Table of Contents

1 Introduction...3
 1.1 Scope..3
 1.2 References..3
 1.3 Acronyms..3
2 Cryptographic Module Description ..4
 2.1 Overview...4
 2.2 FIPS 140 Approved Mode of Operation ..5
 2.3 Product Versions..5
3 Identification and Authentication Policy ...5
 3.1 Roles, Authentication Type, and Authentication Data...5
 3.1.1 Authentication in TCG..5
 3.1.2 Authentication Mechanism and Data..6
 3.1.3 Factory-installed PIN values..6
 3.1.4 Crypto Officer Roles..6
 3.1.5 User Roles..6
4 Access Control Policy...7
 4.1 Services..7
 4.2 Cryptographic Keys and CSPs..9
 4.3 Non-Critical Security Parameters ..13
5 Physical Security ...13
 5.1 Mechanisms..13
 5.2 Operator Requirements..14
6 Operational Environment..15
7 Security Rules...15
8 Mitigation of Other Attacks Policy..15
1 Introduction

1.1 Scope
This security policy applies to the FIPS 140-2 Cryptographic Module (CM) embedded in Seagate Secure®
Enterprise Self-Encrypting Drives (SED).

This document meets the requirements of the FIPS 140-2 standard (Appendix C) and Implementation Guidance
(section 14.1). It does not provide interface details needed to develop a compliant application.

This document is non-proprietary and may be reproduced in its original entirety.

1.2 References
1. FIPS PUB 140-2
2. Derived Test Requirements for FIPS PUB 140-2
3. Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program
6. TCG Storage Interface Interactions, Revision 1.0, January 27, 2009
7. [ANSI /INCITS T10/1731-D], Information technology - SCSI Primary Commands – 4 (SPC-4), Revision 15, 20 June 2008

1.3 Acronyms
AES Advanced Encryption Standard (FIPS 197)
CBC Cipher Block Chaining, an operational mode of AES
CM Cryptographic Module
CO Crypto-officer
CSP Critical Security Parameter
DEK Data encryption key
FC Fibre Channel
FIPS 140 FIPS 140-2
HDA Head and Disk Assembly
HDD Hard Disk Drive
IV Initialization Vector for encryption operation
LBA Logical Block Address
KAT Known Answer Test
mSID Manufactured SID, public drive-unique PIN, TCG term
POST Power on self-test
RNG Random Number Generator
SAS Serial Attached SCSI
SED Self-Encrypting Drive, Seagate HDD products that provide HW data encryption.
SID Security ID, PIN for Drive Owner CO role, TCG term
SoC System-on-a-Chip
SP Security Provider or Security Partition (TCG), also Security Policy (FIPS 140)
2 Cryptographic Module Description

2.1 Overview

The Seagate Secure Enterprise Self-Encrypting Drive FIPS 140 Module is embodied in Seagate Cheetah®, Constellation™ ES, Constellation™, and Savvio® SED model disk drives. These products meet the performance requirements of the most demanding mission critical applications. The cryptographic module (CM) provides a wide range of cryptographic services using FIPS approved algorithms. Services include hardware-based data encryption, instantaneous user data disposal with cryptographic erase, independently controlled and protected user data LBA bands, and authenticated FW download. The services are provided through an industry-standard TCG Enterprise SSC interface. The certified drive models, as represented on the certificate, are identical in terms of FIPS 140 relevant behavior (operators, services, authentication etc). The differences are in storage capacity, media RPM, host interface transport layer (FC and SAS), customer-unique firmware differences not involving security functionality, and physical exterior differences resulting in different tamper-evident seals.

The CM has multiple-chip embedded physical embodiments. The physical interface to the CM is a Fibre Channel or SAS connector which the host system uses to power and communicate with the drive as a storage system. The logical interface is the SCSI (7), TCG SWG (5), and Enterprise SSC (4) protocols. The primary function of the module is to provide data encryption, access control and cryptographic erase of the data stored on the hard drive media. The human operator of the drive product interfaces with the CM through a “host” application on a host system.

The CM functionality is implemented in the ASIC, SDRAM and firmware. Each of these components additionally provides non-security functionality that is logically isolated from the security functions. The drive media provides the non-volatile storage of the keys, CSPs and FW. This storage is in the “system area” of the media which is not logically accessible/ addressable by the host application.

The ASIC is an SoC which has the following major logical functions: host interface using an industry standard FC interface, a RW Channel interface to the HDA, interface to media motor controller, data encryption engines, and processing services which execute the firmware. An Approved Security Function, AES-128, is implemented in the data encryption engines.

During drive operation, the SDRAM hosts the firmware and the encrypted user data being transferred between the media and the ASIC.

The firmware is logically separated into four groups: SCSI interface, Security, Servo, and Read/Write. The FIPS 140 services are isolated in the Security section of the firmware.

Security functions fall into two categories. At-rest data is transferred to/from the drive’s media and encrypted/decrypted using SCSI write/read commands respectively. Other security operations, including authentication and management of cryptographic secrets, are accessed using SCSI SECURITY PROTOCOL IN / OUT commands. These commands are actually wrappers for another industry standard protocol: TCG Enterprise SSC. The security services provided by the CM through the TCG protocol correspond to the methods of the following SP Templates: Base, Admin, Locking, and Crypto. Some of the TCG-based services are specific to the Seagate implementation and are described in detail in product documentation.
2.2 FIPS 140 Approved Mode of Operation

The CM has one FIPS 140 “Approved mode of operation”. This mode provides both FIPS 140 services and other services which are not security related. The CM does not provide any security services that use non-Approved security functions. After the module is installed and configured per the Security Rules of this policy (see section 7, the drive is always in the Approved mode of operation except when a critical failure has been detected, causing a transition to the “Failed” state.)

The operator can determine the operational state by the vendor unique “Device Security Life Cycle State” field of Enterprise SSC “Level 0 Discovery” operation. If the state reported is any value other than 0x80 ("Use") then the device is not in the Approved mode of operation. Note that if a critical failure has occurred, including a FIPS 140 self-test failure, then the failure condition will persist across power-cycles (resets).

2.3 Product Versions

The following models and hardware versions (PNs) are validated with the following FW versions:

- FW Versions: 001 [1], 090 [2], 038 [3], 251 [4], 005 [5], 257 [6], 046 [7], EEF3 [8], EEF4 [9], ESF7 [10], KSF4 [11], EEF5 [12], FMF4 [13], NA02 [14], FMF5 [15], 5CE2 [16], 5CE3 [17], 5CE4 [18], 5CE5 [19], 5CE6 [20], 5CE7 [21], 5CE8 [22], 0004 [23], 0005 [24], 5CEC [25], 9A62 [26], NA03 [27], 9A63 [28], NA07 [29], 9A67 [30], NA08 [31], 5CE8 [32]
- Cheetah 15K.7, 3.5-Inch, 15K-RPM, FC Interface, 600/450/300 GB,
 - 9XJ004 [1,2], 9XH004 [1,2], 9XG004 [1,2]
- Cheetah 15K.7, 3.5-Inch, 15K-RPM, SAS Interface, 600/450/300 GB,
 - 9XJ066 [1,2,7,16,17,18,19,20,21,22,23,24,25], 9XH066 [1,2,7,16,17,18,19,20,21,22,23,24,25], 9XG066 [1,2,7,16,17,18,19,20,21,22,23,24,25], 9PX066 [3,4,6,8,9,10,12,14,26,27,28,29,30,31,32], 9PW066 [3,4,10,14,26,27,28,29,30,31,32], 9PV066 [3,14,26,27,28,29,30,31,32]
- Constellation ES, 3.5-Inch, 7.2K-RPM, SAS Interface, 2000/1000/500 GB,
 - 9XE248 [1,2], 9XE244 [1,2], 9XE242 [1,2], 9ST248 [4,6,11], 9ST244 [4,11]
- Constellation, 2.5-Inch, 7.2K-RPM, SAS Interface, 500 GB,
 - 9XF246 [1], 9SU246 [4]
- Savvio 10K.3, 2.5-Inch, 10K-RPM, SAS Interface, 300/146 GB,
 - 9XB066 [1], 9XA066 [1], 9LD066 [4]
- Savvio 15K.2, 2.5-Inch, 15K-RPM, SAS Interface, 146/73 GB,
 - 9WZ066 [1], 9WY066 [1], 9LD066 [4,6]
- Savvio 10K.4, 2.5-Inch, 10K-RPM, SAS Interface, 600/450GB,
 - 9XD066 [2,5,13,15], 9XC066 [2,5,13,15], 9PP066 [4,6,13,15]

3 Identification and Authentication Policy

3.1 Roles, Authentication Type, and Authentication Data

3.1.1 Authentication in TCG

Operator authentication is provided via the TCG Authenticate method used in a TCG Session to the appropriate TCG Security Provider (SP) as defined by Enterprise SSC [4]. The host application can have only a single session open at a time. During a session the application can invoke services for which the operator has access control. Note that a security rule of the CM is that the host must not authenticate to more than one operator in a session.

For some services the host application will authenticate to the “Anybody” authority which does not have a private credential. Therefore these operations are effectively unauthenticated services.
3.1.2 Authentication Mechanism and Data
Operator authentication with PINs is implemented by hashing the operator-input value and comparing to the stored hash of the assigned PIN. The PINs have retry attributes (which persist across resets, see TCG Core Spec [5]) that control the number of consecutive unsuccessful attempts before the module blocks subsequent authentication is blocked. The PINs can be up to 32 bytes; therefore the probability that a random attempt will succeed is $1/2^{256}$. Per the policy security rules, the minimum PIN length is 4 bytes to meet FIPS 140 authentication strength requirements for a single random attempt; i.e. $1/2^{32}$, which is less than 1/1,000,000. With a 4 byte PIN value and the PIN attribute $TryLimit$ set to default of 1024 the probability of multiple random attempts to succeed is $1024 \times (1/2^{32})$, which is less than 1/100,000.

3.1.3 Factory-installed PIN values
The initial value for all operator PINs is the same as the value for MSID (manufacturing Secure ID). This is a device-unique, 32-byte, public value. The value is printed on the drive label (identified as SID) and can be read by the host application at any time with a non-security operation. The security rules (7) for the CM require that the PIN values must be “personalized” to private values using the “Set PIN and retry attributes” service.

3.1.4 Crypto Officer Roles
3.1.4.1 Drive Owner
This CO role corresponds to SID (Secure ID) role as defined in Enterprise SSC [4]. This role is used to download a FW image. An operator is authenticated to this role with role-based authentication. Note: only the validated firmware can be loaded to the module. Otherwise, the module is not operating in FIPS mode.

3.1.4.2 EraseMaster
This CO role corresponds to same named role as defined in Enterprise SSC [4]. This role is used to enable/disable BandMasters, set PIN retry attributes, and erase user data region (LBA band). An operator is authenticated to this role with role-based authentication.

3.1.5 User Roles
3.1.5.1 BandMasters
This user role corresponds to the same named role as defined in Enterprise SSC [4]. The role is used to lock/unlock and configure a user data band (“LBA band”) for read/write access. A CM can be configured to support 1-16 user data bands, which are controlled by their respective BandMasters. By default, the BandMasters for the “Global_Range” (BandMaster0) and “Band 1” are enabled. BandMasters (and thus bands) are enabled/disabled using the EraseMaster role. An operator is authenticated to the BandMaster role with identity-based authentication. If a user data band is erased (EraseMaster service) then the BandMaster PIN is reset to MSID.
4 Access Control Policy

4.1 Services

The following table represents the FIPS 140 services in terms of the Approved Security Functions and operator access control. Note the following:

- Underlying security functions used by higher level algorithms are not represented (e.g. hashing as part of asymmetric key)
- Operator authentication is not represented in this table.
- Some security functions listed are used solely to protect / encrypt keys and CSPs.
- Service input and output details are defined by the TCG SSC and SCSI standards.
- Unauthenticated services (e.g. Show Status) do not provide access to private keys or CSPs.
- * Some services have indirect access control provided through enable / disable or lock / unlock services used by an authenticated operator; e.g. User data read / write.

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Description</th>
<th>Operator Access Control</th>
<th>Security Function</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set PIN and retry</td>
<td>Operator authentication data changed by the corresponding operator.</td>
<td>All</td>
<td>Hashing, Symmetric Key</td>
<td>TCG Set Method</td>
</tr>
<tr>
<td>BandMaster PIN retry attributes</td>
<td>BandMaster PIN retry attributes can only be changed by EraseMaster</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lock / Unlock FW</td>
<td>Enable / Disable FW Download Service</td>
<td>Drive Owner</td>
<td>None</td>
<td>TCG Set Method</td>
</tr>
<tr>
<td>Download Port</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lock FW Download Port on Reset</td>
<td>State of FW Download Service after reset.</td>
<td>Drive Owner</td>
<td>None</td>
<td>TCG Set Method</td>
</tr>
<tr>
<td>Firmware Download</td>
<td>Load complete firmware image. If the self-test of the code load passes then the device is reset and will run with the new code. Access control to this service is provided through Lock / Unlock FW Download Port.</td>
<td>None *</td>
<td>Asymmetric Key</td>
<td>SCSI Write Buffer</td>
</tr>
<tr>
<td>Enable / Disable BandMaster</td>
<td>Enable / Disable a BandMaster Authority. Allows a band to be configured (position and size) for use.</td>
<td>EraseMaster</td>
<td>None</td>
<td>TCG Set Method</td>
</tr>
<tr>
<td>Set Band position and size</td>
<td>Set the location and size of the LBA band.</td>
<td>BandMasters</td>
<td>None</td>
<td>TCG Set Method</td>
</tr>
<tr>
<td>Service Name</td>
<td>Description</td>
<td>Operator Access Control</td>
<td>Security Function</td>
<td>Command</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Lock / Unlock User Data Band</td>
<td>Block or allow read (decrypt) / write (encrypt) of user data in a band.</td>
<td>BandMasters</td>
<td>None</td>
<td>TCG Set Method</td>
</tr>
<tr>
<td></td>
<td>Locking also requires read/write locking to be enabled.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Data Read (decrypt) / Write (encrypt)</td>
<td>Encryption / decryption of user data to/from a LBA band.</td>
<td>None *</td>
<td>Symmetric Key</td>
<td>SCSI Read, Write, Pre-fetch, Reassign, Verify, Commands</td>
</tr>
<tr>
<td></td>
<td>Access control to this service is provided through Lock / unlock User Data Band.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptographic Erase</td>
<td>Erase user data in an LBA band by cryptographic means: changing the encryption key. BandMaster PIN is also reset.</td>
<td>EraseMaster</td>
<td>RNG, Symmetric Key</td>
<td>TCG Erase Method</td>
</tr>
<tr>
<td>Show Status</td>
<td>Reports “drive security life cycle state” (corresponds to FIPS 140 mode)</td>
<td>None</td>
<td>None</td>
<td>TCG Level 0 Discovery</td>
</tr>
<tr>
<td>Reset (run POSTs)</td>
<td>Runs POSTs and zeroizes keys & CSPs in RAM</td>
<td>None</td>
<td>None</td>
<td>Power on reset</td>
</tr>
</tbody>
</table>
4.2 Cryptographic Keys and CSPs
The following table defines the keys / CSPs and the operators / services which use them. It also describes the lifecycle of these data items in terms of generation, input / output, storage and zeroization. Note the following:
- The use of PIN CSPs for authentication is implied by the operator access control.
- All non-volatile storage of keys and CSPs is in the system area of the drive media to which there is no logical or physical access from outside of the module.
- Non-critical security parameters are not represented in this table.
- Read access of private values are internal only to the CM.
- There is no security-relevant audit feature.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Type (Pub / Priv, Key / CSP)</th>
<th>Operator Role</th>
<th>Services Used In</th>
<th>Access (R, W, Z)</th>
<th>Lifecycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Creation (Generation / Modification)</td>
</tr>
<tr>
<td>mSID</td>
<td>Mfg Secure ID</td>
<td>Public, 32 bytes</td>
<td>None</td>
<td>Device Identification (not a security function)</td>
<td>R</td>
<td>Mfg - Drive Unique</td>
</tr>
</tbody>
</table>
Table 2 – “Key Management”

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Type (Pub / Priv, Key / CSP)</th>
<th>Operator Role</th>
<th>Services Used In</th>
<th>Access (R,W,Z)</th>
<th>Lifecycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>Secure ID, Drive Owner auth. data</td>
<td>Private, CSP (PIN), 32 bytes</td>
<td>Drive Owner</td>
<td>Set PIN</td>
<td>W</td>
<td>Mfg - Drive Unique, Operator set by electronic input</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Storage Media (System Area)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA digest Entry: Electronic Input from Host Output: none</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None – logically protected</td>
</tr>
<tr>
<td>BandMaster IDs</td>
<td>User auth. data (per LBA Bands)</td>
<td>Private, CSP (PIN), 32 bytes</td>
<td>BandMaster</td>
<td>Set PIN</td>
<td>W</td>
<td>Mfg - Drive Unique, Host changed by electronic input</td>
</tr>
<tr>
<td>(N=16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Storage Media (System Area)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA digest Entry: Electronic Input from Host Output: none</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crypto Erase</td>
</tr>
<tr>
<td>EraseMaster</td>
<td></td>
<td></td>
<td>EraseMaster</td>
<td>Crypto Erase</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Type (Pub / Priv, Key / CSP)</td>
<td>Operator Role</td>
<td>Services Used In</td>
<td>Access (R,W,Z)</td>
<td>Lifecycle</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>EraseMaster ID</td>
<td>EraseMaster auth data</td>
<td>Private, CSP (PIN), 32 bytes</td>
<td>EraseMaster</td>
<td>Set PIN</td>
<td>W</td>
<td>Mfg - Drive Unique, Host changed by electronic input</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Media (System Area)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SHA digest</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Entry: Electronic Input from Host Output: none</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None - logically protected</td>
</tr>
<tr>
<td>FDE Keys (N=16)</td>
<td>DEKs (per LBA Band)</td>
<td>Private, AES-128 Keys</td>
<td>EraseMaster</td>
<td>Crypto Erase</td>
<td>Z</td>
<td>Mfg - using CMs RNG, RNG regeneration by zeroization</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Media (System Area)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Obfuscated (considered Plaintext for FIPS purposes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crypto Erase</td>
</tr>
<tr>
<td>ORG0-0 - ORG0-3 (N=4)</td>
<td>Public keys for code load self-test</td>
<td>RSA-2048, Public Keys</td>
<td>None, subject to band lock state</td>
<td>FW Download</td>
<td>R</td>
<td>Mfg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Media (System Area)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plaintext</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None - Public value</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Type (Pub / Priv, Key / CSP)</td>
<td>Operator Role</td>
<td>Services Used In</td>
<td>Access (R,W,Z)</td>
<td>Lifecycle</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Seed Key (XKEY)</td>
<td>seed key for RNG</td>
<td>Private, CSP, 64 bytes</td>
<td>No role</td>
<td>All RNG uses</td>
<td>R, W</td>
<td>Set to RNG state at each RNG usage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plaintext</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transient - Cleared after used</td>
</tr>
<tr>
<td>Seed</td>
<td>seed for RNG</td>
<td>Private, CSP, 520 bytes</td>
<td>No role</td>
<td>1st RNG use after reset</td>
<td>R</td>
<td>Entropy collected at power-up.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plaintext</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transient - Cleared after used</td>
</tr>
</tbody>
</table>
4.3 Non-Critical Security Parameters
This section lists the security-related information which do not compromise the security of the module.

- AES IV
 The CM HW AES IV (CBC mode) is derived from the LBA of the data on the media.
- PIN Retry Attributes – TryLimit and Persistence
 These parameters affect the handling of failed authentication attempts.

5 Physical Security

5.1 Mechanisms
The CM has the following physical security:

- Production-grade components with standard passivation,
- Opaque, tamper-evident, security label/seal (TEL) on the exposed (back) side of the PCBA which prevents electronic design visibility and protects physical access to the electronics by board removal,
- Tamper-evident security labels that prevent HDA cover removal for access or visibility to the media,
- Exterior of the drive is opaque,
- The tamper-evident seals/labels cannot be penetrated or removed and reapplied without tamper-evidence.
- The tamper-evident seals/labels cannot be easily replicated with a low attack time.

Representative photos of tamper-evident labels are shown below. There are minor variations between models.

3.5” Form Factor Drive TEL views

2.5” Form Factor Drive TEL views
5.2 Operator Requirements

The operator is required to inspect the CM periodically for one or more of the following tamper evidence:

- Checkerboard pattern on security seal/label or substrate,
- Text (including size, font, orientation) on security seal/label does not match original,
- Security seal/label over screws at indicated locations is missing or penetrated,
- Security seal/label cutouts do not match original,
- Penetration of the security seal/label, except for manufactured slits over screws, example below

Upon discovery of tamper evidence, the module should be removed from service.
6 Operational Environment

The FIPS 140-2 Section 4.6 Operational Environment requirements are not applicable because the CM operates in a “limited operational environment”. That is, while the module is in operation the FW cannot be changed and no code can be added or deleted. FW can be upgraded (replaced) with a signed FW download operation, to take effect upon the next power-up.

7 Security Rules

The following are the security rules for initialization and operation of the CM in a FIPS 140 compliant manner. Reference the appropriate sections of this document for details.

1. Users: At installation and periodically examine the physical security mechanisms for tamper evidence.
2. Users: At installation and periodically confirm drive is in FIPS approved mode with the Show Status service.
3. COs and Users: At installation, set PINs (i.e., SID, EraseMaster, BandMasters) to private values of at least 4 bytes length.
4. Drive Owner: At installation, disable the “Makers” authority.
5. Users: For all bands which will be used set the “LockEnabled” (for both Read and Write) to TRUE and do not change Band attribute “LockOnReset” from the default value of ”Power Cycle”. To set and query these attributes, perform the Set and Get methods on the Locking SP, for the locking table row representing the band, specifying the “ReadLockEnabled”, “WriteLockEnabled” and “LockOnReset” columns.
6. Users: At installation, the value of LockOnReset for FW Download must be set to “Power Cycle” and it must not be modified.
7. Users: At installation, the value of PortLocked for FW Download must be set to “TRUE”.
8. COs and Users: A TCG session must only be authenticated to a single operator role.

8 Mitigation of Other Attacks Policy

The CM does not make claims to mitigate against other attacks beyond the scope of FIPS 140-2.