. The underlying DSA and/or ECDSA algorithm’s domain parameter
generation and key pair generation functions (determined by the
assurances implemented),

2. The supported SHA algorithm(s),

3. The supported MAC algorithms (CCM, CMAC, and/or HMAC), and

4. The supported random number generations including the approved RNG
algorithms and the DRBG algorithm(s).

3 Conformance

The successful completion of the tests contained within the KASVS and the DSAVS
and/or the ECDSA, the SHAVS, the CMACVS, CCMVS, and/or HMACVS, and the
RNGVS and/or DRBGVS is required to claim conformance to SP800-56A. Testing for
the cryptographic module in which a key agreement scheme(s) is implemented is defined
in FIPS PUB 140-2, Security Requirements for Cryptographic Modules.[2]

4 Definitions and Abbreviations

4.1 Definitions

DEFINITION MEANING

Assurance of identifier Confidence that identifying information (such as a name) is correctly
associated with an entity

Assurance of possession
of a private key

Confidence that an entity possesses a private key associated with a
public key.

Assurance of validity Confidence that either a key or a set of domain parameters is
arithmetically correct

CMT laboratory Cryptographic Module Testing laboratory that operates the KASVS

Key agreement A key establishment procedure where the resultant secret keying
material is a function of information contributed by two participants,
so that no party can predetermine the value of the secret keying

material independently from the contributions of the other parties.

Key confirmation A procedure to provide assurance to one party (the key confirmation
recipient) that another party (the key confirmation provider) actually
possesses the correct secret keying material and/or shared secret.

4.2 Abbreviations

ABBREVIATION MEANING

CCM Counter with Cipher Block Chaining-Message Authentication Code

CCMVS CCM Validation System

CMACVS CMAC Validation System

DKM Derived Keying Material

DLC Discrete Logarithm Cryptography

DSA Digital Signature Algorithm

DSAVS Digital Signature Algorithm Validation System

ECDSA Elliptic Curve Digital Signature Algorithm

ECDSAVS ECDSA Validation System

FIPS Federal Information Processing Standard

HMAC Keyed-Hash Message Authentication
Code

HMACVS HMAC Validation System

IUT Implementation Under Test

KAS Key Agreement Scheme

KC Key Confirmation

KDF Key Derivation Function

KES Key Establishment Scheme

MAC Message Authentication Code

SHA Secure Hash Algorithm

SHAVS SHA Validation System

Z A shared secret that is used to derive secret keying material using a
key derivation function; a DLC primitive – either Diffie-Hellman or
MQV.

5 Design Philosophy of Key Agreement Schemes Validation
System

The KASVS is designed to test conformance to the key agreement and key confirmation
specifications rather than provide a measure of a product’s security. The validation tests
are designed to assist in the detection of accidental implementation errors, and are not
designed to detect intentional attempts to misrepresent conformance. Thus, validation
should not be interpreted as an evaluation or endorsement of overall product security.

The KASVS has the following design philosophy:

1. The KASVS is designed to allow the testing of an IUT at locations remote
to the KASVS. The KASVS and the IUT communicate data via
REQUEST and RESPONSE files. The KASVS also generates SAMPLE
files to provide the IUT with an example of the format required by the
RESPONSE file.

2. The testing performed within the KASVS utilizes statistical sampling (i.e.,
only a small number of the possible cases are tested); hence, the successful
validation of a device does not imply 100% conformance with the
Recommendation.

6 Key Agreement Scheme Validation System (KASVS) Test

The KASVS tests the implementation of the key agreement and the key confirmation
processes for its conformance to SP800-56A. When applied to an IUT, the KASVS
provides testing to determine the correctness of the implementation of the key agreement
scheme specifications. As detailed in the Recommendation, Discrete Logarithm
Cryptography (DLC) includes Finite Field Cryptography (FFC) and Elliptic Curve
Cryptography (ECC). A separate validation test suite has been designed for each of these
types of cryptography. Within each test suite, validation testing has been designed for
each key agreement scheme. The validation test suite for each key agreement scheme
verifies that an IUT has implemented the components of the key agreement scheme
according to the specifications in the Recommendation. These components include the
calculation of the DLC primitives (the shared secret value Z) and the calculation of the

derived keying material (DKM) via the Key Derivation Function (KDF). If key
confirmation is supported, the validation test suite also verifies that the components of
key confirmation as specified in the Recommendation have been implemented correctly.
This includes the parsing of the DKM, the generation of MacData and the calculation of
MacTag. There are several assurances that are defined in SP800-56A indicating where
specific assurances are to be obtained - within the implementation or external to the
implementation. This information is supplied by an IUT to aid in the testing of the
scheme's components. Please refer to Sections 5.5.2, 5.6.2.1, 5.6.2.2, 5.6.2.3, 5.6.3.1,
5.6.3.2.1, and 5.6.3.2.2 of the Recommendation for more information on the assurances
required for testing. A list of these is also supplied in Section 6.1 of this document.

The KAS scheme validation process requires additional prerequisite testing of the
underlying DSA and/or ECDSA algorithm for domain parameter generation and/or key
pair generation, the supported SHA algorithm(s), supported MAC algorithm(s), and the
supported RNG (including DRBG) algorithm.

6.1 Configuration Information

To initiate the validation process of the KASVS, a vendor submits an application to an
accredited laboratory requesting the validation of its implementation of the key
agreement scheme with or without key confirmation. The vendor’s implementation is
referred to as the IUT. The request for validation includes background information
describing the IUT, along with information needed by the KASVS to perform the specific
tests. More specifically, the request for validation includes:

1. Cryptographic algorithm implementation information

 a. Vendor Name;

 b. Implementation Name;

 c. Implementation Version;

 d. Indication if implementation is software, firmware, or hardware;

 e. Processor and Operating System with which the IUT was tested if the IUT
is implemented in software or firmware;

 f. Brief description of the IUT or the product/product family in which the
IUT is implemented by the vendor (2-3 sentences); and

2. Configuration information for the KASVS tests.

 a. The underlying cryptographic schemes supported by the IUT, i.e., FFC and/or
ECC. The FFC schemes are based on ANS X9.42 and the ECC schemes are
based on ANS X9.63.

 b. For each underlying algorithm, a list of each assurance supported by the IUT.

Based on the assurances supported by an IUT, the scope of the validation
testing necessary to thoroughly test the implementation is determined.

Below is a list of the assurances. Each assurance is either tested in the CAVS
KAS testing, tested by requiring a prerequisite, or out-of-scope of the CAVP
KAS validation testing. (Note that the section numbers corresponding to the
SP800-56A document are included. Please refer to SP800-56A for more
details on the assurances.)

5.5.2 Assurances of Domain Parameter Validity

FFC: PREREQUISITE: DSA PQG
Generation and Verification functions

#1. Domain parameters generated by party itself

ECC: ECDSA uses NIST-approved
curves, so no need to test

FFC: PREREQUISITE: DSA PQG
Verification function

#2. Explicit domain parameter validation
(specified in FIPS186-3 or ANSX9.62-2)

ECC: ECDSA uses NIST-approved
curves, so no need to test

#3. Party received assurance from trusted third
party.

Out-of-scope of CAVP KAS testing.

5.6.2 Assurances of the Arithmetic Validity of a Public Key

5.6.2.1 Owner Assurances of Static Public Key Validity

FFC: Testing done within KAS
validation testing

#1. Owner Full Validation.

ECC: PREREQUISITE: ECDSA PKV
function

#2. TTP Full Validation.

Out-of-scope of CAVP KAS testing.

FFC: PREREQUISITE: DSA Key Pair
Generation functions

#3. Owner Generation.

ECC: PREREQUISITE: ECDSA Key
Pair function

#4. TTP Generation. Out-of-scope of CAVP KAS testing.

5.6.2.2 Recipient Assurances of Static Public Key Validity

FFC: Testing done within KAS
validation testing

#1. Recipient Full Validation.

ECC: PREREQUISITE: ECDSA PKV
function

#2. TTP Full Validation. Out-of-scope of CAVP KAS testing.

#3. TTP Generation. Out-of-scope of CAVP KAS testing.

5.6.2.3 Recipient Assurances of Ephemeral Public Key Validity

FFC: Testing done within KAS
validation testing

#1. Recipient Full Validation.

ECC: PREREQUISITE: ECDSA PKV
function

#2. TTP Full Validation. Out-of-scope of CAVP KAS testing.

#3. Recipient ECC Partial Validation. Testing done within KAS validation
testing

#4. TTP ECC Partial Validation. Out-of-scope of CAVP KAS testing.

5.6.3 Assurances of the Possession of a Static Private Key

5.6.3.1 Owner Assurances of Possession of a Static Private Key

#1. Owner Receives Assurance via Explicit Key
Confirmation

IUT must implement Key Confirmation
within KAS validation testing

#2. Owner Receives Assurance via Use of an
Encrypted Certificate.

Out-of-scope of CAVP KAS testing.

FFC: PREREQUISITE: DSA Key Pair
Generation function

#3. Owner Receives Assurance via Key
Regeneration

ECC: PREREQUISITE: ECDSA Key
Pair and PKV functions

#4. Owner Receives Assurance via Trusted Out-of-scope of CAVP KAS testing.

Provision.

FFC: PREREQUISITE: DSA Key Pair
Generation function

#5. Owner Receives Assurance via Key
Generation

ECC: PREREQUISITE: ECDSA Key
Pair and PKV functions

5.6.3.2 Recipient Assurances of Owner's Possession of a Static Private Key

5.6.3.2.1 Recipient Obtains Assurance through a
Trusted Third Party.

Out-of-scope of CAVP KAS testing.

FFC: IUT must implement either
Hybrid1Flow, MQV1, and/or OneFlow.

ECC: IUT must implement either One-
Pass Unified Model, One-Pass MQV, or
One-Pass Diffie-Hellman.

5.6.3.2.2 Recipient Obtains Assurance Directly
from the Claimed Owner

BOTH: IUT must implement key
confirmation with the IUT as the
provider and the responder

Table 1: List of Assurances and How They Relate to the CAVP KAS
Validation Testing

3. If FFC is implemented, the following configuration information is required:

i. Supported key agreement scheme(s):

o dhHybrid1, MQV2, dhEphem, dhHybridOneFlow, MQV1,
dhOneFlow, dhStatic

ii. Supported roles for key agreement:

o Initiator, Responder

iii. If key confirmation is supported, supported roles for key confirmation:

o Provider, Recipient

iv. If key confirmation is supported, types of key confirmation:

o Unilateral, Bilateral

v. Parameter size set(s) supported:

O FA

O FB

O FC

(Refer to SP800-56A, Section 5.5.1.1, Table 1, FFC Parameter Size
Sets for more information.)

vi. SHA algorithm(s) supported for use in the key derivation function testing

vii. If key confirmation is supported, indicate all MACs supported by the IUT,
along with the associated information. If key confirmation is not
supported, indicate one MAC supported by the IUT, along with the
associated information. The MACs to choose from are listed below:

o A NIST-approved MAC supported by the IUT:

 CCM:

• Algorithm: AES, TDES

• Key Size: 128, 192, 256

• Nonce Length in bytes: 7, 8, 9, 10, 11, 12, 13

• Tag Length in bytes:

o For FA: 10, 12, 14, 16

o For FB: 14, 16

o For FC: 16

 CMAC:

• Algorithm and key size: AES128, AES192, AES256

• Tag Length in bytes:

o For FA: 10 <= Tag Length <= 16

o For FB: 14 <= Tag Length <=16

o For FC: Tag Length = 16

 HMAC:

• For FA:

o SHA Algorithm supported: SHA1, SHA224,
SHA256, SHA384, SHA512

o HMAC Key Size in bytes: >= 10 bytes

o Tag Length in bytes: >= 10 bytes

• For FB:

o SHA Algorithm supported: SHA224,
SHA256, SHA384, SHA512

o HMAC Key Size in bytes: >= 14 bytes

o Tag Length in bytes: >= 14 bytes

• For FC:

o SHA Algorithm supported: SHA256,
SHA384, SHA512

o HMAC Key Size in bytes: >= 16 bytes

o Tag Length in bytes: >= 16 bytes

d. If ECC is implemented, the following configuration information is required:

i. Supported key agreement scheme(s):

a. (Cofactor) Full Unified Model, Full MQV, (Cofactor) Ephemeral
Unified Model, (Cofactor) One-Pass Unified Model, One-Pass
MQV, (Cofactor) One-Pass Diffie-Hellman, Cofactor Static
Unified Model

ii. Supported roles:

b. Initiator, Responder

iii. If key confirmation is supported, supported roles for key confirmation:

c. Provider, Recipient

iv. If key confirmation is supported, supported types of key confirmation:

d. Unilateral, Bilateral

v. Parameter set(s) supported:

• EA

• EB

• EC

• ED

• EE

 (Refer to SP800-56A, Section 5.5.1.2, Table 2, ECC Parameter Size
Sets for more information.)

vi. Supported curve (indicate one per parameter set supported). Note, if
an IUT supports both prime fields and polynomial fields, a parameter
set from each field should be tested:

• For EA: P192, K163, B163

• For EB: P224, K233, B233

• For EC: P256, K283, B283

• For ED: P384, K409, B409

• For EE: P512, K571, B571

vii. SHA algorithms supported for use in the key derivation function
testing.

viii. If key confirmation is supported, indicate all MACs supported by the
IUT, along with the associated information. If key confirmation is not
supported, indicate one MAC supported by the IUT, along with the
associated information. The MACs to choose from are listed below:

o A NIST-approved MAC supported by the IUT:

 CCM:

• Algorithm: AES, TDES

• Key Size: 128, 192, 256

• Nonce Length in bytes: 7, 8, 9, 10, 11, 12, 13

• Tag Length in bytes:

 For EA: 10, 12, 14, 16

• For EB: 14, 16

• For EC: 16

o CMAC (Only for use with EA, EB, EC):

 Algorithm and key size: AES128, AES192, AES256

 Tag Length in bytes:

• For EA: 10 <= Tag Length <= 16

• For EB: 14 <= Tag Length <=16

• For EC: Tag Length = 16

o HMAC:

 For EA:

• SHA Algorithm supported: SHA1, SHA224,
SHA256, SHA384, SHA512

• HMAC Key Size in bytes: >= 10 bytes

• Tag Length in bytes: >= 10 bytes

 For EB:

• SHA Algorithm supported: SHA224,
SHA256, SHA384, SHA512

• HMAC Key Size in bytes: >= 14 bytes

• Tag Length in bytes: >= 14 bytes

 For EC:

• SHA Algorithm supported: SHA256,
SHA384, SHA512

• HMAC Key Size in bytes: >= 16 bytes

• Tag Length in bytes: >= 16 bytes

 For ED:

• SHA Algorithm supported: SHA384,
SHA512

• HMAC Key Size in bytes: >= 24 bytes

• Tag Length in bytes: >= 24 bytes

 For EE:

• SHA Algorithm supported: SHA512

• HMAC Key Size in bytes: >= 32 bytes

• Tag Length in bytes: >= 32 bytes

6.2 The Function Test

6.2.1 Key Confirmation Not Supported

A separate file is generated for each supported key agreement scheme - role combination.
For example, if an IUT supports the key agreement scheme dhHybrid1, and the IUT
supports both initiator and responder roles, two files will be generated:

KASFunctionTest_FFCHybrid1_NOKC_init.req and
KASFunctionTest_FFCHybrid1_NOKC_resp.req.

Within each request file, there is a section for each combination of parameter set and
SHA algorithm supported, i.e., FA-SHA1, FA-SHA224, FB-SHA224, FC-SHA512. For
each combination of parameter set and SHA algorithm, the Function Test provides 10
sets of data to the IUT. In addition to this, if FFC is used, one set of domain parameter
values is included for use with these 10 sets of data. If ECC is used, the curve name is
included in the file header. Depending on the scheme being tested, this set of data may
include a static public key and/or an ephemeral public key, and a nonce. The nonce is
used in constructing the value of the MacData. (See Section 5.2.3 of NIST SP800-56A.)

The IUT uses the domain parameter values or the NIST-approved curves to generate a
public/private key pair. The IUT uses the appropriate public keys supplied by the
KASVS and its own public/private key pair to calculate the shared secret value Z and the
derived keying material DKM. The Z value is computed using the appropriate DLC
primitive corresponding to the scheme being tested (Section 5.7 of NIST SP800-56A).
The DKM is computed using the supported KDF (Section 5.8 of NIST SP800-56A).
Section 5.8 specifies two key derivation functions - the Concatenation Key Derivation
Function (Approved Alternative 1) and the ASN.1 Key Derivation Function (Approved

Alternative 2). These two functions differ only in the format of the Other Information
OtherInfo (OI) field. In the KASVS, the IUT is required to supply the value of the OI
field. This allows the CAVS tool to test both key derivation functions in the same
manner. Other fields needed in the computation of the key derivation function are the
IUTid, supplied by the IUT, and the CAVSid, supplied by the CAVS tool. Note that the
accuracy of the format of the OI field is outside the scope of the KASVS validation
testing.

The IUT computes a Tag to determine if the SP800-56A implementation has been
implemented correctly. The IUT specifies an approved MAC algorithm supported by
their implementation, i.e., CCM, CMAC, or HMAC. The MAC key is obtained from
the DKM. The MacData to be MACed shall be the string “Standard Test Message”
concatenated with the 16-byte nonce found in the request file (Section 5.2.3 of NIST
SP800-56A).

The values generated by the IUT are stored in the RESPONSE file in the format specified
in the SAMPLE file. There shall be a RESPONSE file for every SAMPLE file.

If the IUT indicates that they support full or partial validation of their keys, (denoted in
the assurances), the KASVS will perform a validation of the IUT’s public keys. The
KASVS will also verify the correctness of the IUT’s Tag by calculating the shared secret
value using the appropriate DLC primitive and the IUT’s public keys, computing the
derived keying material, and computing the Tag. The KASVS compares the IUT’s Tag
value to the KASVS Tag value to see if they are the same. If they are, then it can be
determined that the implemented key agreement scheme, the DLC primitive
implementation, and the KDF implementation are implemented correctly according to the
Recommendation. If the values do not match, the IUT has an error in it. During the
validation of the IUT, if an error occurs, the intermediate values generated by the CAVS,
such as Z and DKM, are stored in the log file. The laboratory uses this information to
assist the vendor in debugging their IUT.

6.2.2 Key Confirmation Supported

A separate file is generated for each supported combination of the key agreement scheme,
key agreement role, key confirmation role and key confirmation type. For example, if an
IUT supports FFC cryptography, the dhStatic key agreement scheme, both key agreement
roles (initiator and responder), both key confirmation roles (provider and recipient), and
both key confirmation types (unilateral and bilateral), then eight files will be generated:

KASFunctionTest_FFCStatic_KC_init_prov_ulat.req
KASFunctionTest_FFCStatic_KC_init_rcpt_ulat.req
KASFunctionTest_FFCStatic_KC_init_prov_blat.req
KASFunctionTest_FFCStatic_KC_init_rcpt_blat.req
KASFunctionTest_FFCStatic_KC_resp_prov_ulat.req
KASFunctionTest_FFCStatic_KC_ resp _rcpt_ulat.req
KASFunctionTest_FFCStatic_KC_ resp _prov_blat.req
KASFunctionTest_FFCStatic_KC_ resp _rcpt_blat.req.

Within each REQUEST file, there is a section for each combination of parameter set and
SHA algorithm supported, i.e., FA-SHA1, FA-SHA224, FB-SHA224, FC-SHA512.
Within each combination of parameter set and SHA algorithm, the Function Test
provides a section for each supported combination of MAC algorithm and key size, i.e.,
CCM AES128, CCM AES256. In addition to this, if FFC is used, one set of domain
parameter values is included for use with these sets of data. If ECC is used, the curve
name is included in the file header. In each MAC algorithm-key size section, the
Function Test provides 10 sets of data to the IUT. Depending on the scheme being
tested, this set of data may include a static public key and/or an ephemeral public key.

The IUT uses the domain parameter values or the NIST-approved curves to generate a
public/private key pair. The IUT uses the appropriate public keys supplied by the
KASVS and its own public/private key pair to calculate the shared secret value Z and he
derived keying material DKM. The Z value is computed using the appropriate DLC
primitive corresponding to the scheme being tested (Section 5.7 of NIST SP800-56A).
The DKM is computed using the supported KDF (Section 5.8 of NIST SP800-56A).
Section 5.8 specifies two key derivation functions - the Concatenation Key Derivation
Function (Approved Alternative 1) and the ASN.1 Key Derivation Function (Approved
Alternative 2). These two functions differ only in the format of the Other Information
OtherInfo (OI) field. In the KASVS, the IUT is required to supply the value of the OI
field. This allows the CAVS tool to test both key derivation functions in the same
manner. Other fields needed in the computation of the key derivation function are the
IUTid, supplied by the IUT, and the CAVSid, supplied by the CAVS tool. Note that the
accuracy of the format of the OI field is outside the scope of the KASVS validation
testing.

The IUT computes Tags for each implemented approved MAC algorithm supported by
their implementation. These include CCM, CMAC, and/or HMAC. For each supported
MAC algorithm, a MAC key will be obtained from the DKM. Depending on the key
confirmation role (provider or recipient) and the key confirmation type (unilateral or
bilateral), MacData will be computed as specified in Section 8 of NIST SP800-56A.

The values generated by the IUT are stored in the RESPONSE file in the format specified
in the SAMPLE file. There shall be a RESPONSE file for every SAMPLE file.

If the IUT indicates that they support full or partial validation of their keys, (denoted in
the assurances), the KASVS will perform a validation of the IUT’s public keys. The
KASVS will also verify the correctness of the IUT’s Tag by calculating the shared secret
value using the appropriate DLC primitive and the IUT’s public keys, computing the
derived keying material, computing the MacData value, and computing the Tag. The
KASVS compares the IUT’s Tag value to the KASVS Tag value to see if they are the
same. If they are, then it can be determined that the implemented key agreement scheme,
the DLC primitive implementation, and the KDF implementation are implemented
correctly according to the Recommendation. If the values do not match, the IUT has an
error in it. During the validation of the IUT, if an error occurs, the intermediate values
generated by the CAVS, such as Z, MacData, and DKM, are stored in the log file. The
laboratory uses this information to assist the vendor in debugging their IUT.

6.3 The Validity Test
The second test in the NIST SP800-56A suite of validation tests is the Validity test. Its
purpose is to test the ability of the IUT to recognize valid and invalid results received
from the CAVS tool generated by the key agreement process with or without key
confirmation. Incorrect values are generated by the CAVS tool by interjecting errors in
different fields. The fields in which errors are introduced include Z, DKM, OI, MacData,
Tag, CAVS’ static public key, IUT’s static public key, CAVS ephemeral pubic key and
the IUT’s static private key. Errors introduced in the keys test if the IUT has
implemented the pubic key validation function properly. Note that this is only performed
if the assurances supported by the IUT support this capability.

6.3.1 Key Confirmation Not Supported

A separate file is generated for each supported key agreement scheme - role combination.
For example, if an IUT supports the ECC key agreement scheme dhFullUnified, and the
IUT supports both initiator and responder roles, two files will be generated:

KASValidityTest_ECCFullUnif_NOKC_init.req and
KASValidityTest_ECCFullUnif_NOKC_resp.req.

Within each request file, there is a section for each combination of parameter set and
SHA algorithm supported (for example, FA-SHA1, FA-SHA224, FB-SHA224, FC-
SHA512). For each combination of parameter set and SHA algorithm, the Validity Test
provides information identifying the domain parameter values (for FFC) or elliptic curve
(ECC) being used. For FFC implementations, the KASVS will generate 24 sets of data
for the IUT. For ECC implementations, the KASVS will generate 30 sets of data for the
IUT. Within these sets of data, the KASVS will modify some of the values to introduce
errors. This will determine whether or not the IUT can detect these errors. In addition to
verifying that the IUT can detect errors in the key agreement and key confirmation
processing, this test will also provide assurance of the validity of the domain parameters
as implemented by the IUT.

Depending on the key agreement scheme being tested, data supplied by the CAVS
includes:

1 A header containing:

a. Parameter Sets Supported

b. CAVSid

c. IUTid

d. The parameters associated with each parameter set, including:

i. Curve selected (if ECC)

ii. SHA(s) supported

iii. MAC algorithm(s) supported

iv. If the MAC is CCM:

1. Key sizes supported

2. CCM Nonce length

3. CCM Tag length

v. If the MAC is CMAC:

1. Key sizes supported

2. AES/TDES Tag length

vi. If the MAC is HMAC:

1. SHA(s) supported

2. Key sizes supported

3. Tag length

2 A set of data containing a subset of the following data depending on the
scheme implemented:

a. CAVS values, including:

i. Static public key and/or

ii. Ephemeral public key (or nonce)

b. Nonce value

c. IUT values, including:

i. Static private key, and

ii. Static public key, and/or

iii. Ephemeral private key, and

iv. Ephemeral public key

d. If CCM is selected: the CCMNonce value

e. Other Information, OI

f. CAVS Tag

The IUT uses this information to validate the CAVS Tag value, returning a PASS or
FAIL. The IUT generates a response file containing the values above, plus the tag
generated by the IUT (IUTTag) and the Result. The format for the RESPONSE file is
specified in the SAMPLE file. There shall be a RESPONSE file for every SAMPLE file.

The KASVS verifies that the correct responses were returned by the IUT by comparing
the results in the RESPONSE file with those in the FAX file. If the results match, CAVS
records PASS for this test; otherwise, CAVS records FAIL.

6.3.2 Key Confirmation Supported

A separate file is generated for each supported combination of the key agreement scheme,
key agreement role, key confirmation role and key confirmation type. For example, if an
IUT supports the FFC key agreement scheme dhHybrid1, the key agreement role of
initiator, both key confirmation roles (provider and recipient), and both key confirmation
types (unilateral and bilateral), four files will be generated:

KASValidityTest_FFCHybrid1_KC_init_prov_ulat.req
KASValidityTest_FFCHybrid1_KC_init_prov_blat.req

KASValidityTest_FFCHybrid1_KC_init_rcpt_ulat.req
KASValidityTest_FFCHybrid1_KC_init_rcpt_blat.req

Within each REQUEST file, there is a section for each combination of parameter set and
SHA algorithm supported, i.e., FA-SHA1, FA-SHA224, FB-SHA224, FC-SHA512.
Within each combination of parameter set and SHA algorithm, the Validity Test provides
a section for each supported combination of MAC algorithm and key size, i.e., CCM
AES128, CCM AES256. In addition to this, if FFC is used, one set of domain parameter
values is included for use with these sets of data. If ECC is used, the curve name is
included in the file header.

In each MAC algorithm-key size section, the Validity Test generates 24 sets of data for
FFC implementations and 30 sets of data for ECC implementations. Within these sets of
data, the KASVS alters some of the values to introduce errors. This will determine
whether or not the IUT can detect these errors. In addition to verifying that the IUT can
detect errors in the key agreement and key confirmation processing, this test will also
provide assurance of the validity of the domain parameters if implemented by the IUT.

Depending on the key agreement scheme being tested, data supplied by the CAVS
includes:

3 A header containing:

a. Parameter Sets Supported

b. CAVSid

c. IUTid

d. Key Confirmation Types Supported

e. The parameters associated with each parameter set, including:

i. Curve selected (if ECC)

ii. SHA(s) supported

iii. MAC algorithm(s) supported

iv. If the MAC is CCM:

1. Key sizes supported

2. CCM Nonce length

3. CCM Tag length

v. If the MAC is CMAC:

1. Key sizes supported

2. AES/TDES Tag length

vi. If the MAC is HMAC:

1. SHA(s) supported

2. Key sizes supported

3. Tag length

4 A set of data containing a subset of the following data depending on the
scheme implemented:

a. CAVS values, including:

i. Static public key and/or

ii. Ephemeral public key (or nonce)

b. IUT values, including:

i. Static private key, and

ii. Static public key, and/or

iii. Ephemeral private key, and

iv. Ephemeral public key

c. If CCM is selected: the CCMNonce value

d. Other Information, OI

e. CAVS Tag

The IUT uses this information to validate the CAVS Tag value returning a PASS or
FAIL. The IUT generates a response file containing the values above, plus the tag
generated by the IUT (IUTTag) and the Result. The format for the RESPONSE file is
specified in the SAMPLE file. There shall be a RESPONSE file for every SAMPLE file.

The KASVS compares the contents of the RESPONSE file with the contents of the FAX
file. If the results match, CAVS records PASS for this test; otherwise, CAVS records
FAIL.

Appendix A References

[1] Recommendation for Pair-Wise Key Establishment Schemes Using Discrete
Logarithm Cryptography, Special Publication 800-56A, National Institute of
Standards and Technology, March 2006.

[2] Security Requirements for Cryptographic Modules, FIPS Publication 140-2,
National Institute of Standards and Technology, May 2001.

http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

	1 Introduction
	2 Scope
	3 Conformance
	4 Definitions and Abbreviations
	4.1 Definitions
	4.2 Abbreviations

	5 Design Philosophy of Key Agreement Schemes Validation System
	6 Key Agreement Scheme Validation System (KASVS) Test
	6.1 Configuration Information
	6.2 The Function Test
	6.2.1 Key Confirmation Not Supported
	6.2.2 Key Confirmation Supported

	6.3 The Validity Test
	6.3.1 Key Confirmation Not Supported
	6.3.2 Key Confirmation Supported

	Appendix A References

