Seagate® Momentus® Thin Self-Encrypting Drives
TCG Opal
FIPS 140 Module Security Policy

Security Level 2

Rev.1.3 – Jul 06, 2012

Seagate Technology, LLC
Table of Contents

1 Introduction .. 3
1.1 Scope ... 3
1.2 Security Levels ... 3
1.3 References ... 3
1.4 Acronyms .. 3
2 Cryptographic Module Description .. 5
2.1 Overview ... 5
2.2 Logical to Physical Port Mapping ... 5
2.3 Hardware and Firmware Versions ... 5
2.4 FIPS Approved Algorithms .. 5
2.5 Self-Tests ... 5
2.6 FIPS 140 Approved Modes of Operation .. 6
2.6.1 ATA Enhanced Security Mode (SOM1) ... 6
2.6.2 TCG Opal Security Mode (SOM2) .. 6
2.7 User Data Cryptographic Erase Methods .. 7
2.8 Revert and Revert SP Methods ... 7
3 Identification and Authentication (I&A) Policy ... 8
3.1 Operator Roles ... 8
3.1.1 Crypto Officer Roles ... 8
3.1.2 User Roles ... 8
3.1.3 Unauthenticated Role ... 8
3.2 Authentication .. 8
3.2.1 Authentication Types .. 8
3.2.2 Authentication in ATA Enhanced Security Mode ... 8
3.2.3 Authentication in TCG Opal Security Mode ... 9
3.2.4 Authentication Mechanism, Data and Strength .. 9
3.2.5 Personalizing Authentication Data .. 9
4 Access Control Policy .. 10
4.1 Services .. 10
4.2 Cryptographic Keys and CSPs .. 13
5 Physical Security ... 15
5.1 Mechanisms ... 15
5.2 Operator Requirements ... 16
6 Operational Environment .. 17
7 Security Rules ... 17
7.1 Secure Initialization .. 17
7.2 Ongoing Policy Restrictions .. 17
8 Mitigation of Other Attacks Policy .. 17
1 Introduction

1.1 Scope
This security policy applies to the FIPS 140-2 Cryptographic Module (CM) embedded in Seagate® Momentus® Thin TCG Opal Self-Encrypting Drive products.

This document meets the requirements of the FIPS 140-2 standard (Appendix C) and Implementation Guidance (section 14.1). It does not provide interface details needed to develop a compliant application.

This document is non-proprietary and may be reproduced in its original entirety.

1.2 Security Levels

<table>
<thead>
<tr>
<th>Requirement Area</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Module Specification</td>
<td>2</td>
</tr>
<tr>
<td>Cryptographic Module Ports and Interfaces</td>
<td>2</td>
</tr>
<tr>
<td>Roles, Services and Authentication</td>
<td>2</td>
</tr>
<tr>
<td>Finite State Model</td>
<td>2</td>
</tr>
<tr>
<td>Physical Security</td>
<td>2</td>
</tr>
<tr>
<td>Operational Environment</td>
<td>N/A</td>
</tr>
<tr>
<td>Cryptographic Key Management</td>
<td>2</td>
</tr>
<tr>
<td>Electromagnetic Interface / Electromagnetic Compatibility (EMI / EMC)</td>
<td>3</td>
</tr>
<tr>
<td>Self – tests</td>
<td>2</td>
</tr>
<tr>
<td>Design Assurance</td>
<td>2</td>
</tr>
<tr>
<td>Mitigation of Other Attacks</td>
<td>N/A</td>
</tr>
</tbody>
</table>

1.3 References
1. FIPS PUB 140-2
2. Derived Test Requirements for FIPS PUB 140-2
3. Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program
4. TCG Storage Security Subsystem Class: Opal, Specification Version 1.00, Revision 3.00, February 4, 2010
5. TCG Storage Architecture Core Specification, Specification Version 2.00 Final, Revision 1.0, April 20, 2009
7. ATA-8 ACS
8. Serial ATA Rev 2.6 (SATA)

1.4 Acronyms

AES Advanced Encryption Standard (FIPS 197)
CBC Cipher Block Chaining, an operational mode of AES
CM Cryptographic Module
CO Crypto-officer
CSP Critical Security Parameter
MEK Media Encryption Key
FIPS 140 FIPS 140-2
HDA Head and Disk Assembly
HDD Hard Disk Drive
IV Initialization Vector for encryption operation
LBA Logical Block Address
KAT Known Answer Test
MBR Master Boot Record
MSID Manufactured SID, public drive-unique value that is used as default PIN, TCG term
POR Power-on Reset (power cycle)
POST Power on Self-Test
PSID Physical SID, public drive-unique value
<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNG</td>
<td>Random Number Generator</td>
</tr>
<tr>
<td>SED</td>
<td>Self-Encrypting Drive, Seagate HDD products that provide HW data encryption.</td>
</tr>
<tr>
<td>SID</td>
<td>Security ID, PIN for Drive Owner CO role, TCG term</td>
</tr>
<tr>
<td>SoC</td>
<td>System-on-a-Chip</td>
</tr>
<tr>
<td>SOM</td>
<td>Security Operating Mode</td>
</tr>
<tr>
<td>SP</td>
<td>Security Provider or Security Partition (TCG), also Security Policy (FIPS 140)</td>
</tr>
</tbody>
</table>
2 Cryptographic Module Description

2.1 Overview

The Seagate Momentus Thin Self-Encrypting Drive (SED) TCG Opal FIPS 140 Module is embedded in Seagate Momentus Thin SED model disk drives. The cryptographic module (CM) provides a wide range of cryptographic services using FIPS approved algorithms. Services include hardware-based data encryption, instantaneous user data disposal with cryptographic erase, independently controlled and protected user data LBA ranges, and authenticated FW download. The services are provided through an industry-standard TCG Opal SSC interface.

The CM is a multiple-chip embedded physical embodiment. The physical interface to the CM is the SATA connector and jumper block pins. The logical interface is the industry-standard ATA (7), TCG SWG (5), and Opal SSC (4) protocols, carried on the SATA transport interface (8). The primary function of the module is to provide data encryption, access control and cryptographic erase of the data stored on the hard drive media. The human operator of the drive product interfaces with the CM through a “host” application on a host system.

2.2 Logical to Physical Port Mapping

<table>
<thead>
<tr>
<th>FIPS 140-2 Interface</th>
<th>Module Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Input SATA Connector</td>
<td>Data Input SATA Connector</td>
</tr>
<tr>
<td>Data Output SATA Connector</td>
<td>Data Output SATA Connector</td>
</tr>
<tr>
<td>Control Input SATA Connector</td>
<td>Control Input SATA Connector</td>
</tr>
<tr>
<td>Status Output SATA Connector</td>
<td>Status Output SATA Connector</td>
</tr>
<tr>
<td>Power Input Power Connector</td>
<td>Power Input Power Connector</td>
</tr>
</tbody>
</table>

2.3 Hardware and Firmware Versions

The Momentus® SED Drives, FIPS 140 Module has been validated in six configurations:

1. Model ST320LT009: HW ver 9WC142, FW ver 1003HPMA, 1004HPMA
2. Model ST320LT009: HW ver 9WC142, FW ver 1002HPBA, 1003HPBA
3. Model ST320LT009: HW ver 9WC142, FW ver 1001DEMA, 1002DEMA
4. Model ST250LT009: HW ver 9WC14C, FW ver 1001DEMA, 1002DEMA
5. Model ST320LT009: HW ver 9WC142, FW ver 1001SDMA, 1002SDMA
6. Model ST250LT009: HW ver 9WC14C, FW ver 1001SDMA, 1002SDMA

The configurations vary by storage capacity and customer-unique FW differences which do not involve FIPS services.

2.4 FIPS Approved Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Certificate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIC AES</td>
<td>#1392</td>
</tr>
<tr>
<td>Firmware AES</td>
<td>#1341</td>
</tr>
<tr>
<td>RSA</td>
<td>#648</td>
</tr>
<tr>
<td>SHA</td>
<td>#1223</td>
</tr>
<tr>
<td>FIPS 186-2 PRNG</td>
<td>#737</td>
</tr>
</tbody>
</table>

2.5 Self-Tests

<table>
<thead>
<tr>
<th>Function Tested</th>
<th>Self-Test Type</th>
<th>Implementation</th>
<th>Failure Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIC AES</td>
<td>Power-On</td>
<td>Encrypt and Decrypt KAT performed</td>
<td>Enters FIPS Self Test Fail State</td>
</tr>
<tr>
<td>Firmware AES</td>
<td>Power-On</td>
<td>Encrypt and Decrypt KAT performed</td>
<td>Enters FIPS Self Test Fail State</td>
</tr>
<tr>
<td>RSA</td>
<td>Power-On</td>
<td>Verify KAT performed.</td>
<td>Enters FIPS Self Test Fail State</td>
</tr>
<tr>
<td>SHA-1</td>
<td>Power-On</td>
<td>Digest KAT performed</td>
<td>Enters FIPS Self Test Fail State</td>
</tr>
<tr>
<td>SHA-256</td>
<td>Power-On</td>
<td>Digest KAT performed</td>
<td>Enters FIPS Self Test Fail State</td>
</tr>
<tr>
<td>FIPS 186-2 PRNG</td>
<td>Power-On</td>
<td>PRNG KAT performed</td>
<td>Enters FIPS Self Test Fail State</td>
</tr>
<tr>
<td>Firmware Integrity</td>
<td>Power-On</td>
<td>16-bit CRC and ECC</td>
<td>Enters FW Integrity Error State</td>
</tr>
</tbody>
</table>
2.6 FIPS 140 Approved Modes of Operation

Before the operator performs the Secure Initialization steps detailed in Section 7.1, the drive will operate in a non FIPS compliant mode (Security Operating Mode 0, i.e. SOM0). From this mode, the operator may choose to initialize the CM to operate in either the ATA Enhanced Security Mode (SOM1) or TCG Opal Security Mode (SOM2). Both of these modes are FIPS compliant modes and after setting up (configuring) the module per the Security Rules of this policy, an operator can switch between the modes. Details on these SOM modes and how they can transition from one to the other can be found in the product documentation.

The module’s FIPS modes of operation are enforced through configuration and policy. Violating these ongoing policy restrictions (detailed in Section 7.2) would mean that one is no longer using the drive in a FIPS compliant mode of operation. The operator can determine if the CM is operating in a FIPS approved mode by invoking the Show Status service(refer to Section 4.1)

2.6.1 ATA Enhanced Security Mode (SOM1)

This mode provides services through industry-standard ATA commands, and TCG Opal commands addressed to the TCG Admin SP. Some of the services are based on the ATA Security Feature set but with vendor-unique extensions (e.g. encryption of user data on media). Other services are based on the TCG Opal commands. To operate in SOM1, the ATA User must do a Set PIN from SOM0 mode. This mode corresponds to having a deactivated TCG Opal Locking SP.

SOM1 implements the Master and User roles as defined in ATA. The ATA security lock / unlock states correspond to operator authentication for the Read / Write data services (which use an internal AES 128-bit key for encryption and decryption of data written to and read from the drive media respectively). In addition, a “Drive Owner” CO role is provided, which can enable or disable access to the FW download service for FW upgrade. Additionally, a cryptographic erase service is provided to the Master and User roles through the ATA Security Erase Unit commands. The FW download service (ATA Download Microcode command) provides a FIPS-compliant FW load test by verifying the code’s embedded 2048-bit RSA signature.

2.6.2 TCG Opal Security Mode (SOM2)

This mode provides services through industry-standard ATA commands, TCG Opal commands addressed to the TCG Admin SP, and TCG Opal commands addressed to the TCG Locking SP. It provides all of the services of the ATA Enhanced Security Mode as well as additional features through TCG Opal commands. Some ATA Security commands are disabled in this mode and their functionality is provided through the TCG Opal commands. To operate in SOM2, the Drive Owner must invoke the Activate method on the Locking SP from SOM0 mode.

One of the fundamental differences in this Mode is the capability to have multiple Users with independent access control to read/write/erase independent data areas (LBA ranges). Note that by default there is a single “Global Range” that encompasses the whole user data area.

In addition to the Drive Owner and User(s) roles, this mode implements a CO role (Admins) to administer the additional features. These features include:

- Enable/disable additional Users
- Create and configure multiple LBA Ranges
- Assign access control of Users to LBA Ranges
- Lock/unlock LBA Ranges
- Erase LBA Ranges using Cryptographic Erase
- MBR Shadowing
2.7 User Data Cryptographic Erase Methods
Since all user data is encrypted / decrypted by the CM for storage / retrieval on the drive media, the data can be erased using a cryptographic method. The data is effectively erased by changing the encryption key (MEK). Thus, the FIPS 140 key management capability “zeroization” of the key erases all the user data. This capability is available through both FIPS modes. Of course the user data can also be erased by overwriting, but this can be a long operation on high capacity drives. Other FIPS services can be used to erase all the other private keys and CSPs (see Section 2.8).

2.8 Revert and Revert SP Methods
In either SOM1 or SOM2 modes, the TCG Revert and Revert SP methods may be invoked by an appropriately authenticated Role to transition the CM into SOM0 (non-Approved) mode. This corresponds to the “Exit To SOM0” service and is akin to a “restore to factory defaults” operation. This operation also provides a means to zeroize keys and CSPs. Subsequently, the CM has to be re-initialized before it can return to a FIPS Approved mode of operation (i.e. SOM1 or SOM2). This Revert and Revert SP methods may be invoked by the Drive Owner, Admins or an unauthenticated role using the public PSID value.
3 Identification and Authentication (I&A) Policy

3.1 Operator Roles

Note: The following identifies the CO and User roles with a general description of the purposes. For further details of the services performed by each role in each FIPS mode, see section 4.1.

3.1.1 Crypto Officer Roles

3.1.1.1 Drive Owner

This CO role corresponds to the SID (Secure ID) Authority on the Admin SP as defined in Opal SSC [4]. This role is used to transition the CM to TCG Opal Security Mode or to download a new FW image. Note: only a FIPS validated firmware version can be loaded to the module. Otherwise, the module is not operating in FIPS mode.

3.1.1.2 Admins (1-4) (TCG Opal Security Mode (SOM2) Only)

This CO role for TCG Opal Security Mode corresponds to the same named Authority on the Locking SP as defined in Opal SSC [4]. This role is used to enable/disable Users, create and delete data regions (LBA Ranges), set LBA Range attributes, lock/unlock LBA Ranges and erase LBA Ranges (by zeroizing the MEK with the Cryptographic Erase service).

3.1.2 User Roles

3.1.2.1 User (1) – SOM1, Users (1-16) – SOM2

This role can unlock (and also lock) the drive so that an operator can read and write data to the drive. This role can also call the Cryptographic Erase service.

When operating in TCG Opal Security Mode, there can be up to 16 separate Users (User IDs) and the role corresponds to the same named TCG Authority on the Locking SP. The Admin role enables Users and assigns them read/write/erase access to LBA ranges.

3.1.2.2 Master (ATA Enhanced Security Mode (SOM1) Only)

This role corresponds to the same named role as defined in ATA [7]. This role only provides a backup authentication to the ATA User and does not have access to administration services beyond those of the ATA User role.

3.1.3 Unauthenticated Role

This role can perform the Show Status service.

If the operator has physical access to the drive, this role can also reset the module with a power cycle (which results in POSTs) as well as configure the jumper block to control the interface speed between the host and drive (a non-security relevant service). This role can also use the public PSID value to invoke the “Exit To SOM0” service.

3.2 Authentication

3.2.1 Authentication Types

Operator authentication is role-based. For example, the Drive Owner role has its own unique ID and PIN.

For some services the authentication is performed in a separate associated service; e.g. the Read Unlock service is the authentication for subsequent User Data Read service. If the User Data Read service is attempted without prior authentication then the command will fail.

For authentication using the TCG interface, the operator and PIN can be provided in the StartSession method itself. Alternatively, an operator may use the Authenticate method to authenticate to a role after a Session has been started. Authentications will persist until the session is closed.

3.2.2 Authentication in ATA Enhanced Security Mode

In ATA Enhanced Security Mode, Master and User operator authentication is provided through a PIN provided in the ATA Security command [7]. In the event of authentication failure, the ATA command will abort, and subsequent read/write services will abort. A password attempt counter is implemented as specified in ATA, which when reached, blocks Master/User service authentication (with command abort), until the module is reset (Unblock PIN service).
Depending on a parameter of the Set PIN service for the User password, the User services may or may not be fully extended to the Master role. If the Master Password Capability is set to “High”, then either role can access the same services. Otherwise the Master role only has access to the erase service.

Drive Owner authentication for the Set PIN and Enable/Disable FW Download services is provided through the TCG StartSession or Authenticate to Admin SP.

3.2.3 Authentication in TCG Opal Security Mode
Operator authentication is provided via the TCG StartSession or Authenticate methods. The host application can have only a single session open at a time. During a session the application can invoke services for which the authenticated operator has access control. Note that a security rule of the CM is that the host must not authenticate to more than one operator (TCG authority) in a session.

For some services the host application will authenticate to the “Anybody” authority which does not have a private credential. Therefore these operations are effectively unauthenticated services.

3.2.4 Authentication Mechanism, Data and Strength
Operator authentication with PINs is implemented by hashing the operator input value and comparing it to the stored hash of the assigned PIN. The PINs have a retry attribute (“TryLimit”) that controls the number of unsuccessful attempts before the authentication is blocked until a module reset. The PINs have a maximum length of 32 bytes.
Per the policy security rules, the minimum PIN length is 4 bytes (Rule 4 in Section 7.1). This gives a probability of $1/2^{32}$ of guessing the PIN in a single random attempt. This easily meets the FIPS 140 authentication strength requirements of less than $1/1,000,000$.
Each authentication attempt takes 30ms on average to complete. This means that approximately $\{60*1000/30\}$ attempts can be made in one minute. Thus the probability of multiple random attempts to succeed in one minute is $2000/2^{32}$. This is significantly lower than the FIPS requirement of $1/100,000$.

3.2.5 Personalizing Authentication Data
The initial value for SID is a manufactured value (mSID). This is a device-unique, 32-byte, public value. The Security Rules (Section 7) for the CM requires that the PIN values must be “personalized” to private values using the “Set PIN” service. Note that for SOM1, setting the User PIN also sets the Drive Owner PIN to the same value; the Drive Owner PIN can be set to a different value with the TCG Set Method.
4 Access Control Policy

4.1 Services

The following tables represent the FIPS 140 services for each FIPS Approved Mode in terms of the Approved Security Functions and operator access control. Note the following:

- Use of the services described below is only compliant if the module is in the noted Approved mode.
- Underlying security functions used by higher level algorithms are not represented (e.g. hashing as part of asymmetric key)
- Operator authentication is not represented in this table.
- Some security functions listed are used solely to protect / encrypt keys and CSPs.
- Service input and output details are defined by the TCG and ATA standards.
- Unauthenticated services (e.g. Show Status) do not provide access to private keys or CSPs.
- Some services have indirect access control provided through enable / disable or lock / unlock services used by an authenticated operator; e.g. User data read / write.
- If the Operator value contains “opt” then the access is dependent on the module setup (see 3.2.2).
Table 1.1 - FIPS 140 Authenticated Services – SOM1

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Description</th>
<th>Operator Access Control</th>
<th>Security Function</th>
<th>Command(s)/Event(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set PIN</td>
<td>Change operator authentication data. Note: Setting the User PIN also sets the Drive Owner PIN.</td>
<td>Master*, User*, Drive Owner</td>
<td>Hashing</td>
<td>ATA SECURITY SET PASSWORD, TCG Set Method</td>
</tr>
<tr>
<td>Lock / Unlock FW Download</td>
<td>Enable / Disable FW Download Service</td>
<td>Drive Owner</td>
<td>None</td>
<td>TCG Set Method</td>
</tr>
<tr>
<td>Firmware Download</td>
<td>Load complete firmware image. If the self-test of the code load passes then the device will run with the new code.</td>
<td>None**</td>
<td>Asymmetric Key</td>
<td>ATA DOWNLOAD MICROCODE</td>
</tr>
<tr>
<td>Unlock User Data</td>
<td>Enable user data read/write and Set PIN services.</td>
<td>User (opt. Master)</td>
<td>Symmetric Key</td>
<td>ATA SECURITY UNLOCK</td>
</tr>
<tr>
<td>User Data Read / Write</td>
<td>Encryption / decryption of user data.</td>
<td>None*</td>
<td>Symmetric Key</td>
<td>ATA Read / Write Commands</td>
</tr>
<tr>
<td>Cryptographic Erase</td>
<td>Erase user data through cryptographic means: by zeroizing the encryption key and the User PIN. Note: FIPS mode is exited.</td>
<td>Master, User</td>
<td>RNG</td>
<td>ATA SECURITY ERASE PREPARE + ATA SECURITY ERASE UNIT</td>
</tr>
</tbody>
</table>
| Exit To SOM0 | Exit ATA Enhanced Security Mode (SOM1). Note: CM will enter SOM0. | User* (opt. Master*) | RNG, Hashing, Symmetric Key | • ATA SECURITY DISABLE PASSWORD
| | | | | • ATA SECURITY ERASE PREPARE + SECURITY ERASE UNIT |

Table 1.2 - FIPS 140 Unauthenticated Services – SOM1

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Description</th>
<th>Operator Access Control</th>
<th>Security Function</th>
<th>Command(s)/Event(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unblock PIN</td>
<td>Reset Master and User password attempt counter.</td>
<td>None</td>
<td>None</td>
<td>POR</td>
</tr>
<tr>
<td>Show Status</td>
<td>Reports if CM is in a FIPS approved mode.</td>
<td>None</td>
<td>None</td>
<td>ATA IDENTIFY DEVICE Word 128 Bit 1 = 1 (Security Enabled)</td>
</tr>
<tr>
<td>Reset Module</td>
<td>Runs POSTs and zeroizes key & CSP RAM storage.</td>
<td>None</td>
<td>None</td>
<td>POR</td>
</tr>
<tr>
<td>Disable Services</td>
<td>Disables ATA Security commands until POR.</td>
<td>None</td>
<td>None</td>
<td>ATA SECURITY FREEZE LOCK</td>
</tr>
<tr>
<td>Exit To SOM0</td>
<td>Exit ATA Enhanced Security Mode (SOM1). Note: CM will enter SOM0.</td>
<td>None (using PSID)</td>
<td>None</td>
<td>• TCG AdminSP.RevertSP()</td>
</tr>
</tbody>
</table>

* Security has to be Unlocked
** FW Download has to be Unlocked
Table 2.1 - FIPS 140 Authenticated Services – SOM2

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Description</th>
<th>Operator Access Control</th>
<th>Security Function</th>
<th>Command(s)/Event(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set PIN</td>
<td>Change operator authentication data. Note: Admins can set PINs for any User or Admin.</td>
<td>Admin1-4, User1-16, Drive Owner</td>
<td>Hashing</td>
<td>TCG Set Method</td>
</tr>
<tr>
<td>Lock / Unlock FW Download Service</td>
<td>Enable / Disable FW Download Service</td>
<td>Drive Owner</td>
<td>None</td>
<td>TCG Set Method</td>
</tr>
<tr>
<td>Firmware Download</td>
<td>Load complete firmware image. If the self-test of the code load passes then the device will run with the new code.</td>
<td>None**</td>
<td>Asymmetric Key</td>
<td>ATA DOWNLOAD MICROCODE</td>
</tr>
<tr>
<td>Enable / Disable Admin(2-4), User(s)</td>
<td>Enable / Disable an Admin or User Authority.</td>
<td>Admin1-4</td>
<td>None</td>
<td>TCG Set Method</td>
</tr>
<tr>
<td>Set Range Attributes</td>
<td>Set the location, size, locking and User access rights of the LBA range.</td>
<td>Admin1-4</td>
<td>None</td>
<td>TCG Set Method</td>
</tr>
<tr>
<td>Lock / Unlock User Data Range for Read and/or Write</td>
<td>Block or allow read (decrypt) / write (encrypt) of user data in a range.</td>
<td>Admin1-4, User1-16</td>
<td>None</td>
<td>TCG Set Method, ATA SECURITY UNLOCK</td>
</tr>
<tr>
<td>User Data Read / Write</td>
<td>Encryption / decryption of user data to/from a LBA range. Access control to this service is provided through Lock / Unlock User Data Range.</td>
<td>None*</td>
<td>Symmetric Key</td>
<td>ATA Read / Write Commands</td>
</tr>
<tr>
<td>Cryptographic Erase</td>
<td>Erase user data in an LBA range by cryptographic means: changing the encryption key.</td>
<td>Admin1-4, User1-16</td>
<td>RNG, Symmetric Key</td>
<td>TCG GenKey Method</td>
</tr>
<tr>
<td>Exit To SOM0</td>
<td>Exit TCG Opal Security Mode (SOM2). Note: CM will enter SOM0.</td>
<td>Drive Owner, Admin1-4</td>
<td>RNG, Hashing, Symmetric Key</td>
<td>TC G LockingSP.RevertSP()</td>
</tr>
</tbody>
</table>

Table 2.2 - FIPS 140 Unauthenticated Services – SOM2

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Description</th>
<th>Operator Access Control</th>
<th>Security Function</th>
<th>Command(s)/Event(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unblock PIN</td>
<td>Resets password attempt counters.</td>
<td>None</td>
<td>None</td>
<td>POR</td>
</tr>
<tr>
<td>Show Status</td>
<td>Reports if CM is in a FIPS approved mode.</td>
<td>None</td>
<td>None</td>
<td>TCG Level 0 Discovery. Drive Security Life Cycle State = 0x80 (Use State) AND TCG Get Method on SecurityOperatingMode in Admin SP = 0x02 (SOM2)</td>
</tr>
<tr>
<td>Reset Module</td>
<td>Runs POSTs and zeroizes keys & CSPs in RAM</td>
<td>None</td>
<td>None</td>
<td>POR</td>
</tr>
<tr>
<td>Exit To SOM0</td>
<td>Exit TCG Opal Security Mode (SOM2). Note: CM will enter SOM0.</td>
<td>None (using PSID)</td>
<td>None</td>
<td>TC G AdminSP.RevertSP()</td>
</tr>
</tbody>
</table>

* Data Range has to be Unlocked
** FW Download has to be Unlocked
4.2 Cryptographic Keys and CSPs

The following table defines the keys / CSPs and the operators / services which use them. Note the following:

- The use of PIN CSPs for authentication is implied by the operator access control.
- The Set PIN service is represented in this table even though generally it is only used at module setup.
- All non-volatile storage of keys and CSPs is in the system area of the drive media to which there is no logical or physical access from outside of the module.
- Non-critical security parameters are not represented in this table.
- Read access of private values is internal only to the CM and are thus not represented in this table.
- There is no security-relevant audit feature.
Table 3 - Key Management

<table>
<thead>
<tr>
<th>Name</th>
<th>Mode</th>
<th>Description</th>
<th>Type (Pub / Priv, key / CSP (e.g. PIN)), size</th>
<th>Operator Role</th>
<th>Services Used In</th>
<th>Access (W, X)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID (Security Identifier), aka Drive Owner PIN</td>
<td>Both</td>
<td>Auth. Data</td>
<td>Private, PIN, 32 bytes</td>
<td>Drive Owner</td>
<td>Set PIN</td>
<td>W</td>
</tr>
<tr>
<td>Master, User Passwords</td>
<td>ATA</td>
<td>Auth. Data</td>
<td>Private, PIN, 32 bytes</td>
<td>None (subject to unlocked)</td>
<td>Set PIN</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Master, User</td>
<td>Unlock User Data</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Master, User</td>
<td>Cryptographic Erase</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Master, User</td>
<td>Exit To SOM0</td>
<td>X</td>
</tr>
<tr>
<td>Master, User MEK</td>
<td>ATA</td>
<td>MEK mixed with PINs</td>
<td>Private, AES Key, 128 bits</td>
<td>Master, User</td>
<td>Unlock User Data</td>
<td>X</td>
</tr>
<tr>
<td>Admin1-4 Passwords</td>
<td>TCG</td>
<td>Admins Auth. Data</td>
<td>Private, PIN, 32 bytes</td>
<td>Admins</td>
<td>Set PIN</td>
<td>W</td>
</tr>
<tr>
<td>User1-16 Passwords</td>
<td>TCG</td>
<td>Users Auth. Data</td>
<td>Private, PIN, 32 bytes</td>
<td>Admins, Users</td>
<td>Set PIN</td>
<td>W</td>
</tr>
<tr>
<td>LBA Range MEKs</td>
<td>TCG</td>
<td>MEK mixed with MEKEK</td>
<td>Private, AES Key, 128 bits</td>
<td>Admins, Users</td>
<td>Unlock User Data</td>
<td>X</td>
</tr>
<tr>
<td>Seed Key (XKEY)</td>
<td>Both</td>
<td>RNG Key</td>
<td>Private, Hash Key, 64 bytes</td>
<td>None</td>
<td>Services which use the RNG (e.g. cryptographic erase)</td>
<td>X, W</td>
</tr>
<tr>
<td>Seed</td>
<td>Both</td>
<td>RNG seed (entropy)</td>
<td>Private, Hash seed, 520 bytes</td>
<td>None</td>
<td>1st RNG use after POST</td>
<td>X</td>
</tr>
<tr>
<td>ORG0-0 - ORG0-3</td>
<td>Both</td>
<td>Firmware Load Test Signature Verify Key</td>
<td>Public, RSA Key, 2048 bits</td>
<td>Drive Owner (enable FW download)</td>
<td>FW Download</td>
<td>X</td>
</tr>
<tr>
<td>MEKEK</td>
<td>TCG</td>
<td>Media Encryption Key Encryption Key</td>
<td>Private, AES Key, 128 bits</td>
<td>Admins, Users</td>
<td>Unlock User Data</td>
<td>X</td>
</tr>
</tbody>
</table>

W - Write access is allowed, X - Execute access is allowed
5 Physical Security

5.1 Mechanisms
The CM has the following physical security:
- Production-grade components with standard passivation
- Opaque, tamper-evident, security label on the exposed (back) side of the PCBA which prevents electronic design visibility and protects physical access to the electronics by board removal
- Tamper-evident security labels that prevent HDA cover removal for access or visibility to the media
- Exterior of the drive is opaque
- The tamper-evident labels cannot be penetrated or removed and reapplied without tamper-evidence
- The tamper-evident labels cannot be easily replicated with a low attack time

- Security labels on side of drive to provide tamper-evidence of HDA cover removal,
5.2 **Operator Requirements**
The operator is required to inspect the CM periodically for one or more of the following tamper evidence:

- Checkerboard pattern on security label or substrate

 ![Checkerboard pattern example]

- Security label over screws at indicated locations is missing or penetrated,

 ![Security label over screw example]

- Text (including size, font, orientation) on security label does not match original,
- Security label cutouts do not match original.

Upon discovery of tamper evidence, the module should be removed from service.
6 Operational Environment

The FIPS 140-2 Area 6 Operational Environment requirements are not applicable because the CM operates in a “non-modifiable operational environment”. That is, while the module is in operation the operational environment cannot be modified and no code can be added or deleted. FW can be upgraded (replaced) with a signed FW download operation. If the code download is successfully authenticated then the module will begin operating with the new code image.

7 Security Rules

7.1 Secure Initialization

The CM does not change mode across module resets. However, certain operations can result in exiting the FIPS Approved mode. In some of these exit scenarios (e.g. POST failure), the drive cannot be restored to FIPS mode and does not provide any FIPS services.

The following are the security rules for initialization and operation of the CM in a FIPS 140 compliant manner. Reference the appropriate sections of this document for details.

1. COs: At receipt of the product examine the shipping packaging and the product packaging to ensure it has not been accessed during shipping by the trusted courier.
2. COs and Users (either mode): At installation and periodically examine the physical security mechanisms for tamper evidence.
3. Transition the CM to one of the FIPS approved modes by doing one of the following:
 - ATA Mode (SOM1): User Set PIN.
 - TCG Opal (SOM2): Drive Owner executes Activate method on Locking SP
4. COs and Users: At installation, set all operator PINs applicable for the FIPS mode to private values of at least 4 bytes length:
 - ATA Mode (SOM1): Master and User, Drive Owner (optional).
 - TCG Opal (SOM2): Drive Owner, Admins and Users
5. Drive Owner: At installation, disable the “Makers” authority.
6. At installation, the value of LockOnReset for FW Download must be set to “Power Cycle” and it must not be modified.
7. After secure initialization is complete, do a power-on reset to clear authentications established during initialization.

At the end of these steps, the CM will be in a FIPS Approved Mode of operation.

7.2 Ongoing Policy Restrictions

1. Prior to assuming a new role, close the current Session and start a new Session, or do a power-on reset, so that the previous authentication is cleared.
2. COs (Admins) for SOM2: If it is intended to have a band lock on module reset then set ReadLockEnabled and WriteLockEnabled to “True”; the default value is “False”. If a band is configured with a value of False then the band is to be considered excluded from the module boundary.

8 Mitigation of Other Attacks Policy

The CM does not make claims to mitigate against other attacks beyond the scope of FIPS 140-2.