Bomgar Corporation
B400™ Remote Support Appliance
Firmware Version: 3.2.2FIPS; Software Version: 10.6.2FIPS; Hardware Version: B400 and B400 r1

FIPS 140-2 Non-Proprietary Security Policy

FIPS Security Level: 2
Document Version: 0.9
Table of Contents

1 INTRODUCTION
- 1.1 PURPOSE ... 4
- 1.2 REFERENCES ... 4
- 1.3 DOCUMENT ORGANIZATION 4

2 B400™ REMOTE SUPPORT APPLIANCE
- 2.1 OVERVIEW ... 5
- 2.2 MODULE SPECIFICATION 7
- 2.3 MODULE INTERFACES ... 8
- 2.4 ROLES AND SERVICES .. 9
 - 2.4.1 Crypto-Officer Role ... 10
 - 2.4.2 Instance-Admin Role .. 10
 - 2.4.3 Instance-User Role ... 10
 - 2.4.4 Services ... 10
 - 2.4.5 Unauthenticated Operator Services 11
 - 2.4.6 Authentication Mechanism 11
- 2.5 PHYSICAL SECURITY ... 12
- 2.6 OPERATIONAL ENVIRONMENT 12
- 2.7 CRYPTOGRAPHIC KEY MANAGEMENT 12
- 2.8 EMI/EMC ... 14
- 2.9 SELF-TESTS ... 14
 - 2.9.1 Power-Up Self-Tests 14
 - 2.9.2 Conditional Self-Tests 15
- 2.10 MITIGATION OF OTHER ATTACKS 15

3 SECURE OPERATION
- 3.1 INITIAL SETUP ... 16
 - 3.1.1 B400 Hardware Setup 16
 - 3.1.2 B400 Label Inspection and Application 16
 - 3.1.3 Firmware/Software Version Verification 20
- 3.2 FIPS MODE COMPLIANCE 20
- 3.3 CRYPTO-OFFICER GUIDANCE 23
 - 3.3.1 Management .. 23
 - 3.3.2 Status Monitoring ... 23
 - 3.3.3 Zeroization .. 24
- 3.4 INSTANCE-ADMIN AND INSTANCE-USER GUIDANCE 24

4 ACRONYMS ... 25

Table of Figures

FIGURE 1 – BOMGAR B400 ... 5
FIGURE 2 – TYPICAL DEPLOYMENT ... 6
FIGURE 3 – BLOCK DIAGRAM WITH CRYPTOGRAPHIC BOUNDARY 8
FIGURE 4 – FRONT AND REAR VIEW .. 8
FIGURE 5 – SEALED TOP COVER ... 17
FIGURE 6 – SEALED FRONT BEZEL TO CHASSIS BOTTOM (LEFT) AND SEALED FRONT BEZEL TO CHASSIS TOP (RIGHT) .. 17
FIGURE 7 – SEALED POWER SUPPLY #1 TO CHASSIS BOTTOM (LEFT) AND SEALED POWER SUPPLY #2 TO CHASSIS TOP (RIGHT) ... 18
FIGURE 8 – IP CONFIGURATION PAGE .. 19
FIGURE 9 – SSL CONFIGURATION PAGE 20
FIGURE 10 – STATUS BASICS PAGE ... 21

© 2011 Bomgar Corporation
This document may be freely reproduced and distributed whole and intact including this copyright notice.
List of Tables

TABLE 1 – SECURITY LEVEL PER FIPS 140-2 SECTION ... 6
TABLE 2 – PHYSICAL PORTS AND LOGICAL INTERFACES .. 9
TABLE 3 – LED DESCRIPTIONS .. 9
TABLE 4 – MAPPING OF AUTHENTICATED OPERATOR SERVICES TO INPUTS, OUTPUTS, CSPS, AND TYPE OF ACCESS .. 10
TABLE 5 – UNAUTHENTICATED OPERATOR SERVICE ... 11
TABLE 6 – AUTHENTICATION MECHANISM USED BY THE MODULES .. 12
TABLE 7 – FIPS-APPROVED ALGORITHM IMPLEMENTATIONS .. 12
TABLE 8 – LIST OF CRYPTOGRAPHIC KEYS, CRYPTOGRAPHIC KEY COMPONENTS, AND CSPS .. 13
TABLE 9 – ACRONYMS ... 25
Introduction

1.1 Purpose

This is a non-proprietary Cryptographic Module Security Policy for the B400™ Remote Support Appliance from Bomgar Corporation. This Security Policy describes how the B400™ Remote Support Appliance meets the security requirements of FIPS 140-2 and how to run the module in a secure FIPS 140-2 mode. This policy was prepared as part of the Level 2 FIPS 140-2 validation of the module.

FIPS 140-2 – Security Requirements for Cryptographic Modules details the U.S. and Canadian Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the Cryptographic Module Validation Program (CMVP) website, which is maintained by the National Institute of Standards and Technology (NIST) and the Communication Security Establishment Canada (CSEC): http://csrc.nist.gov/groups/STM/cmvp.

The B400™ Remote Support Appliance is referred to in this document as the Bomgar appliance, the cryptographic module, or the module.

1.2 References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The Bomgar website (http://www.bomgar.com/fips) contains information on the full line of products from Bomgar Corporation.
- The CMVP website (http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm) contains contact information for individuals to answer technical or sales-related questions for the module.

1.3 Document Organization

The Security Policy document is one document in a FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:

- Vendor Evidence document
- Finite State Model
- Other supporting documentation as additional references

This Security Policy and the other validation submission documentation were produced by Corsec Security, Inc. under contract to Bomgar Corporation. With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Validation Documentation is proprietary to Bomgar Corporation and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact Bomgar Corporation.
2.1 Overview

Bomgar Corporation specializes in appliance-based solutions for remote support. Their remote support appliances give support technicians secure remote control of computers over the Internet, LAN\(^2\), or WAN\(^3\). The software works through firewalls with no pre-installed client on the remote computer. With the Bomgar Remote Support Appliances, a support technician can see the screen and control the system virtually as if physically present.

![Bomgar B400](image)

Figure 1 – Bomgar B400

The B400™ Remote Support Appliance (shown in Figure 1 above) enables the use of remote support in multiple areas of an organization in a way that is secure, integrated and manageable. The Bomgar appliance can integrate with LDAP\(^4\) for secure user management, prevent sensitive data from being routed outside the organization, and support extensive auditing and recording of support sessions. The logging is performed by the Bomgar appliance, which allows for the review of all Customer and Support Representative interactions, including playback of all desktop screen data. The appliance also integrates with leading systems management and identity management solutions and includes an Application Programming Interface (API) for deeper integration. With Bomgar, support managers can create support teams, customize queues, and report on all support activity. Network administrators can also monitor the Bomgar appliance using Simple Network Management Protocol (SNMP).

The Bomgar appliance enables remote access to multiple common operating systems, including various Linux distributions. It also enables remote control of various kinds of systems, including laptops, desktops, servers, kiosks, point-of-sale systems, smartphones, and network devices.

The Bomgar appliance can work over internal and extended networks and can be internet-accessible. This allows support organization to reduce less effective means of support by driving requests through custom support portals hosted on the appliance. The Bomgar appliance can route support requests to the appropriate technician or team and mediate connections between Customers and Support Representatives, allowing chat sessions, file downloads/uploads, screen-sharing, remote control of desktops, and access to system and diagnostic information.

To enable the functionality described above, Bomgar has implemented architecture that places the Bomgar appliance at the center of all communications (see Figure 2 below for a typical deployment scenario). The Bomgar appliance provides a platform upon which one or more support sites are constructed. Sites

\(^2\) LAN – Local Area Network
\(^3\) WAN – Wide Area Network
\(^4\) LDAP – Lightweight Directory Access Protocol
represent individual help centers, and multiple sites can be set up to support multiple departments or groups in a company. Each site would offer a website interface using Hypertext Transfer Protocol (HTTP) for unauthenticated services and HTTP over TLS\(^5\) (HTTPS) for authenticated services, in addition to accepting direct client connections over a protocol running on top of TLS.

The Bomgar appliance has two primary components that provide the appliance’s functionality. The first is the Firmware that provides system-level configuration of a Bomgar appliance. Settings such as IP\(^7\) addresses and SSL/TLS configuration are all configured via the Firmware interface. The second component is made up of the software that provides site-level configuration, as well as the software clients that users interact with. The web interface behind the /login page is part of the software, as are the Representative Console, Customer Client, Connection Agent, and all other clients which are downloadable from the Bomgar appliance.

The B400™ Remote Support Appliance is validated at the FIPS 140-2 Section levels in Table 1.

Table 1 – Security Level Per FIPS 140-2 Section

<table>
<thead>
<tr>
<th>Section</th>
<th>Section Title</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cryptographic Module Specification</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Cryptographic Module Ports and Interfaces</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Roles, Services, and Authentication</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Finite State Model</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Physical Security</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Operational Environment</td>
<td>N/A(^8)</td>
</tr>
<tr>
<td>7</td>
<td>Cryptographic Key Management</td>
<td>2</td>
</tr>
</tbody>
</table>

\(^5\) TLS – Transport Layer Security
\(^6\) Rep – Representative; SSL – Secure Sockets Layer; DMZ – Demilitarized Zone; POS – Point of Sale; AD – Active Directory
\(^7\) IP – Internet Protocol
\(^8\) N/A – Not applicable
2.2 Module Specification

The B400™ Remote Support Appliance (running Firmware version 3.2.2FIPS and Software version 10.6.2FIPS on Hardware versions B400 or B400 r1) is a multi-chip standalone module that meets overall Level 2 FIPS 140-2 requirements.

Physically, the module is composed of the components of a standard server platform. Figure 3 shows a block diagram for the B400 and identifies the various components, connections, and information flows. The cryptographic boundary of the module (denoted by the dotted line in Figure 3) is defined by the outer case of the appliance, which surrounds the complete set of hardware, firmware, and software components. Note that, though Figure 3 shows a single hard disk, the B400 can support up to eight hard disks to support RAID\(^{10}\) functionality. Additionally, please note that the B400 power supply is not included within the cryptographic boundary.

\(^{9}\) EMI/EMC – Electromagnetic Interference / Electromagnetic Compatibility

\(^{10}\) RAID – Redundant Array of Independent Disks

© 2011 Bomgar Corporation

This document may be freely reproduced and distributed whole and intact including this copyright notice.
2.3 Module Interfaces

The module’s design separates the physical ports into four logically distinct and isolated categories. They are:

- Data Input
- Data Output
- Control Input
- Status Output

In addition, the modules receive power via a defined power input interface.

Data input/output are the network data packets utilizing the services provided by the module. These packets enter and exit the module through the network ports. Control input consists of both configuration and administration data entering the module through the web interface and also the input for the power and reset buttons. Status output consists of status information relayed via the LED indicators and the web interface.

The physical ports and interfaces of the module are depicted in Figure 4 below.

![Figure 4 – Front and Rear View](image)

Of the ports and interfaces depicted in the figure above, only the following are enabled to be used in FIPS mode of operation:

- Network ports
- Power button
- Reset button
- Power connectors
- LEDs

11 LED – Light Emitting Diode
Table 2 lists the physical interfaces available in the Bomgar appliance and also provides the mapping from the physical interfaces to logical interfaces as defined by FIPS 140-2.

Table 2 – Physical Ports and Logical Interfaces

<table>
<thead>
<tr>
<th>FIPS 140-2 Logical Interface</th>
<th>B400 Physical Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Input</td>
<td>Network ports</td>
</tr>
<tr>
<td>Data Output</td>
<td>Network ports</td>
</tr>
<tr>
<td>Control Input</td>
<td>Network ports, power button, reset button</td>
</tr>
<tr>
<td>Status Output</td>
<td>LEDs, network ports</td>
</tr>
<tr>
<td>Power Input</td>
<td>Power connectors</td>
</tr>
</tbody>
</table>

The cryptographic module has a number of LEDs which indicate the state of the module. The descriptions for the LEDs are listed in Table 3 below.

Table 3 – LED Descriptions

<table>
<thead>
<tr>
<th>LED</th>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>On</td>
<td>System on</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>System off</td>
</tr>
<tr>
<td>Hard Disk Drive (HDD)</td>
<td>On/Blink</td>
<td>HDD activity</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>No HDD activity</td>
</tr>
<tr>
<td>LAN1/LAN2</td>
<td>On</td>
<td>Linked</td>
</tr>
<tr>
<td></td>
<td>Blink</td>
<td>Network activity</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Disconnected</td>
</tr>
<tr>
<td>Overheat/Fan</td>
<td>On</td>
<td>System overheat condition</td>
</tr>
<tr>
<td></td>
<td>Blink</td>
<td>Fan failure</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>System normal</td>
</tr>
<tr>
<td>Power fail</td>
<td>On</td>
<td>Power supply failure</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>System off</td>
</tr>
</tbody>
</table>

2.4 Roles and Services

As required by FIPS 140-2, the module supports a Crypto-Officer (CO) role and a User role. The User role comprises an Instance-Admin role and an Instance-User role.

The module supports role-based authentication for the Crypto-Officer and identity-based authentication for the Instance-Admin and Instance-User roles. Operators explicitly assume the role of Instance-Admin or
Instance-User based on the authentication credentials used. The credentials used determine the services available to the operator.

2.4.1 Crypto-Officer Role

The Crypto-Officer role is the administrator for the module and is responsible for the initial setup and configuration. The Crypto-Officer has administrator rights to monitor and manage the firmware component’s configuration, manage the CO account, and reset the default Instance-Admin account passwords.

2.4.2 Instance-Admin Role

The Instance-Admin has administrator rights to monitor and manage the software instance’s configuration, manage Instance-Admin accounts, and manage Instance-User accounts.

2.4.3 Instance-User Role

The Instance-User can access the support services in the module based on the permissions set by the Instance-Admin. The Instance-Admin has to access to Instance-Users to access services on the modules.

2.4.4 Services

Services provided to authenticated operators are provided in Table 4 below. Please note that the keys and Critical Security Parameters (CSPs) listed indicate the type of access required:

- Read: The CSP is read
- Write: The CSP is established, generated, modified, or zeroized

<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
<th>Operator</th>
<th>Input</th>
<th>Output</th>
<th>CSP and Type of Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manage Bomgar appliance</td>
<td>Configure IP(^{12}) and TLS settings</td>
<td>CO</td>
<td>Command</td>
<td>Command response</td>
<td>RSA public key – Read, Write RSA private key – Read, Write Session Key – Read, Write PRNG(^{13}) seed – Read, Write CO Password – Read</td>
</tr>
<tr>
<td>settings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manage CO account</td>
<td>Manage CO officer account password</td>
<td>CO</td>
<td>Command</td>
<td>Command response</td>
<td>RSA public key – Read RSA private key – Read Session Key – Read, Write PRNG seed – Read, Write CO Password – Read</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset Instance-Admin</td>
<td>Reset Instance-Admin account password</td>
<td>CO</td>
<td>Command</td>
<td>Command response</td>
<td>RSA public key – Read RSA private key – Read Session Key – Read, Write PRNG seed – Read, Write Instance-Admin Password – Write</td>
</tr>
<tr>
<td>password</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{12}\) IP – Internet Protocol
\(^{13}\) PRNG – Pseudo Random Number Generator
2.4.5 Unauthenticated Operator Services

The module provides a service to unauthenticated operators as listed in Table 5 below.

<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
<th>Operator</th>
<th>Input</th>
<th>Output</th>
<th>CSP and Type of Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive support service</td>
<td>Receive support services</td>
<td>Command</td>
<td>Command response</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

2.4.6 Authentication Mechanism

The Crypto-Officer can access the module remotely over a TLS session. The Crypto-Officer authenticates to the module using a user ID and password. Instance-Admins and Instance-Users authenticate themselves with a user ID and password combination. Instance-Admins and Instance-Users can also authenticate to the module via one of the following configurable methods: LDAP, Kerberos, or RADIUS.

Table 6 lists the authentication mechanisms used by the module.
<table>
<thead>
<tr>
<th>Authentication Type</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password</td>
<td>Passwords are required to be at least 6 characters in length and can be a maximum of 64 characters in length. Numeric, alphabetic (upper and lower cases), and keyboard/extended characters can be used, for a total of 95 characters to choose from. A six-character password will yield a total of $95^6 = 735,091,890,625$ possible combinations.</td>
</tr>
</tbody>
</table>

2.5 Physical Security

The **B400™ Remote Support Appliance** is a multi-chip standalone cryptographic module and is enclosed in a hard and opaque metal case that completely encloses all of the internal components of the module. Tamper-evident labels are applied to the case to provide physical evidence of attempts to gain access to the module’s internal components. All of the module’s components are production grade. The placement of tamper-evident labels can be found in Section 3.1 of this document.

2.6 Operational Environment

The operational environment requirements do not apply to the Bomgar appliance. The module provides only a limited operational environment; it does not provide a general-purpose operating system environment.

2.7 Cryptographic Key Management

The module implements the FIPS-Approved algorithms listed in Table 7.

Table 7 – FIPS-Approved Algorithm Implementations

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>B400 Certificate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Encryption Standard (AES) in CBC(^{14}), ECB(^ {15}), OFB(^ {16}), and CFB(^ {17})128 modes (with 128-bit, 192-bit, and 256-bit keys)</td>
<td>1563</td>
</tr>
<tr>
<td>Triple Data Encryption Standard (TDES) – CBC, ECB, OFB, CFB8, and CFB64 modes (with 2- and 3-key)</td>
<td>1027</td>
</tr>
<tr>
<td>RSA(^ {18}) ANSI(^ {19}) X9.31 (key generation) – 1024-, 1536-, 2048-bit</td>
<td>762</td>
</tr>
<tr>
<td>RSA Public Key Cryptography Standard #1 (PKCS#1) v1.5 (sign/verify) – 1024-, 2048-, 3072-, and 4096-bit</td>
<td>762</td>
</tr>
<tr>
<td>RSA Probabilistic Signature Scheme (PSS) (sign/verify) – 1024-, 2048-, 3072-, and 4096-bit</td>
<td>762</td>
</tr>
<tr>
<td>Secure Hash Algorithm (SHA)-1, SHA-224, SHA-256, SHA-384, and SHA-512</td>
<td>1388</td>
</tr>
</tbody>
</table>

\(^{14}\) CBC – Cipher Block Chaining
\(^{15}\) ECB – Electronic Codebook
\(^{16}\) OFB – Output Feedback
\(^{17}\) CFB – Cipher Feedback
\(^{18}\) RSA – Rivest, Shamir, and Adleman
\(^{19}\) ANSI – American National Standards Institute
Algorithm	B400 Certificate Number
Keyed-Hash Message Authentication Code (HMAC) using SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512 | 915
ANSI X9.31 A.2.4 PRNG | 844

The module also supports the following non-FIPS-Approved algorithms:

- RSA key transport: 1024-, 1536-, 2048-, 3072-, 4096-bits (key wrapping; key establishment methodology provides between 80 and 150 bits of encryption strength)
- RC4
- RC4-40
- DES
- DES-40
- MD5

The module supports the critical security parameters (CSPs) in Table 8.

Table 8 – List of Cryptographic Keys, Cryptographic Key Components, and CSPs

<table>
<thead>
<tr>
<th>CSP</th>
<th>CSP Type</th>
<th>Generation / Input</th>
<th>Output</th>
<th>Storage</th>
<th>Zeroization</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA private key</td>
<td>1024-, 1536-, 2048-, 3072-, or 4096-bit RSA private key</td>
<td>Internally generated or imported via a secure TLS session</td>
<td>Exits only via a secure TLS session</td>
<td>Hard disk in plaintext</td>
<td>By command or overwritten by another key or by factory reset</td>
<td>Key exchange for TLS sessions</td>
</tr>
<tr>
<td>RSA public key</td>
<td>1024-, 1536-, 2048-, 3072-, or 4096-bit RSA public key</td>
<td>Internally generated or imported via a secure TLS session</td>
<td>Exits in plaintext form</td>
<td>Hard disk in plaintext</td>
<td>By command or overwritten by another key or by factory reset</td>
<td>Key exchange for TLS sessions</td>
</tr>
</tbody>
</table>
| Session key | • 128-bit AES CBC 128 key
• 256-bit AES CBC 128 key
• 192-bit TDES CBC 112 key | Internally generated | Exits in encrypted form during TLS handshake | Resides on volatile memory only in plaintext | By power cycle or session termination | Data encryption and decryption for TLS sessions |
| Crypto-Officer password | 6-character minimum password | Enters the modules in encrypted form | Never exits the modules | Hard disk in hashed form | Overwritten by another password or zeroized by factory reset | Authentciates the CO |

20 RC4 – Rivest Cipher 4
21 MD5 – Message Digest 5
2.8 EMI/EMC

The module was tested and found conformant to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class A (i.e., for business use).

2.9 Self-Tests

2.9.1 Power-Up Self-Tests

The Bomgar appliance performs the following self-tests at power-up to verify the integrity of the software/firmware and the correct operation of the FIPS-Approved algorithm implementations employed by the module:

- Software/Firmware integrity check using a SHA-1 EDC\(^{22}\)
- AES Known Answer Test (KAT)
- TDES KAT
- RSA KATs (sign/verify and encrypt/decrypt)
- HMAC KATs (SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512)
- SHA-1 KAT (note that all SHA-2 implementations are tested as part of the underlying mechanism of the HMAC SHA self-tests)
- ANSI X9.31 PRNG KAT

If any of the power-up self-tests fail, then the module enters an error state, logs the error to a file, and disables all cryptographic operations.

\(^{22}\) EDC – Error Detection Code

© 2011 Bomgar Corporation

This document may be freely reproduced and distributed whole and intact including this copyright notice.
2.9.2 Conditional Self-Tests

The Bomgar appliance performs the following conditional self-tests:

- ANSI X9.31 A.2.4 PRNG Continuous RNG test: Verifying the correct operation of the PRNG algorithm implementation.
- RSA pair-wise consistency check (sign/verify and encrypt/decrypt): Verifying that a newly generated RSA key pair works properly.
- Software/Firmware load test: Verifying the upgrade packages. Upgrade packages are digitally-signed using RSA-4096, and are only loaded once the digital signature is verified.

If any of the conditional self-tests fail, then the module enters a soft error state until the error can be cleared.

2.10 Mitigation of Other Attacks

This section is not applicable. The module does not claim to mitigate any attacks beyond the FIPS 140-2 Level 2 requirements for this validation.
3 Secure Operation

The B400™ Remote Support Appliance meets Level 2 requirements for FIPS 140-2. The sections below describe how to ensure that the module is running securely.

3.1 Initial Setup

The following sections provide the necessary step-by-step instructions for the secure hardware installation of the B400™ Remote Support Appliance, as well as the steps necessary to configure the module for a FIPS-Approved mode of operation. If you have any questions or if issues arise at any point during the installation and configuration of your Bomgar appliance, contact the Bomgar support team toll-free at 1-877-826-6427 x2 or internationally at +01-601-519-0123 x2.

3.1.1 B400 Hardware Setup

In order to set up the Bomgar B400, the following steps will need to be performed by an authorized individual:

1. Unpack the Bomgar B400.
2. Reseat the hard drives:
 a. Remove each of the hard drives by pressing the dark red buttons to unlatch the drive carrier handles. Use the handles to pull the drives about halfway out of the Bomgar chassis.
 b. As you reinsert each of the drives, the carrier handles will begin to close. Close the handles (you will feel them lock) and fully insert the drives into the B400 by firmly pressing on the left and right edges of the front of the drive carriers. Even if no movement is felt, this helps to ensure that the disk is completely engaged.
3. Attach the B400’s front bezel by engaging first the left side of the faceplate and then the right side.
4. Inspect the tamper-evident labels as described in Section 3.1.2 below. The tamper evident labels shall be installed for the module to operate in a FIPS Approved mode of operation.
5. Follow the procedures included in the Hardware Setup Guide to install your B400 in your server rack.
6. After you have installed the Bomgar B400 per the Hardware Setup Guide, refer to the included Getting Started Guide and configure your network settings.
7. Once the Bomgar B400’s network settings are correctly configured, return to Section 3.1.2.1 in this document to configure your B400 for FIPS mode.

3.1.2 B400 Label Inspection and Application

The B400 will be shipped from the factory with all required labels pre-applied except for the front bezel labels. This is to allow the end-user to reseat the drives upon receipt before affixing the front bezel to the appliance. Upon delivery, the Crypto-Officer individual should ensure that the module was not tampered with during shipment and that the labels have been applied properly. Also, tamper-evident labels shall be routinely inspected for damage by the Crypto-Officer, and replaced accordingly.

1. Inspect all tamper-evident labels that shipped pre-applied to the B400 chassis (see Figure 5), ensuring that each label shows no sign of tampering and is properly placed. Any attempt to reposition or remove the label will result in the voiding of that label and leave a residue on the surface. If you find a label that is questionable in appearance, contact Bomgar support toll-free at 1-877-826-6427 x2 or internationally at +01-601-519-0123 x2.
2. To apply the front bezel labels, first you must clean the top surface and front bezel of the B400 with isopropyl alcohol in the area where the tamper-evident labels will be placed.
3. Holding label by edges, place label on surface as indicated in the figures below.

4. Apply the included tamper-evident labels by rubbing gently across entire label to ensure adhesion to the surface.

 NOTE: Any attempt to reposition or remove the label will result in the voiding of that label and leave a residue on the surface.

5. Allow the labels to fully adhere to the B400 within 24 hours in a physically secure environment before placing it in the intended environment.

![Figure 5 – Sealed Top Cover](image)

![Figure 6 – Sealed front bezel to chassis bottom (Left) and Sealed front bezel to chassis top (Right)](image)
3.1.2.1 B400 FIPS Mode Configuration

Once all necessary initialization procedures have been performed as described in the preceding sections, the module needs to be configured to comply with FIPS 140-2 requirements. Once configured as described in this section, the module will be considered to be in FIPS-Approved mode, which can be verified at any time by viewing the SSL Configuration page and ensuring it matches Figure 9.

FIPS-Approved Mode Configuration

Log into the Bomgar Appliance Administrative Interface (e.g. support.example.com/appliance) and configure your settings as described below:\(^\text{23}\):

1. Navigate to the IP Configuration page under the Networking tab (see Figure 8 below).
2. Click the default 169.254.1.1 IP address to edit it.
3. Set the Telnet Server setting to Simplified.
4. Click the Save Changes button to commit these configuration changes.

\(^\text{23}\) NOTE: The module comes preloaded with a default password. The Crypto-Officer is responsible for changing this password before proceeding with the configuration steps.
5. Navigate to the **SSL Configuration** page under the **Security** tab (see Figure 9 below).

6. Disable SSLv2 by ensuring that the **Allow SSLv2** checkbox is cleared.

7. Disable SSLv3 by ensuring that the **Allow SSLv3** checkbox is cleared.

8. Ensure that only FIPS-Approved cipher suites are enabled:
 - TLS_RSA_WITH_AES_128_CBC_SHA
 - TLS_RSA_WITH_3DES_EDE_CBC_SHA

9. Click the **Save** button to commit these configuration changes.
3.1.3 Firmware/Software Version Verification

To ensure that the module is running the validated versions of the module Firmware and Software, operators should compare the running versions to those documented in this Security Policy. To obtain the version of the Firmware, an operator must visit the /appliance site, which is the interface used by the Crypto-Officer. To obtain the software version, an operator must visit the /login site, which requires the use of the credentials of the Instance-Admin role. Upon signing in, both display the "Status" page by default, showing the version number ("3.2.2fips (FIPS 140-2) (29180)" and "10.6.2fips (FIPS 140-2) (29326)").

3.2 FIPS Mode Compliance

Any time the module deviates from the configuration detailed in Section 3.1.2.1 above, the module will be considered to be in a non-FIPS-Approved mode of operation.

Additionally, the guidance provided below must be followed to ensure that the module remains in its FIPS-Approved mode of operation. Failure to do so will result in non-compliance.
• When entering OR leaving FIPS-Approved mode, navigate to the Basics page under the Status tab of the /appliance interface and clear all existing CSPs by clicking the Reset Appliance to Factory Defaults button.

NOTE: All Firmware and Software will be completely uninstalled after reset.

![Status Basics Page](image)

Figure 10 – Status Basics Page

• Never install software or firmware versions other than those listed on the cover page of this security policy. Only the software and firmware versions listed are considered part of the validated configuration.

• When using the module’s administrative interface, do not use the Advanced Support page under the Support tab of the /appliance interface.
Figure 11 – Advanced Support Page

- Enforce minimum password requirements for the Instance-Admin and Instance-User roles using the Security page under the Management tab.

Figure 12 – Security Page

- When using the management interface, do not use the Support page under the Management tab of the /login interface.
3.3 Crypto-Officer Guidance

The Crypto-Officer can initiate the execution of self-tests and can access the module’s status reporting capability. Self-tests can be initiated at any time by power cycling the module.

3.3.1 Management

It is the responsibility of the Crypto-Officer to ensure that the module is set up to run securely. Please refer to Section 3.2 for guidance that the Crypto-Officer must follow for the module to be considered in a FIPS-Approved mode of operation. Additionally, the Crypto-Officer should be careful to protect any secret/private keys in their possession.

For details regarding the management of the module, please refer to the appropriate Bomgar appliance Administrative User’s Guide.

3.3.2 Status Monitoring

Error message and status review is the responsibility of the Crypto-Officer. When any of the module’s self-tests fail, the module reports an error message which can be viewed over a network connection. This connection is set using the IP Configuration page under the Networking tab as shown in Figure 8 in Section 3.1.2.1. Issuing the command "telnet [ip-address-assigned-to-network-port]" brings up the following options:

1. Show Error Message
2. Shutdown the Device
3. Reboot the Device
4. Reset the Device to Factory Default
5. Done

Issuing the Show Error Message command will display the reported error message.

3.3.3 Zeroization

Session keys are zeroized at the termination of the session but are also cleared when the module is power-cycled. All other CSPs may be zeroized by either:

- issuing the **Reset Appliance to Factory Defaults** command (found on the Basics page under the Status tab) and rebooting the module, or
- selecting the **Reset the Device to Factory Default** option from a telnet session and rebooting the module.

The zeroization of keys and CSPs is immediate, providing insufficient time for an attacker to compromise them. The Crypto-Officer must wait until the module has successfully rebooted in order to verify that zeroization has completed.

3.4 Instance-Admin and Instance-User Guidance

The Instance-Admins do not have the ability to configure sensitive information on the modules, with the exception of the Instance-User and their own passwords. The Instance-Admin has the ability to configure the password strength policy for Instance-Admins and Instance-Users. Please refer to Section 3.2 above for guidance that should be followed for the modules to be considered in a FIPS-Approved mode of operation.

Instance-Users do not have the ability to configure sensitive information on the modules, with the exception of their passwords. The Instance-Admins and Instance-Users shall employ strong passwords that meet or exceed the password strength requirements documented in Section 2.4.6 of this document, and must not reveal their passwords to anyone.
Acronyms

This section describes the acronyms used in this document.

Table 9 – Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Active Directory</td>
</tr>
<tr>
<td>AES</td>
<td>Advanced Encryption Standard</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>CBC</td>
<td>Cipher Block Chaining</td>
</tr>
<tr>
<td>CFB</td>
<td>Cipher Feedback</td>
</tr>
<tr>
<td>CMVP</td>
<td>Cryptographic Module Validation Program</td>
</tr>
<tr>
<td>CO</td>
<td>Crypto-Officer</td>
</tr>
<tr>
<td>CSEC</td>
<td>Communication Security Establishment Canada</td>
</tr>
<tr>
<td>CSP</td>
<td>Critical Security Parameter</td>
</tr>
<tr>
<td>DMZ</td>
<td>Demilitarized Zone</td>
</tr>
<tr>
<td>ECB</td>
<td>Electronic Codebook</td>
</tr>
<tr>
<td>EDC</td>
<td>Error Detection Code</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic Compatibility</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference</td>
</tr>
<tr>
<td>FIPS</td>
<td>Federal Information Processing Standard</td>
</tr>
<tr>
<td>HDD</td>
<td>Hard Disk Drive</td>
</tr>
<tr>
<td>HMAC</td>
<td>(Keyed-) Hash Message Authentication Code</td>
</tr>
<tr>
<td>HTTP</td>
<td>Hypertext Transfer Protocol</td>
</tr>
<tr>
<td>HTTPS</td>
<td>Hypertext Transfer Protocol over TLS</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>KAT</td>
<td>Known Answer Test</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LDAP</td>
<td>Lightweight Directory Access Protocol</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>MD5</td>
<td>Message Digest 5</td>
</tr>
<tr>
<td>N/A</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>OFB</td>
<td>Output Feedback</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral Component Interconnect</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>PKCS</td>
<td>Public Key Cryptography Standard</td>
</tr>
<tr>
<td>POS</td>
<td>Point of Sale</td>
</tr>
<tr>
<td>PRNG</td>
<td>Pseudo Random Number Generator</td>
</tr>
<tr>
<td>PSS</td>
<td>Probabilistic Signature Scheme</td>
</tr>
<tr>
<td>RAID</td>
<td>Redundant Array of Independent Disks</td>
</tr>
<tr>
<td>RC4</td>
<td>Rivest Cipher 4</td>
</tr>
<tr>
<td>RNG</td>
<td>Random Number Generator</td>
</tr>
<tr>
<td>RSA</td>
<td>Rivest, Shamir, and Adleman</td>
</tr>
<tr>
<td>SHA</td>
<td>Secure Hash Algorithm</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>SSL</td>
<td>Secure Sockets Layer</td>
</tr>
<tr>
<td>TDES</td>
<td>Triple Data Encryption Standard</td>
</tr>
<tr>
<td>TLS</td>
<td>Transport Layer Security</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide Area Network</td>
</tr>
</tbody>
</table>