Media Pack (MP) Family
Security Policy
Document Version 1.5

AudioCodes

April 7, 2010
TABLE OF CONTENTS

1. MODULE OVERVIEW .. 3

2. SECURITY LEVEL .. 4

3. MODES OF OPERATION ... 4

4. PORTS AND INTERFACES ... 12

5. IDENTIFICATION AND AUTHENTICATION POLICY ... 14

6. ACCESS CONTROL POLICY .. 16

 ROLES AND SERVICES ... 16

 UNAUTHENTICATED SERVICES: ... 17

 DEFINITION OF CRITICAL SECURITY PARAMETERS (CSPs) ... 17

 DEFINITION OF CSPs MODES OF ACCESS ... 18

7. OPERATIONAL ENVIRONMENT ... 21

8. SELF TESTS .. 21

9. PHYSICAL SECURITY POLICY ... 21

 PHYSICAL SECURITY MECHANISMS ... 21

10. EMI/EMC ... 22

11. MITIGATION OF OTHER ATTACKS POLICY ... 22
1. Module Overview

The Media Pack (MP) family consists of the MP-112 and MP-124, which are multi-chip standalone cryptographic modules whose primary purpose is to provide VoIP services. The cryptographic boundary is defined as the perimeter of each enclosure. The diagram below illustrates the cryptographic boundary.

The MP-112 is a VoIP gateway for two telephones; the MP-124 provides the same function to 24 telephones. Other than that, the services provided by the two modules are identical.

![Image of the Cryptographic Module]

The following table lists the module version numbers:

<table>
<thead>
<tr>
<th>Product</th>
<th>Hardware part number</th>
<th>Firmware version</th>
</tr>
</thead>
<tbody>
<tr>
<td>MediaPack 112</td>
<td>GGWV00281</td>
<td>5.60A.025.001</td>
</tr>
<tr>
<td>MediaPack 124</td>
<td>GGWU000022</td>
<td>5.60A.025.001</td>
</tr>
</tbody>
</table>
2. Security Level

The cryptographic module meets the overall requirements applicable to Level 1 security of FIPS 140-2.

Table 1 - Module Security Level Specification

<table>
<thead>
<tr>
<th>Security Requirements Section</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Module Specification</td>
<td>1</td>
</tr>
<tr>
<td>Module Ports and Interfaces</td>
<td>1</td>
</tr>
<tr>
<td>Roles, Services and Authentication</td>
<td>2</td>
</tr>
<tr>
<td>Finite State Model</td>
<td>1</td>
</tr>
<tr>
<td>Physical Security</td>
<td>1</td>
</tr>
<tr>
<td>Operational Environment</td>
<td>N/A</td>
</tr>
<tr>
<td>Cryptographic Key Management</td>
<td>1</td>
</tr>
<tr>
<td>EMI/EMC</td>
<td>1</td>
</tr>
<tr>
<td>Self-Tests</td>
<td>1</td>
</tr>
<tr>
<td>Design Assurance</td>
<td>3</td>
</tr>
<tr>
<td>Mitigation of Other Attacks</td>
<td>N/A</td>
</tr>
</tbody>
</table>

3. Modes of Operation

Approved mode of operation

The following table lists the relevant configuration parameters and the values permitted for FIPS mode. To check if the device is operating in FIPS mode, verify the setting of all the parameters below using one of the available device management interfaces, e.g. SSH.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Permitted values</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS_FIPS140_Mode</td>
<td>1</td>
<td>Enables self-tests and Approved function implementation</td>
</tr>
<tr>
<td>TLSVersion</td>
<td>1</td>
<td>Disables SSL 2.0 and SSL 3.0</td>
</tr>
<tr>
<td>HTTPSRequireClientCertificate</td>
<td>1</td>
<td>Enables mutual TLS authentication in HTTPS</td>
</tr>
<tr>
<td>MutualAuthenticationMode</td>
<td>1</td>
<td>Mutual TLS authentication in SIP</td>
</tr>
<tr>
<td>SIPSRequireClientCertificate</td>
<td>1</td>
<td>Mutual TLS authentication in SIP</td>
</tr>
<tr>
<td>VerifyServerCertificate</td>
<td>1</td>
<td>Mutual TLS authentication in SIP</td>
</tr>
<tr>
<td>AUPDVerifyCertificates</td>
<td>1</td>
<td>Enables peer certificate verification for the Automatic Update Facility</td>
</tr>
<tr>
<td>TelnetServerVerifyPeerCertificate</td>
<td>1</td>
<td>Mutual TLS authentication in Telnet</td>
</tr>
<tr>
<td>HTTPSCipherString</td>
<td>'EDH-RSA-DES-CBC3-SHA:DHE-RSA-AES128-SHA'</td>
<td>Selects DH ciphersuites for TLS</td>
</tr>
<tr>
<td>TelnetServerEnable</td>
<td>0 or 2</td>
<td>Selects TLS tunneling of telnet data</td>
</tr>
<tr>
<td>HTTPSOnly</td>
<td>1</td>
<td>Disables plain-text HTTP</td>
</tr>
<tr>
<td>EnableSIPS</td>
<td>1</td>
<td>Enables SIP/TLS tunneling</td>
</tr>
<tr>
<td>SIPTransportType</td>
<td>2</td>
<td>Selects TLS as SIP transport</td>
</tr>
<tr>
<td>BOOTPDisable</td>
<td>1</td>
<td>Disables BOOTP/TFTP at startup</td>
</tr>
<tr>
<td>SSHRequirePublicKey</td>
<td>1</td>
<td>Force usage of RSA keys in SSH</td>
</tr>
<tr>
<td>SSHAdminKey</td>
<td>Non-blank key</td>
<td>RSA administrator key for SSH</td>
</tr>
<tr>
<td>DenyAuthenticationTimer</td>
<td>20 or higher</td>
<td>Limits failed authentication attempts to three per minute</td>
</tr>
<tr>
<td>EnableTPNCPSecurity</td>
<td>1</td>
<td>Disables TPNCP control</td>
</tr>
<tr>
<td>IniFileURL and CmpFileURL</td>
<td>https://... or ftps://...</td>
<td>Selects transport for the Automatic Update Facility</td>
</tr>
<tr>
<td>ActivityListToLog</td>
<td>afl, ard, spc, swu, dr, fb, naa (all except "pvc")</td>
<td>Selects which events are reported to Syslog. Parameter Value Change (PVC) logging is prohibited.</td>
</tr>
<tr>
<td>DisableRS232</td>
<td>1</td>
<td>Disables the serial console port</td>
</tr>
<tr>
<td>WebAuthMode</td>
<td>0</td>
<td>Selects HTTP basic authentication</td>
</tr>
<tr>
<td>SnmpTrustedMgr_0</td>
<td>IP address of EMS</td>
<td>Defines the IP address of the allowed EMS. This setting must not be zero.</td>
</tr>
</tbody>
</table>
In FIPS mode, the cryptographic module will support the following Approved algorithms:

- RSA with 1024 or 2048 bit keys for digital signature generation and verification
 - Algorithm certificate number: 346, 443
- AES with 128, 192, or 256 bit keys
 - Algorithm certificate numbers: 740, 741, 912
- Triple-DES with 128 or 192 bit keys
 - Algorithm certificate numbers: 657, 737
- HMAC SHA-1
 - Algorithm certificate numbers: 402, 403, 508
- SHA-1
 - Algorithm certificate numbers: 754, 755, 899
- DRNG - FIPS 186-2
 - Algorithm certificate number: 430

The module also supports the following non-Approved algorithms:

- Diffie Hellman Group 2, with 80-bit key strength
- HMAC-MD5 within RADIUS and TLS
- DES
- RC4
- MD5

An NDRNG is is used to provide seed data to the FIPS 186-2 RNG, the NDRNG is based on the sampling of voltage and current generated by the internal power supply. Thermal noise - which occurs naturally in the module - is the source of uncertainty which drives the NDRNG.

The following security rules must be followed to maintain the Approved mode of operation. Detailed instructions are provided in the Operator Guidance document:

- TLS must always be used instead of SSL 2.0, 3.0 and only with DH cipher suites
- Mutual authentication is required for TLS
- MD5, HMAC MD5 are not to be used unless mandated by an Acceptable Key Establishment Protocol
- The module is shipped with a self-generated RSA key-pair and self-signed certificate; this must be replaced by a CA-signed key pair, prior to usage
• Telnet must only be used within a TLS tunnel
• HTTPS must always be used instead of HTTP
• A TLS session must be enabled for SIP
• IPsec must always be enabled for SNMP
• Keys must only be imported through a dedicated physical link or a secure tunnel
• Passwords shall be configured to be at least four characters
• The RADIUS secret shall be configured to be at least four characters
• The module shall be configured to restrict the number of failed authentication attempts to three per minute
• The serial port should be disabled

Note: The module supports SSHv2 for crypto officer access, and does not support SSHv1.

Note: SNMPv3 does not provide FIPS 140-2 Approved security.

3.1 Initial Device Set-up

The following instructions are a step-by-step guide to setting up a device in FIPS 140 Approved mode. The device is assumed to be in factory-default condition, and the environment secure.

a. Connect the device to a management PC using an Ethernet cross-over cable, establishing a private network.

b. Power up the device by connecting the electric cabling. TPM-6300 modules should be properly seated in a Mediant-type chassis. Consult the product's installation manual for related details.

c. Obtain the device’s IP address using a network monitor; the device will issue a GARP as part of the start-up process. Record this IP address for later use, and modify your PC’s IP configuration to match the device’s subnet (e.g. if the device has IP address 10.10.1.10, set your IP address to 10.10.1.20).

d. Wait for the device LEDs to turn green, indicating firmware start-up has completed.

e. Using a web browser, navigate to http://xx.xx.xx.xx where xx.xx.xx.xx denotes the device’s
IP address recorded above. The default username and password are Admin (case-sensitive). Verify that the web interface functions correctly.

f. If your network provides PKI services, obtain the appropriate data from your security administrator and skip to the next bullet; otherwise follow the instructions below to establish a minimal PKI configuration (intended to serve as an example only; installation of the OpenSSL toolkit for Windows is assumed).

Create a text file called ca.cnf and copy the following text into it:

```
[ req ]
default_bits    = 1024
distinguished_name = req_distinguished_name
prompt          = no
output_password = password
[ req_distinguished_name ]
C               = US
ST              = New York
L               = Poughkeepsie
O               = Corporate
CN              = Local CA
eemailAddress   = test@corp.com
[ ca ]
default_ca      = CA_default    # The default ca section
[ CA_default ]
dir             = ./testCA       # Where everything is kept
certs          = $dir/certs      # Where the issued certs are kept
new_certs_dir = $dir/newcerts    # default place for new certs.
database       = $dir/index.txt  # database index file.
certificate    = $dir/cacert.pem # The CA certificate
serial         = $dir/serial     # The current serial number
private_key    = $dir/private/cakey.pem# The private key
RANDFILE       = $dir/private/.rand # private random number file
default_md     = sha1           # which md to use.
policy         = policy_anything
[ policy_anything ]
countryName    = optional
stateOrProvinceName = optional
localityName   = optional
organizationName = optional
organizationalUnitName = optional
commonName     = supplied
eemailAddress  = optional
```
Issue these commands at your PC's prompt:

```
mkdir testCA
mkdir testCA\private
mkdir testCA\certs
mkdir testCA\newcerts
mkdir testCA\crl
openssl req -config ca.cnf -x509 -newkey rsa:1024 -keyout testCA\private\cakey.pem -out testCA\cacert.pem -batch
copy /y testCA\cacert.pem root.pem
echo 01 > testCA\serial
copy /y nul testCA\index.txt
openssl req -config ca.cnf -new -keyout dev_pkey.pem -out server.csr -nodes -batch
openssl ca -config ca.cnf -in server.csr -subj /CN=acDevice -days 3650 -notext -passin pass:password -out dev_cert.pem -batch
openssl req -config ca.cnf -new -keyout pc_pkey.pem -out server.csr -nodes -batch
openssl ca -config ca.cnf -in server.csr -subj /CN=acManager -days 3650 -notext -passin pass:password -out pc_cert.pem -batch
del server.csr
openssl pkcs12 -export -inkey pc_pkey.pem -in pc_cert.pem -out pc_key.pfx -passout pass:1234
```

g. On the device's web interface, locate the navigation tree on the left pane and click "Full". Click "Security Settings" and select the "Certificates" page.

h. Upload the file dev_cert.pem as the device's server certificate.
 Upload the file root.pem as the trusted root certificate.
 Upload the file dev_pkey.pem as the device's private key.
 Save the configuration to flash using the "Burn" button.

i. Import the generated certificates into your browser (e.g. in Firefox, click Tools - Advanced - Encryption - View Certificates); add root.pem as a trusted authority, and import pc_key.pfx as a personal certificate (in the example above, the import password is 1234).

 Notes:
 1. Make sure that SSL 2.0/3.0 usage is disabled in your browser.
 2. Make sure that your browser selects your personal certificate automatically, when the server requests it.

j. Delete the files dev_pkey.pem, pc_pkey.pem and pc_key.pfx from your PC.
k. Add the module’s IP and host name to your PC’s **hosts** file, commonly

```
C:\WINDOWS\system32\drivers\etc\hosts , e.g.:
```

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Host Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>localhost</td>
</tr>
<tr>
<td>10.10.1.10</td>
<td>acDevice</td>
</tr>
</tbody>
</table>

l. Using an SSH key-generation utility such as **PuTTYGen**, create an RSA 1024-bit key for SSH authentication (see the product reference manual for further instructions). Record the generated public key.

m. Create a text file called **device.ini** with the desired configuration, e.g.:

```
; Sample configuration
TLS_FIPS140_Mode = 1
TLSVersion = 1
HTTPSRequireClientCertificate = 1
MutualAuthenticationMode = 1
SIPSRequireClientCertificate = 1
VerifyServerCertificate = 1
AUPDVerifyCertificates = 1
TelnetServerVerifyPeerCertificate = 1
HTTPSCipherString = 'EDH-RSA-DES-CBC3-SHA:DHE-RSA-AES128-SHA'
HTTPSOnly = 1
EnableSIPS = 1
SIPTransportType = 2
BOOTPDisable = 1
SSHServerEnable = 1
SSHRequirePublicKey = 1
SSHAdminKey = 'AAAAB3NzaC1yc2EAAAABJQAAAIEAorGT9I1XQC......'
DenyAuthenticationTimer = 20
EnableTPNCPSecurity = 1
ActivityListToLog = ''
DisableRS232 = 1
WebAuthMode = 0
SnmpTrustedMgr_0 = 10.10.1.20
NTPServerIp = 10.10.1.20
NTPServerUTCOffset = 10800
```

Notes:

1. The value of **SSHAdminKey** is the RSA key generated in the previous step.

2. The value of **NTPServerIp** is the IP address of your PC. Note that the module cannot function without proper NTP configuration; if you use Microsoft Windows, NTP services would be provided automatically.

3. The value of **NTPServerUTCOffset** is the time zone, in seconds; in this example, 10800 denotes a time zone of GMT+3.

n. Upload the file **device.ini** to the device, using the "Device actions" menu. Make sure to restart the device after loading the configuration. Verify that the new configuration is functional.
Note: Navigate your browser to https://acDevice in order to access the device through the configured host name. Microsoft Internet Explorer cannot be used to connect to the device; Use an alternative browser such as Mozilla Firefox.

o. If desired, upgrade to the latest FIPS 140 validated firmware image, using the Software Upgrade wizard. The wizard will reject any image not digitally signed by AudioCodes.

p. Using SSH, connect to the device's command-line interface. Type the following command to verify FIPS status:

```
/SEC/FST
```

The device should display FIPS mode status ("ON") and a self-test output code of 0 ("passed").

q. Configuration is now complete. If desired, reconfigure the device to its production IP address (and production NTP server address) before powering off.
3.2 Non-Approved Mode of Operation

The previous section discussed initial set-up of the module, bringing it into Approved mode of operation. To return the device to Non-Approved mode of operation, the operator shall perform the zeroization procedure as described below.

The operator shall not change any of the configuration parameters discussed above, to a non-Approved value, while in Approved mode of operation.

3.3 Zeroization

To zeroize all security parameters, connect to the device using SSH and issue the command:

```
/SEC/ZEROIZE
```

The device will respond with the message "Zeroization complete" and reboot with default configuration.

4. Ports and Interfaces

The MP-112 provides the following physical ports and logical interfaces:

- Ethernet Port: Data In/Out, Control In, Status Out
- RJ-11 (Qty. 2): Data In/Out, Control In, Status Out, Power Out
- Reset Button: Control In
- Serial: Disabled
- Power: Power In
- LEDs (Qty. 6): Status Output, as follows:
 - Two port status LEDs (telephone line in session)
 - Ethernet activity LED
 - General failure LED
 - Device ready LED
 - Power LED

The MP-124 provides the following physical ports and logical interfaces:

- Ethernet Ports (Qty. 2): Data In/Out, Control In, Status Out
- Centronics D-Type Connector: Data In/Out, Control In, Status Out, Power Out
- Reset Button: Control In
- Serial: Control In, Status Out
- Power: Power In
- LEDs (Qty. 28): Status Output, as follows:
 - 24 port status LEDs (telephone line in session)
 - Ethernet activity LED
 - General failure LED
 - Device ready LED
 - Power LED
5. Identification and Authentication Policy

Assumption of roles

The MP devices support several distinct operator roles as defined in the table below. No feedback during authentication will weaken the strength of the authentication mechanism. The module does not retain the authenticated state across power cycles.

Table 2 - Roles and Required Identification and Authentication

<table>
<thead>
<tr>
<th>Role</th>
<th>Type of Authentication</th>
<th>Authentication Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>User (a.k.a. SIP agent)</td>
<td>Role-based operator authentication</td>
<td>Digital Signature Verification</td>
</tr>
<tr>
<td>Element Management System</td>
<td>Role-based operator authentication</td>
<td>Digital Signature Verification or knowledge of a shared secret</td>
</tr>
<tr>
<td>Monitor</td>
<td>Identity-based operator authentication</td>
<td>Digital Signature Verification plus Username and Password</td>
</tr>
<tr>
<td>Administrator</td>
<td>Identity-based operator authentication</td>
<td>Digital Signature Verification plus Username and Password</td>
</tr>
<tr>
<td>Crypto Officer (a.k.a. Security Administrator)</td>
<td>Identity-based operator authentication</td>
<td>Digital Signature Verification and/or Username and Password</td>
</tr>
<tr>
<td>RADIUS Server</td>
<td>Role-based operator authentication</td>
<td>Knowledge of a shared secret</td>
</tr>
</tbody>
</table>
Table 3 – Strengths of Authentication Mechanisms

<table>
<thead>
<tr>
<th>Authentication Mechanism</th>
<th>Strength of Mechanism</th>
</tr>
</thead>
</table>
| Username and Password | The password is a minimum of four characters (maximum of 19 characters) selected from the set of 94-printable and human readable characters. The probability that a random attempt will succeed is $1/94^4$, which is less than $1/1,000,000$.
The module will only allow three failed authentication attempts per minute, which ensures that the probability of multiple random authentication attempts being successful is less than $1/100,000$. |
| Digital Signature Verification | The minimum signature size supported by the module is 1024 bits, which has an effective strength of 80 bits. The probability that a random attempt will succeed is $1/2^{80}$, which is less than $1/1,000,000$.
The module is limited to 40 signature verifications per second, therefore the probability of multiple random authentication attempts being successful is about $1/(2^{68})$, which is much lower than $1/100,000$. |
| Knowledge of a Shared Secret | The smallest RADIUS shared secret that is supported is four characters chosen from the set of 94-printable and human readable characters. The probability that a random attempt will succeed is $1/94^4$, which is less than $1/1,000,000$.
The module will only allow 60 failed RADIUS authentication attempts per minute, as there is a one second timeout after each failed attempt, which ensures that the probability of multiple random authentication attempts being successful is less than $1/100,000$. |
Notes:

- The roles of Monitor, Administrator, and Crypto Officer are assumed when connecting to the module using mutually-authenticated TLS (hence digital signature verification is required); username and password are required after the digital signature verification, in order to distinguish between the three roles.

- The Crypto Officer role may be assumed when connecting to the module using SSHv2 and an RSA key (i.e. digital signature verification alone).

6. Access Control Policy

Roles and Services

Table 4 – Services Authorized for Roles

<table>
<thead>
<tr>
<th>Role</th>
<th>Authorized Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>User (SIP agent)</td>
<td>• Establish VoIP Session</td>
</tr>
<tr>
<td></td>
<td>• Terminate VoIP Session</td>
</tr>
<tr>
<td>Element Management System</td>
<td>• Security Settings</td>
</tr>
<tr>
<td></td>
<td>• Restart</td>
</tr>
<tr>
<td></td>
<td>• Lock/Unlock</td>
</tr>
<tr>
<td></td>
<td>• Show Status</td>
</tr>
<tr>
<td>Administrator</td>
<td>• Configure Settings</td>
</tr>
<tr>
<td></td>
<td>• FW Upgrade</td>
</tr>
<tr>
<td></td>
<td>• Load Private Key</td>
</tr>
<tr>
<td></td>
<td>• Self-Tests</td>
</tr>
<tr>
<td>Monitor</td>
<td>• Show Status</td>
</tr>
<tr>
<td>Administrator</td>
<td>• Restart</td>
</tr>
<tr>
<td></td>
<td>• Lock/Unlock</td>
</tr>
<tr>
<td></td>
<td>• Show Status</td>
</tr>
<tr>
<td></td>
<td>• Configure Settings</td>
</tr>
<tr>
<td></td>
<td>• FW Upgrade</td>
</tr>
<tr>
<td></td>
<td>• Self-Tests</td>
</tr>
</tbody>
</table>
Crypto Officer (Security Administrator) | • Security Settings
| • Restart
| • Lock/Unlock
| • Show Status
| • Configure Settings
| • FW Upgrade
| • Load Private Key
| • Zeroize
| • Self-Tests

RADIUS Server | • Facilitate Authentication

Unauthenticated Services:
The cryptographic module supports the following unauthenticated services:

- Self-tests: This service executes the suite of self-tests required by FIPS 140-2 and is invoked by power cycling the module.

Definition of Critical Security Parameters (CSPs)
The following are CSPs contained in the module:

- IKE Shared Secret
- IKE Pre-Shared Key:
- SKEYID
- SKEYID_d
- SKEYID_a
- SKEYID_e
- IKE Session Encryption Key
- IKE Session Authentication Key
- Device Private Key
- IPsec Session Encryption Key
- IPsec Session Authentication Key
- DH Private Key
- TLS Session Key
- TLS Integrity Key
- SSHv2 Encryption Key
- SSHv2 Integrity Key
- RADIUS Secret
- DRNG State
- SRTP Master Key
- SRTP Master Salt
- SRTP Encryption Key
- SRTP Integrity Key
- SRTP Salting Key
- SRTCP Encryption Key
- SRTCP Integrity Key
- SRTCP Salting Key
Definition of Public Keys:

The following are the public keys contained in the module:

- FW Verification Key
- Device Public Key
- DH Public Key
- DH Peer Public Key
- Peer Certificate
- Root Certificate
- SSHv2 administrator public key

Definition of CSPs Modes of Access

Table 5 defines the relationship between access to CSPs and the different module services. The modes of access shown in the table are defined as follows:

- Read (R)
- Write (W)
- Zeroize (Z)
- None (N)
Table 5 – CSP Access Rights within Services

<table>
<thead>
<tr>
<th>Service/CSPs</th>
<th>IKE Shared Secret</th>
<th>IKE Pre-Shared Key</th>
<th>SKEYID</th>
<th>SKEYID_d</th>
<th>SKEYID_a</th>
<th>SKEYID_e</th>
<th>IKE Session Encryption Key</th>
<th>IKE Session Authentication Key</th>
<th>Device Private Key</th>
<th>IPsec Session Encryption Key</th>
<th>IPsec Session Authentication Key</th>
<th>DRNG State</th>
<th>Passwords</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish VoIP Session</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>W</td>
<td>N</td>
</tr>
<tr>
<td>Terminate VoIP Session</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>W</td>
<td>N</td>
</tr>
<tr>
<td>Security Settings</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>W</td>
<td>R</td>
</tr>
<tr>
<td>Restart</td>
<td>N</td>
</tr>
<tr>
<td>Lock/Unlock</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>R</td>
</tr>
<tr>
<td>Show Status</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>R</td>
</tr>
<tr>
<td>Configure Settings</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>R</td>
</tr>
<tr>
<td>FW Upgrade</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>W</td>
</tr>
<tr>
<td>Load Private Key</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>W</td>
<td>N</td>
</tr>
<tr>
<td>Facilitate Auth.</td>
<td>N</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Zeroize</td>
<td>Z</td>
</tr>
<tr>
<td>Self-Tests</td>
<td>N</td>
</tr>
</tbody>
</table>
Table 5 (cont.)

<table>
<thead>
<tr>
<th>Service/CSPs</th>
<th>SRTP Master Key</th>
<th>SRTP Master Salt</th>
<th>SRTP Encryption Key</th>
<th>SRTP Integrity Key</th>
<th>SRTP Salting Key</th>
<th>SRTCP Encryption Key</th>
<th>SRTCP Integrity Key</th>
<th>SRTCP Salting Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish VoIP Session</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Terminate VoIP Session</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>W</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>Security Settings</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Restart</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Lock/Unlock</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Show Status</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Configure Settings</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>FW Upgrade</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Load Private Key</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Facilitate Auth.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Zeroize</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>Self-Tests</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>
7. Operational Environment

The FIPS 140-2 Area 6 Operational Environment requirements are not applicable because the module supports a limited operational environment that only allows the loading of trusted firmware images signed by AudioCodes.

8. Self Tests

The cryptographic module shall perform the following tests:

A. Power up Self-Tests:
 1. Cryptographic algorithm tests:
 a. Triple-DES KAT (IPsec, TLS)
 b. AES KAT (IPsec, TLS, sRTP)
 c. RSA Sign/Verify KAT (IPsec, TLS)
 d. HMAC SHA-1 KAT (IPsec, TLS, sRTP)
 e. FIPS 186-2 DRNG Known Answer Test
 f. SHA-1 Known Answer Test

 Upon successful completion of the power-up self tests, the module displays the following message via syslog: "FIPS140 self-test: All tests passed successfully".

 2. Firmware Integrity Test (32-bit Checksum)

B. Conditional Self-Tests:
 1. Continuous Random Number Generator (RNG) test – performed on the NDRNG and FIPS 186-2 DRNG

 2. RSA Pairwise Consistency Test

 3. Firmware Load Test (RSA signature validation)

At any time, the operator shall be capable of commanding the module to perform the power-up self-test by power cycling the module.

9. Physical Security Policy

Physical Security Mechanisms

The multi-chip standalone cryptographic module includes production-grade components
compliant with Level 1 physical security requirements.

10. EMI/EMC
The module has been tested for conformance with FCC 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class B.

11. Mitigation of Other Attacks Policy
The module has not been designed to mitigate specific attacks beyond the scope of FIPS 140-2 requirements.