SonicWALL NSA 3500 FIPS 140-2 Security Policy

Level 2

Version 1.9
March 1, 2010
Copyright Notice
Copyright © 2010 SonicWALL, Inc.
May be reproduced only in its original entirety (without revision).
Table of Contents

Copyright Notice... 2
Introduction... 4
Roles and Services .. 5
 Ethernet Interfaces... 9
 USB Interfaces... 9
 Console Interface... 9
 Status LED Interface ... 9
 Reset (Safe Mode) Button Interface .. 9
 Fan Interface .. 9
 GUI Administration Interface .. 9
 Power Interface .. 9
Security Rules ... 10
 Operational Environment ... 11
 FIPS-mode Operation ... 11
Definition of Critical Security Parameters ... 12
 Public Keys ... 12
 Cryptographic Boundary ... 15
 Mitigation of Attacks .. 15
Definitions and Glossary .. 16
Introduction

The SonicWALL NSA Series 3500 (hereafter referred to as “the cryptographic module”) is a multiple-chip standalone cryptographic module, HW P/N 101-500073-50, Rev. B; FW Version SonicOS v5.5.1. The overall FIPS validation level for the module is Security Level 2. The cryptographic module is an Internet security appliance, which provides stateful packet filtering firewall, deep packet inspection, virtual private network (VPN), and traffic shaping services.

Table 1 – Module Security Level Specification

<table>
<thead>
<tr>
<th>Security Requirements Section</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Module Specification</td>
<td>3</td>
</tr>
<tr>
<td>Cryptographic Module Ports Interfaces</td>
<td>2</td>
</tr>
<tr>
<td>Roles, Services, and Authentication</td>
<td>2</td>
</tr>
<tr>
<td>Finite State Machine</td>
<td>2</td>
</tr>
<tr>
<td>Physical Security</td>
<td>2</td>
</tr>
<tr>
<td>Operational Environment</td>
<td>N/A</td>
</tr>
<tr>
<td>Cryptographic Key Management</td>
<td>2</td>
</tr>
<tr>
<td>EMI/EMC</td>
<td>2</td>
</tr>
<tr>
<td>Self-Tests</td>
<td>2</td>
</tr>
<tr>
<td>Design Assurance</td>
<td>3</td>
</tr>
<tr>
<td>Mitigation of Other Attacks</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Roles and Services

The cryptographic module provides a User role and a Cryptographic Officer role via role-based authentication. The cryptographic module does not provide a Maintenance role. The User role is referred to as “Limited Administrator” (individual user) or “Limited Administrators” (user group) in the vendor documentation. The Cryptographic Officer role is referred to as “Administrator” (individual user) or “SonicWALL Administrators” (user group) in the vendor documentation. The “Administrator” user is a local account on the SonicWALL appliance, and the name used to login as this account may be configured by the Cryptographic Officer role; the default name for the “Administrator” account is “admin”. The group “SonicWALL Read-Only Admins” satisfies neither the Cryptographic Officer nor the User Role, and should not be used in FIPS mode operations.

The configuration settings required to enable FIPS mode are specified on page 11 of this document.

The User role is authenticated using the credentials of a member of the “Limited Administrators” user group. The User role can query status and non-critical configuration. The authentication mechanisms are discussed in the Security Rules Section.

User Role Services

- **Show Status** – Monitoring, pinging, traceroute, viewing logs.
- **Show Non-critical Configuration** – “Show” commands that enable the User to view VPN tunnel status and network configuration parameters.
- **Session Management** – Limited commands that allow the User to perform minimal VPN session management, such as clearing logs, and enabling some debugging events. This includes the following services:
 1. Monitor Network Status
 2. Log Off (themselves and guest users)
 3. Clear Log
 4. Export Log

The Cryptographic Officer role is authenticated using the credentials of the “Administrator” user account (also referred to as “Admin”), or the credentials of a member of the “SonicWALL Administrators” user group. The use of the latter allows for identification of specific users (i.e. by username) upon whom is imparted full administrative privileges through their assigned membership to the “SonicWALL Administrators” group by the Admin user, or other user with full administrative privileges. The Cryptographic Officer role can show all status and configure cryptographic algorithms, cryptographic keys, certificates, and servers used for VPN tunnels. The Crypto Officer sets the rules by which the module encrypts and decrypts data passed through the VPN tunnels. The authentication mechanisms are discussed in the Security Rules Section.
Crypto Officer Services

- Show Status - Monitoring, pinging, traceroute, viewing logs.
- Configuration Settings – System configuration, network configuration, User settings, Hardware settings, Log settings, and Security services including initiating encryption, decryption, random number generation, key management, and VPN tunnels. This includes the following services:
 1. Configure VPN Settings
 2. Set Encryption
 3. Set Content Filter
 4. Import/Export Certificates
 5. Upload Firmware
 6. Configure DNS Settings
 7. (Related to wireless activity) Configure Access Rules
- Session Management – Management access for VPN session management, such as setting and clearing logs, and enabling debugging events and traffic management. This includes the following services:
 1. Import/Export Certificates
 2. Clear Log
 3. Filter Log
 4. Export Log
 5. Setup DHCP Server
 6. Generate Log Reports
- Key Zeroization – Zeroizing cryptographic keys

The cryptographic module also supports unauthenticated services, which do not disclose, modify, or substitute CSP, use approved security functions, or otherwise affect the security of the cryptographic module.

Unauthenticated services

- Self-test Initiation – power cycle
- Firmware removal – reset switch
- Status – console and LED

Separation of roles is enforced by requiring users to authenticate using a username and password. The User role requires the use of a username and password of a user entity belonging to the “Limited Administrators” group. The Cryptographic Officer role requires the use of the “Administrator” username and password, or the username and password of a user entity belonging to the “SonicWALL Administrators” group.

Multiple users may be logged in simultaneously, but only a single user-session can have full configuration privileges at any time, based upon the prioritized preemption model described below:

1. The Admin user has the highest priority and can preempt any users.
2. A user that is a member of the “SonicWALL Administrators” user group can preempt any users except for the Admin.

3. A user that is a member of the “Limited Administrators” user group can only preempt other members of the “Limited Administrators” group.

Session preemption may be handled in one of two ways, configurable from the System > Administration page, under the “On admin preemption” setting:

1. “Drop to non-config mode” – the preempting user will have three choices:
 a. “Continue” – this action will drop the existing administrative session to a “non-config mode”, and will impart full administrative privileges to the preempting user.
 b. “Non-Config Mode” – this action will keep the existing administrative session intact, and will login the preempting user in a “non-config mode”
 c. “Cancel” – this action will cancel the login, and will keep the existing administrative session intact.

2. “Log-out” – the preempting user will have two choices:
 a. “Continue” – this action will log out the existing administrative session, and will impart full administrative privileges to the preempting user.
 b. “Cancel” – this action will cancel the login, and will keep the existing administrative session intact.

“Non-config mode” administrative sessions will have no privileges to cryptographic functions making them functionally equivalent to User role sessions. The ability to enter “Non-config mode” may be disabled altogether from the System > Administration page, under the “On admin preemption” setting by selecting “Log out” as the desired action.

The cryptographic module provides several security services including VPN and IPsec. The cryptographic module provides the Cryptographic Officer role the ability to configure VPN tunnels and network settings.

When configured to operate in FIPS mode, the cryptographic module provides only FIPS 140-2 compliant services. Whether or not the device is in FIPS mode is indicated on the System/Settings page.

The module supports the following FIPS-approved cryptographic algorithms:

- AES (128, 192, and 256-bit) in CBC mode (Cert. #1215)
- Triple-DES in CBC mode (Cert. #875)
- SHA-1 (Cert. #1118)
- DSA (Cert. #401)
- FIPS 186-2 Appendix 3.1 RNG (Cert. #673)
- RSA (Cert. #585)
- HMAC-SHA-1 (Cert. #708)
The Cryptographic Module also provides the following non FIPS-approved algorithms:

- MD5 within MSCHAP
- RC4 within L2TP (not used in FIPS mode)
- Diffie-Hellman within IKE (key agreement; key establishment methodology provides 80 or 112 bits of encryption strength)
- NDRNG (used to seed the RNG)
Interfaces

Ethernet Interfaces
The cryptographic module provides 6 Ethernet interfaces. Each Ethernet interface is 10/100/1000 auto-sensing with an RJ-45 / SX/SC multimode fiber connector. The Ethernet interfaces are labeled X#..., LAN/WAN/…. Each Ethernet interface includes LINK and ACT LED’s.

The Ethernet interfaces provide data input and data output.

USB Interfaces
The cryptographic module provides 2 USB interfaces. The USB ports are not currently supported.

Console Interface
The cryptographic module provides a console interface. The console interface is a DB-9/RJ-45 serial connector. The serial port provides a serial console. The serial console can be used for basic administration functions.

The console interface provides control input and status output.

Status LED Interface
The cryptographic module provides three status LEDs. The Power LED indicates the module is receiving power. The Test LED indicates the module is initializing and performing self-tests. The Alarm LED indicates an alarm condition.

The Status LED interface provides status output.

Reset (Safe Mode) Button Interface
This interface is used to manually reset the appliance to Safe Mode.

Fan Interface
The cryptographic module also provides two fan interfaces (dual removable fan components).

GUI Administration Interface
The cryptographic module provides a GUI administration interface.

The GUI administration interface provides control input and status output.

Power Interface
The cryptographic module provides one AC power interface.
Security Rules

The cryptographic module has the following security rules:

- The cryptographic module provides two distinct operator roles: User role and Cryptographic Officer role.
- The cryptographic module provides role-based authentication relying upon username and passwords.
- The Administrator, Limited Administrator, and User passwords must be at least eight characters long each, and the password character set is ASCII characters 32-127, which is 96 ASCII characters. This makes the probability 1 in 96^8, which is less than one in 1,000,000 that a random attempt will succeed or a false acceptance will occur for each attempt. After three successive unsuccessful password verification tries, the cryptographic module pauses for one second before additional password entry attempts can be reinitiated. This makes the probability approximately 180/96^8, which is less than one in 100,000 that a random attempt will succeed or a false acceptance will occur in a one-minute period.
- The following cryptographic algorithm self-tests are performed by the cryptographic module at power-up:
 - Software integrity test (using 16-bit CRC EDC)
 - Triple-DES-CBC Known Answer Test
 - AES-CBC Known Answer Test
 - SHA-1 Known Answer Test
 - HMAC-SHA-1 Known Answer Test
 - DSA Signature Verification Pairwise Consistency Test
 - RSA Signing and Verification Pairwise Consistency Test
 - RNG KAT
 - DH Pairwise Consistency Test

 The module supports the following conditional self-tests:
 - RNG and NDRNG Continuous Random Number Generator Test
 - RSA Pairwise Consistency Test
 - Firmware Load Test

- When a new firmware image is loaded, the cryptographic module verifies the 1024-bit DSA signed SHA-1 hash of the image. If this verification fails, the firmware image loading is aborted.

If any of the tests described above fail, the cryptographic module enters the error state. No security services are provided in the error state. Upon successful completion of the Diagnostic Phase, the cryptographic module enters the Command and Traffic Processing State. Security services are only provided in the Command and Traffic Processing State. No VPN tunnels are started until all tests are successfully completed. This effectively inhibits the data output interface.
When all tests are completed successfully, the Test LED is turned off.

Operational Environment

Area 6 of the FIPS 140-2 requirements does not apply to this module as the module only allows the loading of firmware through the firmware load test, which ensures the image is appropriately DSA signed by SonicWALL.

FIPS-mode Operation

The module is not configured to operate in FIPS-mode by default. The following steps must be taken to enable FIPS-mode operation.

- Set Administrator and User password to at least eight characters.
- Do not enable the LDAP on the Users/Settings page.
- Use IKE with 3rd Party Certificates for IPsec Keying Mode when creating VPN tunnels.
- When creating VPN tunnels, ensure ESP is enabled for IPSec.
- Use FIPS-approved encryption and authentication algorithms when creating VPN tunnels.
- Use Group 2 or Group 5 for IKE Phase 1 DH Group and Use SHA1 for Authentication
- Do not enable HTTPS management or SSH management
- Do not enable Advanced Routing Services.
- Do not enable Group VPN management
- Enable FIPS mode from the System/Settings page by checking “FIPS Mode” checkbox.

The FIPS mode configuration can be determined by an operator, by checking the state of the “FIPS Mode” checkbox on the System/Settings page and verification of the preceding steps. If the “FIPS Mode” checkbox is checked, the module is running in the FIPS Approved mode of operation.
Definition of Critical Security Parameters

The following are the Critical Security Parameters (CSP) contained in the cryptographic module:

- IKE Shared Secret – Shared secret used during IKE Phase 1
- SKEYID – Secret value used to derive other IKE secrets
- SKEYID_d – Secret value used to derive keys for security associations
- SKEYID_a – Secret value used to derive keys to authenticate IKE messages
- SKEYID_e – Secret value used to derive keys to encrypt IKE messages
- IKE Session Encryption Key – AES 128, 192, 256, or TDES key used to encrypt data
- IKE Session Authentication Key - HMAC key used for data authentication
- IKE RSA Private Key – RSA 1024, 1536 or 2048 bit RSA key used to authenticate the module to a peer during IKE
- IPsec Shared Secret – Used to derive IPsec encryption and authentication keys
- IPsec Session Encryption Key – AES 128, 192, 256, or TDES key used to encrypt data
- IPsec Session Authentication Key – HMAC key used for data authentication for IPsec traffic
- DH Private Key – Used within IKE key agreement
- DRNG Seed Key – Used to seed the Approved NDRNG
- Passwords – Authentication data

Public Keys

- Root CA Public Key – Used for verifying a chain of trust for receiving certificates
- Peer IKE RSA Public Key – RSA 1024, 1536 or 2048 bit key for verifying digital signatures from a peer device
- IKE RSA Public Key – RSA 1024, 1536 or 2048 bit key for verifying digital signatures created by the module
- DSA Firmware Verification Key – 1024 bit DSA key used for verifying firmware during firmware load
- DH Public Key – Used within IKE key agreement
- DH Peer Public Key – Used within IKE key agreement
Definition of CSP Modes of Access

Table 2 describes the methods of accessing the individual CSPs.

Import/upload: The CSP is entered into the module from an external source.

Generate/Execute: The CSP is internally generated using the FIPS 186-2 RNG and the module uses the CSP.

Removal/Deletion: The CSP is actively destroyed.

Table 2 – Roles, Services, CSP Access Matrix

<table>
<thead>
<tr>
<th>Role</th>
<th>Service</th>
<th>Cryptographic Keys and CSPs Access Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.O.</td>
<td>User</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Show Status N/A</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Show Non-critical Configuration N/A</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Monitor Network Status N/A</td>
</tr>
<tr>
<td>X</td>
<td>Log Off</td>
<td>N/A</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Clear Log N/A</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Export Log N/A</td>
</tr>
<tr>
<td>X</td>
<td>Import/Export Certificates</td>
<td>N/A</td>
</tr>
<tr>
<td>X</td>
<td>Filter Log</td>
<td>N/A</td>
</tr>
<tr>
<td>X</td>
<td>Setup DHCP Server</td>
<td>Generate/Execute – DRNG Seed Key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generate/Execute – DH Private Key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generate/Execute – SKEYID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generate/Execute – SKEYID_d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generate/Execute – SKEYID_a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generate/Execute – SKEYID_e</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generate/Execute – IKE RSA Private Key</td>
</tr>
<tr>
<td>X</td>
<td>Generate Log Reports</td>
<td>N/A</td>
</tr>
<tr>
<td>X</td>
<td>Configure VPN Settings</td>
<td>Generate/Execute – DRNG Seed Key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generate/Execute – DH Private Key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generate/Execute – SKEYID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generate/Execute – SKEYID_d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Generate/Execute – SKEYID_a</td>
</tr>
<tr>
<td>Role</td>
<td>Service</td>
<td>Cryptographic Keys and CSPs Access Operation</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| C.O. | User | Generate/Execute – SKEYID_e
Generate/Execute – IKE RSA Private Key
Generate/Execute – IKE Shared Secret
Generate/Execute – IKE Session Authentication Key
Generate/Execute – IPsec Shared Secret
Generate/Execute – IPsec Session Authentication Key |
| X | Set Encryption | Generate/Execute – IKE Session Encryption Key
Generate/Execute – IPsec Session Encryption Key |
| X | Set Content Filter| N/A |
| X | Upload Firmware | N/A |
| X | Configure DNS Settings | N/A |
| X | Configure Access Rules | N/A |
| X | Key Zeroization | Remove – DRNG Seed Key
Remove – Passwords
Remove – IKE Shared Secret
Remove – SKEYID
Remove – SKEYID_d
Remove – SKEYID_a
Remove – SKEYID_e
Remove – IKE Session Encryption Key
Remove – IKE Session Authentication Key
Remove – IKE RSA Private Key
Remove – IPsec Shared Secret
Remove – IPsec Session Encryption Key
Remove – IPsec Session Authentication Key
Remove – DH Private Key |
Cryptographic Boundary

The cryptographic boundary includes the entire device.

The chassis is sealed with two tamper-evident seals. The physical security of the module is intact if there is no evidence of tampering with the seals. The locations of the tamper-evident seals are indicated by the red arrows in Figure 1 below:

![Figure 1: Tamper Evident Seals](image1)

![Figure 2: NSA 3500 Rear](image2)

Mitigation of Attacks

Area 11 of the FIPS 140-2 requirements do not apply to this module as it has not been designed to mitigate any specific attacks outside the scope of FIPS 140-2 requirements.

![Figure 3: NSA 3500 Front](image3)
Definitions and Glossary

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>Advanced Encryption Standard</td>
</tr>
<tr>
<td>FIPS</td>
<td>Federal Information Processing Standard</td>
</tr>
<tr>
<td>CSP</td>
<td>Critical Security Parameter</td>
</tr>
<tr>
<td>VPN</td>
<td>Virtual Private Network</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic Compatibility</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference</td>
</tr>
<tr>
<td>Triple-DES</td>
<td>Triple Data Encryption Standard</td>
</tr>
<tr>
<td>DES</td>
<td>Data Encryption Standard</td>
</tr>
<tr>
<td>CBC</td>
<td>Cipher Block Chaining</td>
</tr>
<tr>
<td>DSA</td>
<td>Digital Signature Algorithm</td>
</tr>
<tr>
<td>DRNG</td>
<td>Deterministic Random Number Generator</td>
</tr>
<tr>
<td>RSA</td>
<td>Rivest, Shamir, Adleman asymmetric algorithm</td>
</tr>
<tr>
<td>IKE</td>
<td>Internet Key Exchange</td>
</tr>
<tr>
<td>RADIUS</td>
<td>Remote Authentication Dial-In User Service</td>
</tr>
<tr>
<td>IPSec</td>
<td>Internet Protocol Security</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>DH</td>
<td>Diffie-Hellman</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>SHA</td>
<td>Secure Hash Algorithm</td>
</tr>
<tr>
<td>HMAC</td>
<td>Hashed Message Authentication Code</td>
</tr>
</tbody>
</table>