© Copyright 2012, 2016 LogRhythm, Inc. All rights reserved.

This document contains proprietary and confidential information of LogRhythm, Inc., which is protected by copyright and possible non-disclosure agreements. The Software described in this Guide is furnished under the End User License Agreement or the applicable Terms and Conditions (“Agreement”) which governs the use of the Software. This Software may be used or copied only in accordance with the Agreement. No part of this Guide may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording for any purpose other than what is permitted in the Agreement.

Disclaimer
The information contained in this document is subject to change without notice. LogRhythm, Inc. makes no warranty of any kind with respect to this information. LogRhythm, Inc. specifically disclaims the implied warranty of merchantability and fitness for a particular purpose. LogRhythm, Inc. shall not be liable for any direct, indirect, incidental, consequential, or other damages alleged in connection with the furnishing or use of this information.

Trademark
LogRhythm is a registered trademark of LogRhythm, Inc. All other company or product names mentioned may be trademarks, registered trademarks, or service marks of their respective holders.
Table of Contents

1. Introduction.. 4
2. Overview ... 5
 2.1. Ports and Interfaces ... 7
 2.2. Modes of Operation .. 8
 2.3. Module Validation Level ... 9
3. Roles .. 10
4. Services .. 11
 4.1. User Services ... 11
 4.2. Crypto Officer Services .. 12
5. Policies.. 14
 5.1. Security Rules .. 14
 5.2. Identification and Authentication Policy .. 15
 5.3. Access Control Policy and SRDIs ... 15
 5.4. Physical Security ... 17
6. Crypto Officer Guidance .. 18
 6.1. Secure Operation Initialization Rules ... 18
 6.2. Approved Mode ... 19
7. Mitigation of Other Attacks ... 21
8. Terminology and Acronyms ... 22
9. References... 23
1. Introduction

LogRhythm is an integrated log management and security information event management (SIEM) solution. It is a distributed system containing several cryptographic modules, which support secure communication between components. A LogRhythm deployment is made up of System Monitor Agents, Log Managers, Advanced Intelligence (AI) Engine Servers, Event Manager, and Consoles. Each System Monitor Agent collects log data from network sources. Each Log Manager aggregates log data from System Monitor Agents, extracts metadata from the logs, and analyzes content of logs and metadata. A Log Manager may forward log metadata to an AI Engine Server and may forward significant events to Event Manager. An AI Engine Server analyzes log metadata for complex events, which it may forward to Event Manager. Event Manager analyzes events and provides notification and reporting. LogRhythm Console provides a graphical user interface (GUI) to view log messages, events, and alerts. Console also is used to manage LogRhythm deployments. LogRhythm relies on Microsoft SQL Server. LogRhythm stores log data in SQL Server databases on Log Manager and Event Manager. It stores configuration information in SQL Server databases on Event Manager. System Monitor Agent, Log Manager, AI Engine Server, Event Manager, and Console each include a cryptographic module.

This document describes the security policy for the LogRhythm Log Manager cryptographic module. It covers the secure operation of the Log Manager cryptographic module including initialization, roles, and responsibilities for operating the product in a secure, FIPS-compliant manner. This module is validated at Security Level 1 as a multi-chip standalone module. The module relies on the Microsoft Windows Server 2008 R2 Cryptographic Primitives Library (bcryptprimitives.dll) (certificate #1336) cryptographic module.
2. Overview

The LogRhythm Log Manager cryptographic module provides cryptographic services to a Log Manager. In particular, these services support secure communication with other LogRhythm components (System Monitor Agents and AI Engine Servers) and SQL Server databases.

A Log Manager is a server running the LogRhythm Mediator Server service and Microsoft SQL Server 2008 R2. The Mediator Server service processes log messages. The Log Manager SQL Server stores log messages as well as metadata the Mediator extracts from logs. Log Manager runs on a general purpose computer (GPC). The Log Manager operating system is Windows Server 2008 R2 SP1. The Log Manager cryptographic module was tested on an x64 processor.

The Log Manager cryptographic module is a software module. Its physical boundary is the enclosure of the standalone GPC on which the Log Manager runs. The software within the logical cryptographic boundary consists of all software assemblies for the Mediator Server service. The Mediator Server software consists of the following files in “C:\Program Files\LogRhythm\LogRhythm Log Manager”:

- lrgeoip.dll
- lrhmcommmgr.dll
- nsoftware.IPWorks.dll
- nsoftware.IPWorksSSH.dll
- nsoftware.IPWorksSSL.dll
- nsoftware.IPWorksSSNMP.dll
- nsoftware.System.dll
- Xceed.Compression.dll
- Xceed.Compression.Formats.dll
- Xceed.FileSystem.dll
- Xceed.GZip.dll
- Xceed.Tar.dll
- sccscomn.dll
- scmedeng.dll
- scmedsvr.exe
- scmmessage.dll
- scmpeeng.dll
- scopsec.dll
- scshared.dll
- scvbcorm.dll

Other files and subdirectories of “C:\Program Files\LogRhythm\LogRhythm Log Manager” are outside the logical cryptographic boundary. The excluded files are:
• EULA.rtf
• lrconfig.exe
• lrmedperf.dll
• scmedsvr.exe.config
• scsuicomin.dll
• Infragistics2.Shared.v9.2.dll
• Infragistics2.Win.Misc.v9.2.dll
• Infragistics2.Win.UltraWinDataSource.v9.2.dll
• Infragistics2.Win.UltraWinEditors.v9.2.dll
• Infragistics2.Win.UltraWinGrid.v9.2.dll
• Infragistics2.Win.UltraWinTabControl.v9.2.dll
• Infragistics2.Win.UltraWinToolbars.v9.2.dll
• Infragistics2.Win.v9.2.dll

The excluded directories (along with their subdirectories) are:

• config
• logs
• state

The Log Manager cryptographic module relies on a cryptographic service provider from the operating system, namely BCRYPTPRIMITIVES.DLL. The cryptographic service provider from the operating system is the following FIPS 140-2 validated cryptographic module:

Microsoft Windows Server 2008 R2 Cryptographic Primitives Library
Certificate #1336
2.1. Ports and Interfaces

The Log Manager cryptographic module ports consist of one or more network interface cards (NIC) on the Log Manager GPC. NIC are RJ45 Ethernet adapters, which are connected to IP network(s).

All data enters the Log Manager Server physically through the NIC and logically through the GPC’s network driver interface to the module. Hence, the NIC correspond to the data input, data output, control input, and status output interfaces defined in [FIPS 140-2]. Although located on the same GPC as the cryptographic module, the Windows operating system file system and Windows Event Log are outside the logical cryptographic boundary. Hence, the file system and Windows Event Log also present data input, data output, control input, and status output logical interfaces.

Data input to Log Manager is made up of log messages. System Monitor Agents collect log messages and send them to the Log Manager over a TLS socket connection. Log Manager can archive log data to the Windows file system. Data output from Log Manager comprises log data sent to AI Engine Server and to SQL Servers as well as data written to the local file system. Log Manager sends log data to the AI Engine Server over a TLS socket connection.
Log Manager sends raw log data to the Log Manager SQL Server and event data to the Event Manager SQL Server using TLS connections. Log data output to the local file system consists of archive plain text log data, suspense log files, and unprocessed logs. The Console provides a graphical interface to configure the Log Manager cryptographic module, but configuration information reaches the module indirectly through the Event Manager SQL Server. (The Console is a separate and distinct component of a LogRhythm deployment.) The Console connects to Event Manager SQL Server and stores configurations in a database. The Mediator service retrieves the configuration information from the database. Hence, the TLS connection to the Event Manager SQL Server serves as the control input interface. The status output interface comprises the TLS connection to the Event Manager SQL Server, the local file system, and the Windows Event Log. The Log Manager sends status information to Event Manager SQL Server using TLS, which makes it available to the Console. The Log Manager writes status information to log files in the file system and the Windows Event Log.

2.2. Modes of Operation

The Log Manager cryptographic module has two modes of operation: Approved and non-Approved. Approved mode is a FIPS-compliant mode of operation. The module provides the cryptographic functions listed in Table 1 and Table 2 below. While the functions in Table 2 are not FIPS Approved, they are allowed in Approved mode of operation when used as part of an approved key transport scheme where no security is provided by the algorithm.

<table>
<thead>
<tr>
<th>Label</th>
<th>Approved Cryptographic Function</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>Advanced Encryption Algorithm</td>
<td>FIPS 197</td>
</tr>
<tr>
<td>HMAC-SHA-1</td>
<td>Keyed-Hash Message Authentication Code SHA-1</td>
<td>FIPS 198-1</td>
</tr>
<tr>
<td>DRBG</td>
<td>Deterministic Random Bit Generator</td>
<td>SP 800-90A</td>
</tr>
<tr>
<td>RSA</td>
<td>Rivest Shamir Adleman Signature Algorithm</td>
<td>FIPS 186-2 (PKCS#1 v2.1 and ANSI X9.31-1998)</td>
</tr>
<tr>
<td>SHS</td>
<td>Secure Hash Algorithm</td>
<td>FIPS 180-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Label</th>
<th>Non-Approved Cryptographic Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5</td>
<td>Message-Digest Algorithm 5</td>
</tr>
<tr>
<td>HMAC-MD5</td>
<td>Keyed Hash Message Authentication Code MD5</td>
</tr>
</tbody>
</table>

The Log Manager cryptographic module does not implement a bypass capability.
2.3. **Module Validation Level**

The module meets an overall FIPS 140-2 compliance of Security Level 1.

Table 3 FIPS 140-2 Non-proprietary Security Policy

LogRhythm 6.0.4 or 6.3.4 Log Manager Security Levels

<table>
<thead>
<tr>
<th>Security Requirements Section</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Module Specification</td>
<td>1</td>
</tr>
<tr>
<td>Cryptographic Module Ports and Interfaces</td>
<td>1</td>
</tr>
<tr>
<td>Roles, Services, and Authentication</td>
<td>1</td>
</tr>
<tr>
<td>Finite State Model</td>
<td>1</td>
</tr>
<tr>
<td>Physical Security</td>
<td>N/A</td>
</tr>
<tr>
<td>Cryptographic Key Management</td>
<td>1</td>
</tr>
<tr>
<td>Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)</td>
<td>1</td>
</tr>
<tr>
<td>Self-Tests</td>
<td>1</td>
</tr>
<tr>
<td>Design Assurance</td>
<td>1</td>
</tr>
<tr>
<td>Mitigation of Other Attacks</td>
<td>N/A</td>
</tr>
<tr>
<td>Operational Environment</td>
<td>1</td>
</tr>
</tbody>
</table>
3. Roles

In Approved mode, Log Manager cryptographic module supports two roles: User and Crypto Officer. Roles are assumed implicitly, since the module does not provide user authentication.

1. User Role: Operators with the User role are other components of a LogRhythm deployment configured to interact with the Log Manager. These are: System Monitor Agents, AI Engine Server, Log Manager SQL Server, and Event Manager SQL Server.

2. Crypto Officer Role: Operators with the Crypto Officer role have direct access to the cryptographic module. Responsibilities of the Crypto Officer role include initial configuration, on-demand self test, and status review.
4. Services
In Approved mode, the services available to an operator depend on the operator’s role. Roles are assumed implicitly.

4.1. User Services

4.1.1. Agent Write Log Data
This service provides a protected communication channel to transfer log data collected by the System Monitor Agent to a Log Manager. The channel is established in accordance with the Log Manager configuration. (See service Write Log Manager Configuration.) The connection uses TLS 1.0 with cipher suite based on RSA key agreement with AES 128-bit encryption for confidentiality and SHA-1 for integrity protection (TLS_RSA_WITH_AES_128_CBC_SHA).

4.1.2. Read Agent Configuration
This service provides a protected communication channel to transfer configuration data from a Log Manager to the System Monitor Agent. The channel is established in accordance with the Log Manager configuration. (See service Write Log Manager Configuration.) The connection uses TLS 1.0 with cipher suite based on RSA key agreement with AES 128-bit encryption for confidentiality and SHA-1 for integrity protection (TLS_RSA_WITH_AES_128_CBC_SHA).

4.1.1. AI Engine Server Read Log Data
This service provides a protected communication channel to transfer log data from Log Manager to an AI Engine Server. The channel is established in accordance with the Log Manager configuration set. (See service Write Log Manager Configuration.) The connection uses TLS 1.0 with cipher suite based on RSA key agreement with AES 128-bit encryption for confidentiality and SHA-1 for integrity protection (TLS_RSA_WITH_AES_128_CBC_SHA).

4.1.2. Event Manager Read Log Data
This service provides a protected communication channel to transfer log data from the Log Manager to Event Manager SQL Server. An operator in the Crypto Officer role sets up communication between the Log Manager and the Event Manager SQL Server. (See service Configure Log Manager Communication.) The channel is established in accordance with the Log Manager configuration. (See service Write Log Manager Configuration.) The connection uses TLS 1.0 with cipher suite based on RSA key agreement with AES 128-bit encryption for confidentiality and SHA-1 for integrity protection (TLS_RSA_WITH_AES_128_CBC_SHA).

4.1.3. Log Manager Read/Write Log Data
The Mediator Server service stores log data and metadata in Log Manager SQL Server databases. This service provides a protected communication channel to transfer log data between the Log Manager and Log Manager SQL Server. The channel is established in accordance with the Log Manager configuration. (See service Write Log Manager Configuration.) The connection uses TLS 1.0 with cipher suite based on RSA key agreement.
with AES 128-bit encryption for confidentiality and SHA-1 for integrity protection (TLS_RSA_WITH_AES_128_CBC_SHA).

4.1.4. Write Log Manager Configuration

This service provides a protected communication channel to transfer configuration information from the Event Manager SQL Server to the Log Manager. An operator in the Crypto Officer role sets up communication between the Log Manager and the Event Manager SQL Server. (See service Configure Log Manager Communication.) After set up, an operator in the User role (that is, the Event Manager SQL Server) uses this service to propagate configuration changes to the Log Manager. The connection uses TLS 1.0 with cipher suite based on RSA key agreement with AES 128-bit encryption for confidentiality and SHA-1 for integrity protection (TLS_RSA_WITH_AES_128_CBC_SHA).

Note that a Log Manager's configuration originates from the Console. The Console transfers the configuration information to the Event Manager SQL Server.

4.1.5. Seal Archive File

The Log Manager can archive log data to a file in the file system. In a process called sealing, the Log Manager computes and stores a cryptographic hash of an archive file. Log Manager uses SHA-1 for the cryptographic hash. It stores the hash value in an Event Manager SQL Server database. The Log Manager performs the Archive Sealing service in accordance with the Log Manager configuration. (See service Write Log Manager Configuration.)

4.2. Crypto Officer Services

4.2.1. Configure Log Manager Communication

After the Log Manager has been installed, this service provides an operator in the Crypto Officer role with the capability to configure the Log Manager to communicate with Event Manager. This consists of setting the IP address for the Event Manager. Log Manager authenticates the AI Engine Server for TLS sessions. Optionally, a Crypto Officer may pre-place a user-provided certificate on the Log Manager for mutual authentication of TLS sessions with the AI Engine Server. The Event Manager SQL Server provides all other configuration information. (See service Write Log Manager Configuration.)

4.2.2. Perform Self-Tests

Log Manager module performs a (start-up) power-on software integrity test to verify the integrity of the component software. If the module fails a software integrity test, it reports status indicating which failure occurred and transitions to an error state, in which the module ceases to continue processing. The Log Manager will not be able to receive logs and cannot output data to SQL Server databases when it is in an error state.

An operator can run the software integrity test on demand by stopping and starting the module. The system integrity test will always run at startup regardless of FIPS Mode.
4.2.3. Show FIPS Status

Log Manager provides status information about the cryptographic module mode of operation through Log Manager log file. When the Log Manager component is started, the Mediator service writes a message to the log indicating the mode of operation, for example:

Mediator running in FIPS mode: YES

To determine whether Log Manager is in Approved mode, an operator in the Crypto Officer role checks the Mediator Server service log, scmedsvr.log.

Similarly, LogRhythm provides information about communication encryption through Log Manager log files. When the Log Manager component is started, the Mediator service writes a message to the log file indicating whether encryption is being used, for example.

Mediator using encryption for SQL Server communications: YES

To determine whether Log Manager is encrypting communication, check the Mediator Server service log, scmedsvr.log. The Log Manager cryptographic module must be encrypting communication in order to be considered operating in Approved mode.

The Log Manager cryptographic module may enter an error state and stop (for example, when a power-up integrity test fails). An operator in the Crypto Officer role checks the Mediator log file (scmedsvr.log) and the Windows Event Log for error messages to determine the cause of the cryptographic module’s error state.
5. Policies

5.1. Security Rules

In order to operate the Log Manager cryptographic module securely, the operator should be aware of the security rules enforced by the module. Operators should adhere to rules required for physical security of the module and for secure operation.

The Log Manager cryptographic module enforces the following security rules when operating in Approved mode (its FIPS compliant mode of operation). These rules include both security rules that result from the security requirements of FIPS 140-2 and security rules that LogRhythm has imposed.

1. Approved mode is supported on Window Server 2008 R2 SP1 in a single-user environment.

2. The Log Manager cryptographic module operates in Approved mode only when used with the FIPS approved version of Microsoft Windows Server 2008 R2 Cryptographic Primitives Library (bcryptprimitives.dll) validated to FIPS 140-2 under certificate #1336 operating in FIPS mode.

3. The Log Manager cryptographic module is in Approved mode only when it operates in the environment of BCRYPTPRIMITIVES, namely:
 i) FIPS approved security functions are used and Windows is booted normally, meaning Debug mode is disabled and Driver Signing enforcement is enabled;
 ii) One of the following DWORD registry values is set to 1:
 (1) HKLM\SYSTEM\CurrentControlSet\Control\Lsa\FIPSAlgorithmPolicy\Enabled
 (2) HKLM\SYSTEM\CurrentControlSet\Policies\Microsoft\Cryptography\Configuration\SelfTestAlgorithms

4. When installed on a system where FIPS is enabled, Log Manager runs in a FIPS-compliant mode of operation. When communicating with other LogRhythm components, the Log Manager encrypts communication including:
 - Module to System Monitor Agent
 - Module to Log Manager SQL Server
 - Module to Event Manager SQL Server
 - Module to AI Engine Server

5. The Log Manager cryptographic module operates in Approved mode only when using pre-placed, user-provided certificates for TLS communication with the Mediator service. Dynamically-generated, self-signed certificate for the Mediator
service shall not be used in Approved mode. See [Help] section “Configure LogRhythm to use Specific User Provided TLS Certificates” for detailed configuration instructions. [Help] section “Common Access Card (CAC) Use” covers operational requirements for user-provided certificates (for example, extended key usage values).

6. In accordance with [SP 800-57 P3] and [SP 800-131A] (key length transition recommendations), the size of TLS public/private keys provided for Log Manager, Windows System Monitor Agents, AI Engine Server, and SQL Servers shall be at least 2048 bits.

7. In accordance with [SP 800-57 P3] (key length transition recommendations), the size of public/private keys for the CA issuing Log Manager, Windows System Monitor Agents, AI Engine Server, and SQL Server certificates shall be at least 2048 bits.

8. The module does not support unidirectional System Monitor Agents in Approved mode.

5.2. Identification and Authentication Policy
The Log Manager cryptographic module does not provide operator authentication. Roles are assumed implicitly. Operating system and SQL Server authentication mechanisms were not within the scope of the validation.

5.3. Access Control Policy and SRDIs
This section specifies the LogRhythm Log Manager’s Security Relevant Data Items (SRDI) as well as the access control policy enforced by the LogRhythm.

5.3.1. Cryptographic Keys, CSPs, and SRDIs
While operating in a FIPS-compliant manner, the LogRhythm Log Manager contains the following security relevant data items:

<table>
<thead>
<tr>
<th>ID</th>
<th>Key type</th>
<th>Size</th>
<th>Description</th>
<th>Origin</th>
<th>Storage</th>
<th>Zeroization Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secret and Private Keys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLS private key</td>
<td>RSA</td>
<td>2048-bits, 3072-bits, 4096-bits</td>
<td>Used for TLS session establishment</td>
<td>N/A (entered through Windows operating system)</td>
<td>Volatile memory and the operating system</td>
<td>As per guidance for bound module [Win BCRYPT] and Windows operating system guidance</td>
</tr>
<tr>
<td>TLS session encryption keys</td>
<td>AES</td>
<td>128 bits</td>
<td>Used for TLS communication</td>
<td>Generated through TLS handshake</td>
<td>Plaintext in volatile memory</td>
<td>As per guidance for bound module [Win BCRYPT]</td>
</tr>
</tbody>
</table>
Non-proprietary security policy
May be reproduced only in its original entirety without revision.
Page 16 of 23

<table>
<thead>
<tr>
<th>ID</th>
<th>Key type</th>
<th>Size</th>
<th>Description</th>
<th>Origin</th>
<th>Storage</th>
<th>Zeroization Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS session integrity keys</td>
<td>HMAC-SHA1</td>
<td>160 bits</td>
<td>Used for TLS communication</td>
<td>Generated through TLS handshake</td>
<td>Plaintext in volatile memory</td>
<td>As per guidance for bound module [Win BCRYPT]</td>
</tr>
<tr>
<td>Public Keys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLS public key</td>
<td>RSA</td>
<td>2048-bits, 3072-bits, 4096-bits</td>
<td>Used for TLS communication with AI Engine Server, Windows System Monitor Agents, and SQL Servers</td>
<td>N/A (entered through Windows operating system)</td>
<td>Volatile memory and the operating system</td>
<td>As per guidance for bound module [Win BCRYPT] and Windows operating system guidance</td>
</tr>
<tr>
<td>Windows System Monitor Agent public keys</td>
<td>RSA</td>
<td>2048-bits, 3072-bits, 4096-bits</td>
<td>Used for TLS communication with Windows System Monitor Agents</td>
<td>N/A (entered through TLS handshake)</td>
<td>Volatile memory</td>
<td>As per guidance for bound module [Win BCRYPT]</td>
</tr>
<tr>
<td>AI Engine Server public key</td>
<td>RSA</td>
<td>2048-bits, 3072-bits, 4096-bits</td>
<td>Used for TLS communication with AI Engine Server</td>
<td>N/A (entered through TLS handshake)</td>
<td>Volatile memory</td>
<td>As per guidance for bound module [Win BCRYPT]</td>
</tr>
<tr>
<td>CA public key</td>
<td>RSA</td>
<td>2048-bits, 3072-bits, 4096-bits</td>
<td>Used for TLS communication with AI Engine Server, Windows System Monitor Agents, and SQL Servers</td>
<td>N/A (entered through Windows operating system)</td>
<td>Volatile memory and the operating system</td>
<td>As per guidance for bound module [Win BCRYPT] and Windows operating system guidance</td>
</tr>
<tr>
<td>SQL Server public keys</td>
<td>RSA</td>
<td>2048-bits, 3072-bits, 4096-bits</td>
<td>Used for TLS communication with Log Manager SQL Server and Event Manager SQL Server</td>
<td>N/A (entered through TLS handshake)</td>
<td>Volatile memory</td>
<td>As per guidance for bound module [Win BCRYPT]</td>
</tr>
<tr>
<td>Other Keys/CSPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power-up integrity test key</td>
<td>HMAC-SHA1</td>
<td>160 bits</td>
<td>Used to verify integrity of cryptographic module image on power up</td>
<td>Preplaced in module by LogRhythm</td>
<td>Obscured in volatile memory</td>
<td>Re-initialize module</td>
</tr>
</tbody>
</table>
5.3.2. Access Control Policy

The Log Manager allows controlled access to the SRDIs contained within it. The following table defines the access that an operator or application has to each SRDI while operating the Log Manager in a given role performing a specific Log Manager service. The permissions are categorized as a set of four separate permissions: read, write, execute, delete (r, w, x, and d, respectively, in the table). If no permission is listed, then an operator outside the Log Manager has no access to the SRDI.

<table>
<thead>
<tr>
<th>Role/Service</th>
<th>Security Relevant Data Item</th>
<th>TLS private key</th>
<th>TLS public key</th>
<th>Windows System Monitor Agent public keys</th>
<th>Al Engine Server public key</th>
<th>CA public key</th>
<th>SQL Server public keys</th>
<th>TLS Session encryption keys</th>
<th>TLS Session Integrity Says</th>
<th>Power-up integrity test key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent Write Log Data</td>
<td>x</td>
<td>x</td>
<td>w,x,d</td>
<td>x</td>
<td>w,x,d</td>
<td>w,x,d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read Agent Configuration</td>
<td>x</td>
<td>x</td>
<td>w,x,d</td>
<td>x</td>
<td>w,x,d</td>
<td>w,x,d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al Engine Server Read Log Data</td>
<td>x</td>
<td>x</td>
<td>w,x,d</td>
<td>x</td>
<td>w,x,d</td>
<td>w,x,d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event Manager Read Log Data</td>
<td>x</td>
<td>x</td>
<td>w,x,d</td>
<td>x</td>
<td>w,x,d</td>
<td>w,x,d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Manager Read/Write Log Data</td>
<td>x</td>
<td>x</td>
<td>w,x,d</td>
<td>x</td>
<td>w,x,d</td>
<td>w,x,d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write Log Manager Configuration</td>
<td>x</td>
<td>x</td>
<td>w,x,d</td>
<td>w,x,d</td>
<td>w,x,d</td>
<td>w,x,d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seal Archive File</td>
<td>x</td>
<td>x</td>
<td>w,x,d</td>
<td>w,x,d</td>
<td>w,x,d</td>
<td>w,x,d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crypto-officer Role</td>
<td></td>
</tr>
<tr>
<td>Configure Log Manager</td>
<td>r,w,d</td>
<td>r,w,d</td>
<td>r,w,d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td>Perform Self Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Show FIPS Status</td>
<td></td>
</tr>
</tbody>
</table>

5.4. Physical Security

This section is not applicable.
6. Crypto Officer Guidance

6.1. Secure Operation Initialization Rules

The LogRhythm software is delivered with the LogRhythm Appliance or standalone as part of the LogRhythm Solution Software (LRSS).

LRSS is the software-only solution for installation and configuration on your own dedicated custom hardware or a supported virtualization platform. Follow the instructions in [Help] section “Installing the Components” to install LogRhythm, including a Log Manager. Once Log Manager is installed, enable Approve mode as described below. See the LogRhythm Solution Software Installation Guide for more details.

The LogRhythm Log Manager provides the cryptographic functions listed in section Modes of Operation above. The following table identifies the FIPS algorithm certificates for the Approved cryptographic functions along with modes and sizes.

<table>
<thead>
<tr>
<th>Algorithm Type</th>
<th>Modes/Mod sizes</th>
<th>Cert No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCRYPTPRIMITIVES.DLL Algorithms</td>
<td>CBC, 128 and 256-bit keys</td>
<td>Cert. #1168</td>
</tr>
<tr>
<td>AES</td>
<td>SHA-1</td>
<td>Cert. #686</td>
</tr>
<tr>
<td>HMAC</td>
<td>SHA-1/256/384/512</td>
<td>Cert. #1081</td>
</tr>
<tr>
<td>SHS</td>
<td>SP 800-90A CTR_DRBG (AES-256)</td>
<td>Cert. #23</td>
</tr>
<tr>
<td>RSA</td>
<td>FIPS186-2: ALG[ANSIX9.31]: Key(gen), MOD: 2048 , 3072 and 4096 bits modulus</td>
<td>Cert. #559</td>
</tr>
<tr>
<td>RSA</td>
<td>ALG [RSASSA-PKCS1_V1_5]: SIG(gen) 2048, 3072 and 4096 bits modulus, SHS: SHA-256, SHA-384 and SHA-512 SIG (ver): 1024 , 1536 , 2048 , 3072 and 4096 bits modulus , SHS: SHA-1, SHA-256, SHA-384 and SHA-512</td>
<td>Cert. #567</td>
</tr>
</tbody>
</table>
6.2. **Approved Mode**

6.2.1. **Establishing Approved Mode**

Establishing Approved mode entails:

1. Enabling Windows FIPS security policy on the GPC hosting the Log Manager.
2. Providing public key certificate for the Mediator service to support encrypted communication.
3. Enabling encrypted communication between LogRhythm components.

Enabling Windows FIPS security policy affects other LogRhythm components installed on the same GPC as the Log Manager. Hence, Windows FIPS security policy should be configured initially for all LogRhythm cryptographic modules in a deployment at the same time. [Help] sections “Running FIPS” and “Enabling FIPS Security Policy” cover the procedures for establishing Windows FIPS security policy across a LogRhythm deployment, including the Log Manager cryptographic module.

[Help] section “Public Key Enabled (PKE)” covers providing public key certificates as well as configuring Log Manager to use the certificate.

Section “When FIPS mode is enabled on a host, all LogRhythm services will connect to SQL Server using Windows Integrated Security regardless of what is configured in their INI files. See [Help] section “Using Integrated Security 6.0” for steps to enable Integrated Security.

TLS Configuration” below describes how to enable encrypted communication.

When FIPS mode is enabled on a host, all LogRhythm services will connect to SQL Server using Windows Integrated Security regardless of what is configured in their INI files. See [Help] section “Using Integrated Security 6.0” for steps to enable Integrated Security.

6.2.2. **TLS Configuration**

The cryptographic module supports protected communication between the Log Manager and other LogRhythm components. Protection is provided by TLS. In particular, the Log Manager module supports TLS between itself and the following external components:

- System Monitor Agents,
- AI Engine Server,
- Log Manager SQL Server, and
- Event Manager SQL Server.

In Approved mode, TLS communication is required between all components. Enable TLS communication for the Log Manager cryptographic module:
1. Open the Log Manager Local Configuration Manager from where the Log Manager resides by clicking Start > All Programs > LogRhythm > Log Manager Configuration Manager.

2. Select the General tab and check ‘Encrypt all communication.’

3. To restart the Log Manager when the Local Configuration Manager exits, select the Windows Service tab and check ‘Start (or restart) the service when the configuration is saved.’

4. Click OK to save the settings and exit.

The TLS communication is not enabled and the module is not in Approved mode until the module is restarted.

6.2.3. Starting and Stopping the Cryptographic Module

The Log Manager cryptographic module runs as a Windows service `scmedsvr`. Starting service `scmedsvr` starts the Log Manager cryptographic module. Similarly, stopping service `scmedsvr` stops the cryptographic module. Use the LogRhythm Console, Windows Service Control Manager (SCM), or Windows command line to start or stop the cryptographic module. [Help] section “Starting, Stopping, and Restarting Log Manager Services” describes Console operation. The Windows commands for starting and stopping the module are ‘net start’ and ‘net stop,’ respectively.
7. Mitigation of Other Attacks

This section is not applicable.
8. Terminology and Acronyms

<table>
<thead>
<tr>
<th>Term/Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIE</td>
<td>Advanced Intelligence Engine</td>
</tr>
<tr>
<td>CSP</td>
<td>Critical Security Parameter</td>
</tr>
<tr>
<td>EM</td>
<td>Event Manager</td>
</tr>
<tr>
<td>GPC</td>
<td>General Purpose Computer</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>LM</td>
<td>Log Manager</td>
</tr>
<tr>
<td>Mediator Server service</td>
<td>System Monitor Agents collect logs and send them to a Mediator Server service, which processes the logs</td>
</tr>
<tr>
<td>SIEM</td>
<td>Security Information Event Management</td>
</tr>
<tr>
<td>SRDI</td>
<td>Security Relevant Data Item</td>
</tr>
<tr>
<td>TLS</td>
<td>Transport Layer Security</td>
</tr>
</tbody>
</table>

1 This protocol has not been reviewed or tested by the CAVP and CMVP.
9. References

LogRhythm Help, Version 6.3.4, February 2015

