Windows Server 2008 Winload OS Loader (winload.exe) Security Policy

For FIPS 140-2 Validation

INTRODUCTION

1.1 Cryptographic Boundary for WINLOAD.EXE

SECURITY POLICY

2.1 WINLOAD.EXE Security Policy

WINLOAD.EXE PORTS AND INTERFACES

3.1 Control Input Interface

3.2 Status Output Interface

3.3 Data Output Interface

3.4 Data Input Interface

SPECIFICATION OF ROLES

4.1 Maintenance Roles

4.2 Multiple Concurrent Interactive Operators

CRYPTOGRAPHIC KEY MANAGEMENT

WINLOAD.EXE SELF TESTS

ADDITIONAL DETAILS

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)
1 Introduction

The Windows OS Loader (WINLOAD.exe, versions 6.0.6001.18000, 6.0.6001.18606, 6.0.6001.22861, 6.0.6002.18005, 6.0.6002.18411, 6.0.6002.22497 and 6.0.6002.22596) is an operating system loader which loads the Windows Server 2008 operating system kernel (ntoskrnl.exe) and other boot start binary image files.

1.1 Cryptographic Boundary for WINLOAD.EXE

The Windows Server 2008 WINLOAD.EXE consists of a single executable (EXE). The cryptographic boundary for WINLOAD.EXE is defined as the enclosure of the computer system, on which WINLOAD.EXE is to be executed. The physical configuration of WINLOAD.EXE, as defined in FIPS-140-2, is multi-chip standalone.

2 Security Policy

2.1 WINLOAD.EXE Security Policy

WINLOAD.EXE operates under several rules that encapsulate its security policy.

- WINLOAD.EXE is supported on Windows Server 2008.
- WINLOAD.EXE operates in FIPS mode of operation only when used with the FIPS approved version of BOOTMGR (FIPS 140-2 Cert. #1004) operating in FIPS mode.
- Windows Server 2008 is an operating system supporting a “single user” mode where there is only one interactive user during a logon session.
- WINLOAD.EXE is only in its Approved mode of operation when Windows is booted normally, meaning Debug mode is disabled and Driver Signing enforcement is enabled.

The following diagram illustrates the master components of the WINLOAD.EXE module.
WINLOAD.EXE's main service is to load the Windows Server 2008 operating system kernel (ntoskrnl.exe) and other boot start binary image files, including CI.DLL, after it determines their integrity using its cryptographic algorithm implementations using the FIPS 140-2 approved algorithms mentioned below. After the verified kernel and boot start binary image files, including CI.DLL, are loaded, WINLOAD.EXE passes the execution control to the kernel and it terminates its own execution. In addition to this service, WINLOAD.EXE also provides status services. The Crypto office and User have access to the service WINLOAD supports.

- If the integrity of the kernel or CI.DLL is not verified, WINLOAD.EXE does not transfer the execution to the kernel.
- WINLOAD.EXE implements the following FIPS-140-2 Approved algorithms.
 - RSA PKCS#1 (v1.5) digital signature verification (Cert. #355)
 - SHS (Cert. #753)
 - AES (Certs. #739 and 760)

Cryptographic bypass is not supported by WINLOAD.EXE.

WINLOAD.EXE was tested using the following machine configurations:

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Operating System</th>
<th>Device Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>x86</td>
<td>Microsoft Windows Server 2008 (x86 version)</td>
<td>Dell SC440 (Intel Pentium D 1.8GHz)</td>
</tr>
<tr>
<td>x64</td>
<td>Microsoft Windows Server 2008 (x64 version)</td>
<td>Dell SC440 (Intel Pentium D 1.8 GHz)</td>
</tr>
<tr>
<td>IA64</td>
<td>Microsoft Windows Server 2008 (IA64 version)</td>
<td>HP zx2000 (Intel Itanium2 900 MHz)</td>
</tr>
</tbody>
</table>

In addition, Microsoft affirms that WINLOAD.EXE maintains compliance when running in the following configurations:
3 WINLOAD.EXE Ports and Interfaces

3.1 Control Input Interface
The WINLOAD.EXE Control Input Interface is the set of internal functions responsible for intercepting control input. These functions are:

- \text{BlBdInitialize} – Determines if a boot debugger is attached.
- \text{OslMain} – This function receives and parses the Boot Application parameters.
- \text{BlInitializeLibrary} – Also parses Boot Application parameters.
- \text{BlXmiRead} – Reads the operator selection from the Winload user interface.

3.2 Status Output Interface
The Status Output Interface is the \text{BlXmiWrite} function that is responsible for displaying the integrity verification errors to the screen. The Status Output Interface is also defined as the \text{BlLogData} responsible for writing the name of the corrupt driver to the bootlog.

3.3 Data Output Interface
The Data Output Interface is represented by the \text{OslArchTransferToKernel} function and the \text{AhCreateLoadOptionsString} function. \text{OslArchTransferToKernel} is responsible for transferring the execution from Winload to the initial execution point of the Server 2008 kernel. Data exits the module in the form of the initial instruction address of the Server 2008 kernel.

Data exits the module from the \text{AhCreateLoadOptionsString} function in the form of boot application parameters passed to the Server 2008 kernel.

3.4 Data Input Interface
The Data Input Interface is represented by the \text{BlFileReadEx} function and the \text{BlDeviceRead} function. \text{BlFileReadEx} is responsible for reading the binary data of unverified components from the computer hard drive. In addition, the FVEK key can also be entered into the module over the module’s data input interface. \text{BlDeviceRead} is responsible for reading data directly from devices.

4 Specification of Roles

WINLOAD.EXE supports both User and Cryptographic Officer roles (as defined in FIPS-140-2). Both roles have access to all services implemented in WINLOAD.EXE. The module does not implement any authentication services. Therefore, roles are assumed implicitly by booting the Windows Server 2008 operating system.

4.1 Maintenance Roles
Maintenance roles are not supported by WINLOAD.EXE.

4.2 Multiple Concurrent Interactive Operators
There is only one interactive operator during a logon session. Multiple concurrent interactive operators sharing a logon session are not supported.

5 Cryptographic Key Management

WINLOAD.EXE does not store any secret or private cryptographic keys across power-cycles. However, it does use two AES keys in support of the BitLocker feature. These keys are:

- Volume Master Key (VMK) - 256-bit AES key used to decrypt the Full Volume Encryption Key.
- Full Volume Encryption Key (FVEK) - 128 or 256-bit AES key that is used to decrypt data on disk sectors of the hard drive.

Both keys are stored in memory and are zeroized by power-cycling the OS.

WINLOAD.EXE also uses public keys stored on the computer hard disk to verify digital signatures using its implementation of RSA PKCS#1 (v1.5) verify. These public keys are available to both roles. Zeroization is performed by deleting the Winload module.

All the keys (mentioned above) are accessed only by the WINLOAD.EXE service that loads the Windows Server 2008 operating system kernel (ntoskrnl.exe) and other boot start binary image files, including CI.DLL. This service only has execute access to the keys mentioned above.

6 WINLOAD.EXE Self Tests

WINLOAD.EXE performs the following power-on (start up) self-tests.

- SHS (SHA-1) Known Answer Test
- RSA PKCS#1 (v1.5) verify with public key
- AES Known Answer Tests

7 Additional details