
15 November 2012 Copyright © 2012 EMC Corporation. All rights reserved. Published in the USA. 1

Security Policy

 15.11.12

RSA BSAFE® Crypto-C Micro Edition 3.0.0.16
Security Policy

This document is a non-proprietary security policy for RSA BSAFE Crypto-C Micro
Edition 3.0.0.16 (Crypto-C ME) security software.

This document may be freely reproduced and distributed whole and intact including
the Copyright Notice.

Contents:
Preface .. 2

References .. 2
Terminology ... 2
Document Organization ... 3

1 Crypto-C ME Cryptographic Toolkit ... 4
1.1 Cryptographic Module ... 4
1.2 Crypto-C ME Interfaces .. 6
1.3 Roles and Services ... 7
1.4 Cryptographic Key Management ... 7
1.5 Cryptographic Algorithms ... 9
1.6 Self-tests ... 10

2 Secure Operation of Crypto-C ME .. 13
2.1 Crypto Officer and User Guidance .. 13
2.2 Roles ... 14
2.3 Modes of Operation ... 14
2.4 Operating Crypto-C ME .. 15
2.5 Startup Self-tests ... 16
2.6 Random Number Generator .. 16

3 Services .. 18
4 Acronyms .. 21

2 Preface

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

Preface
This security policy describes how Crypto-C ME meets the security requirements of
FIPS 140-2. The security policy also describes how to securely operate Crypto-C ME
in a FIPS 140-2-compliant manner.

The Crypto-C ME software development toolkit enables developers to incorporate
cryptographic technologies into applications. Crypto-C ME security software is
designed to help protect sensitive data as it is stored, using strong encryption
techniques that ease integration with existing data models. Using the capabilities of
Crypto-C ME software in applications helps provide a persistent level of protection
for data, lessening the risk of internal, as well as external, compromise.

FIPS 140-2 (Federal Information Processing Standards Publication 140-2 - Security
Requirements for Cryptographic Modules) details the United States Government
requirements for cryptographic modules. More information about the FIPS 140-2
standard and validation program is available on the NIST website
(http://csrc.nist.gov/groups/STM/cmvp/index.html).

References
This document deals only with operations and capabilities of the Crypto-C ME
Module and Crypto-C ME's use of this module in terms of a FIPS 140-2
Cryptographic Module security policy.

For more information about Crypto-C ME, the Crypto-C ME Module, and the entire
RSA BSAFE product line, see:

• Information on the full line of RSA products and services is available at
www.rsa.com.

• RSA BSAFE product overviews are available at
www.rsa.com/node.aspx?id=1204.

• Answers to technical or sales related questions are available at
www.rsasecurity.com./node.aspx?id=1067.

Terminology
In this document, the term Cryptographic Module denotes the Crypto-C ME FIPS
140-2 validated Cryptographic Module.

The Crypto-C ME Module is also referred to as:

• The Cryptographic Module

• The module.

Preface 3

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

Document Organization
This Security Policy explains the Cryptographic Module's FIPS 140-2 relevant
features and functionality. This document comprises the following sections:

• This section, “Preface” provides an overview and introduction to the Security
Policy.

• “Crypto-C ME Cryptographic Toolkit” on page 4 describes Crypto-C ME and
how it meets FIPS 140-2 requirements.

• “Secure Operation of Crypto-C ME” on page 13 specifically addresses the
required configuration for the FIPS 140-2 mode of operation.

• “Services” on page 18 lists the functions of Crypto-C ME.

• “Acronyms” on page 21 lists the acronyms and definitions used in this document.

4 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

1 Crypto-C ME Cryptographic Toolkit
The Crypto-C ME software development toolkit enables developers to incorporate
cryptographic technologies into applications. Crypto-C ME security software is
designed to help protect sensitive data as it is stored, using strong encryption
techniques that ease integration with existing data models. Using the capabilities of
Crypto-C ME software in applications helps provide a persistent level of protection
for data, lessening the risk of internal, as well as external, compromise.

The features of Crypto-C ME include the ability to optimize code for different
processors, and specific speed or size requirements. Assembly-level optimizations on
key processors mean that Crypto-C ME algorithms can be used at increased speeds on
many platforms.

Crypto-C ME offers a full set of cryptographic algorithms including asymmetric key
algorithms, symmetric key block and stream algorithms, message digests, message
authentication, and Pseudo Random Number Generator (PRNG) support. Developers
can implement the full suite of algorithms through a single Application Programming
Interface (API) or select a specific set of algorithms to reduce code size or meet
performance requirements.

Note: When operating in a FIPS 140-2-approved manner, the set of algorithm
implementations is not customizable.

1.1 Cryptographic Module
Crypto-C ME is classified as a multi-chip standalone cryptographic module for the
purposes of FIPS 140-2. As such, Crypto-C ME must be tested on a specific operating
system and computer platform. The cryptographic boundary includes Crypto-C ME
running on selected platforms running selected operating systems while configured in
“single user” mode. Crypto-C ME was validated as meeting all FIPS 140-2 Level 1
security requirements, including cryptographic key management and operating system
requirements.

Crypto-C ME is packaged as a set of dynamically loaded modules or shared library
files that contain the module's entire executable code. The Crypto-C ME toolkit relies
on the physical security provided by the host PC in which it runs.

For FIPS 140-2 validation, Crypto-C ME is tested on the following platforms:

• Wind River®:

– VxWorks General Purpose Platform 6.0 PowerPC 604 (32-bit).

Note: Compliance is maintained on all of the above platforms for which the
binary executable remains unchanged.

Crypto-C ME Cryptographic Toolkit 5

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

For resolution of the “Multi User” modes issue, see the NIST document,
Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module
Validation Program, located at
http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/
FIPS1402IG.pdf.

The following table lists the certification levels sought for Crypto-C ME for each
section of the FIPS 140-2 specification.

1.1.1 Configuring Single User Mode

Wind River VxWorks operating systems are single user operating systems so no steps
are required to configure single user mode.

Table 1 Certification Levels

Section of the FIPS 140-2 Specification Level

Cryptographic Module Specification 3

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 1

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Managment 1

EMI/EMC 1

Self-Tests 1

Design Assurance 1

Mitigation of Other Attacks 1

Overall 1

6 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

1.2 Crypto-C ME Interfaces
Crypto-C ME is evaluated as a multi-chip, standalone module. The physical
cryptographic boundary of the module is the case of the general-purpose computer or
mobile device, which encloses the hardware running the module. The physical
interfaces for Crypto-C ME consist of the keyboard, mouse, monitor, CD-ROM drive,
floppy drive, serial ports, USB ports, COM ports, and network adapter(s).

The logical boundary of the cryptographic module is the set of library files
(libcryptocme2.so, libccme_base.so, libccme_ecc.so,
libccme_eccaccel.so, and libccme_eccnistaccel.so) and the signature
file that comprise the module. The underlying logical interface to Crypto-C ME is the
API, documented in the RSA BSAFE Crypto-C Micro Edition Developers Guide.
Crypto-C ME provides for Control Input through the API calls. Data Input and Output
are provided in the variables passed with the API calls, and Status Output is provided
through the returns and error codes that are documented for each call. This is
illustrated in the following diagram.

Figure 1 Crypto-C ME Logical Interfaces

cryptocme2.dll/libcryptocme2.so

Cryptographic Boundary

Application

Data In Data Out Control In Status Out

Provider Libraries

ccme_base.dll/
libccme_base.so

ccme_ecc.dll/
libccme.ecc.so

ccme_eccaccel.dll/
libccme.eccaccel.so

Operating System (OS)

Hardware

Software - Runs on Hardware

Hardware

Run on OS

Provides service for OS

Provides
services
for toolkit

ccme_eccnistaccel.dll/
libccme_eccnistaccel.so

Signature
file

Logical Boundary

Crypto-C ME Cryptographic Toolkit 7

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

1.3 Roles and Services
Crypto-C ME meets all FIPS 140-2 Level 1 requirements for roles and services,
implementing both a User (User) role and Officer (CO) role. As allowed by FIPS
140-2, Crypto-C ME does not support user identification or authentication for these
roles. Only one role can be active at a time and Crypto-C ME does not allow
concurrent operators.

The following table describes the services accessible by the two roles.

1.3.1 Officer Role

An operator assuming the Officer role can call any Crypto-C ME function. The
complete list of the functionality available to the Officer is outlined in “Services” on
page 18.

1.3.2 User Role

An operator assuming the User role can use the entire Crypto-C ME API except for
R_FIPS140_self_test_full(), which is reserved for the Officer. The complete
list of Crypto-C ME functions is outlined in “Services” on page 18.

1.4 Cryptographic Key Management
Cryptographic key management is concerned with generating and storing keys,
managing access to keys, protecting keys during use, and zeroizing keys when they
are not longer required.

1.4.1 Key Generation

Crypto-C ME supports generation of DSA, RSA, Diffie-Hellman (DH) and Elliptic
Curve Cryptography (ECC) public and private keys. Also, Crypto-C ME uses a FIPS
186-2-compliant random number generator as well as a Dual Elliptic Curve
Deterministic Random Bit Generator (Dual ECDRBG) and HMAC-DRBG in the
generation of asymmetric and symmetric keys used in algorithms such as AES,
Triple-DES, RSA, DSA, DH, ECC, and HMAC.

Table 2 Crypto-C ME Roles and Services

Role Services

Officer The Officer has access to a superset of the services that are available to the User.
The Officer role can also invoke the full set of self-tests inside the module.

User The User can perform general security functions, as described in the RSA BSAFE
Crypto-C Micro Edition Developer's Guide. The User can also call specific FIPS
140-2 module functions as defined in the Developer's Guide.

8 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

1.4.2 Key Storage

Crypto-C ME does not provide long-term cryptographic key storage. If a user chooses
to store keys, the user is responsible for storing keys exported from the module.

The following table lists all keys and CSPs in the module and where they are stored.

Table 3 Key Storage

Key or CSP Storage

Hardcoded DSA public key Persistent storage embedded in the module
binary (encrypted).

Hardcoded AES key Persistent storage embedded in the module
binary (plaintext).

AES keys Volatile memory only (plaintext).

Triple-DES keys Volatile memory only (plaintext).

HMAC with SHA-1 and SHA-2 keys
(SHA-224, SHA-256, SHA-384, SHA-512)

Volatile memory only (plaintext).

DH public/private keys Volatile memory only (plaintext).

ECC public/private keys Volatile memory only (plaintext).

RSA public/private keys Volatile memory only (plaintext).

DSA public/private keys Volatile memory only (plaintext).

FIPS 186-2 seed Volatile memory only (plaintext).

FIPS 186-2 key Volatile memory only (plaintext).

EC DRBG entropy Volatile memory only (plaintext).

EC DRBG S value Volatile memory only (plaintext).

EC DRBG init_seed Volatile memory only (plaintext).

HMAC DRBG entropy Volatile memory only (plaintext).

HMAC DRBG V value Volatile memory only (plaintext).

HMAC DRBG key Volatile memory only (plaintext).

HMAC DRBG init_seed Volatile memory only (plaintext).

Crypto-C ME Cryptographic Toolkit 9

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

1.4.3 Key Access

An authorized operator of the module has access to all key data created during
Crypto-C ME operation.

Note: The User and Officer roles have equal and complete access to all keys.

1.4.4 Key Protection/Zeroization

All key data resides in internally allocated data structures and can be output only using
the Crypto-C ME API. The operating system protects memory and process space from
unauthorized access. The operator should follow the steps outlined in the RSA BSAFE
Crypto-C Micro Edition Developers Guide to ensure sensitive data is protected by
zeroizing the data from memory when it is no longer needed. All volatile keys and
CSPs listed in Table 3 are zeroized by unloading the module from memory.

1.5 Cryptographic Algorithms
Crypto-C ME supports a wide variety of cryptographic algorithms. To achieve
compliance with the FIPS 140-2 standard, only FIPS 140-2-approved or allowed
algorithms can be used in an approved mode of operation.

The following table lists the FIPS 140-2-approved algorithms supported by
Crypto-C ME with validation certificate numbers.

Table 4 Crypto-C ME FIPS 140-2-approved Algorithms

Algorithm Validation Certificates

AES ECB, CBC, CFB (128), OFB (128), CTR (128, 192, and 256-bit key
sizes), and CCM

2018

Triple-DES ECB, CBC, CFB (64bit), and OFB (64 bit) 1303

Diffie-Hellman, EC-Diffie-Hellman, and EC-Diffie-Hellman with
Components

Non-approved
(Allowed in FIPS 140-2 mode).

DSA 643

ECDSA 293 and 294

FIPS 186-2 Pseudo Random Number Generator (PRNG) - Change Notice 1,
with and without the mod q step

1058

Dual ECDRBG and HMAC-DRBG 192

RSA X9.31, PKCS #1 V.1.5, and PKCS #1 V.2.1
(SHA256 - PSS)

1047

RSA encrypt and decrypt Non-approved
(Allowed in FIPS 140-2 mode
for key transport).

10 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

The following Crypto-C ME algorithms are not FIPS 140-2-approved:

• AES GCM, GMAC

• DES

• MD2

• MD5

• HMAC MD5

• DES40

• RC2

• RC4

• RC5

• ECAES

• ECIES

• PBKDF1 SHA-1

• PBKDF2 HMAC, SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512

• RSA PKCS #1 V.2.0 (OAEP)

• Entropy RNG

• OTP RNG.

For more information about using Crypto-C ME in a FIPS 140-2-compliant manner,
see “Secure Operation of Crypto-C ME” on page 13.

1.6 Self-tests
Crypto-C ME performs a number of power-up and conditional self-tests to ensure
proper operation.

If the power-up self-test fails, the toolkit is disabled and the operation fails. If the ECC
provider self-test fails, the provider libraries (libccme_base.so,
libccme_ecc.so, and libccme_eccaccel.so) are disabled and the operation
fails.The toolkit can only leave the disabled state by reloading the FIPS 140-2 module.
If the conditional self-test fails, the operation fails but the toolkit is not disabled.

For self-test failures (power-up or conditional) the library notifies the user through the
returns and error codes for the API.

SHA-1 1768

SHA-224, 256, 384, and 512 1768

HMAC-SHA1, SHA224, SHA256, SHA384, and SHA512 1222

Table 4 Crypto-C ME FIPS 140-2-approved Algorithms (continued)

Algorithm Validation Certificates

Crypto-C ME Cryptographic Toolkit 11

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

1.6.1 Power-up Self-test

Crypto-C ME implements the following power-up self-tests:

• AES, AES CCM, AES GCM, and AES GMAC Known Answer Tests (KATs)

• DES and Triple-DES KATs

• SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512 KATs

• HMAC SHA-1, HMAC SHA-224, HMAC SHA-256, HMAC SHA-384, and
HMAC SHA-512 KATs

• RSA sign/verify test

• DSA sign/verify test

• DH, EC-DH, and EC-DH with Components conditional test

• ECDSA sign/verify test

• PRNG (FIPS 186-2, Dual ECDRBG, and HMAC-DRBG) KATs

• Software integrity test.

Power-up self-tests are executed automatically when Crypto-C ME is loaded into
memory.

1.6.2 Conditional Self-tests

Crypto-C ME performs two conditional self-tests:

• A pair-wise consistency test each time Crypto-C ME generates a DSA, RSA, or
EC public/private key pair.

• A Continuous Random Number Generation (CRNG) test each time the toolkit
produces random data, as per the FIPS 186-2 standard. The CRNG test is
performed on all approved and non-approved RNGs.

1.6.3 Critical Functions Tests

Depending on operating mode, Crypto-C ME performs the following known answer
tests:

• In R_FIPS140_MODE_FIPS140_SSL mode, Crypto-C ME performs a known
answer test for MD5 and HMAC-MD5.

• In R_FIPS140_MODE_FIPS140_ECC mode, Crypto-C ME performs a known
answer test for ECAES and ECIES.

• In R_FIPS140_MODE_SSL_ECC mode, a known answer test is performed for
MD5, HMAC-MD5, ECAES, and ECIES.

12 Crypto-C ME Cryptographic Toolkit

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

1.6.4 Mitigation of Other Attacks

RSA key operations implement blinding, a reversible way of modifying the input data,
so as to make the RSA operation immune to timing attacks. Blinding has no effect on
the algorithm other than to mitigate attacks on the algorithm. Blinding is implemented
through blinding modes, and the following options are available:

• Blinding mode off.

• Blinding mode with no update, where the blinding value is constant for each
operation.

• Blinding mode with full update, where a new blinding value is used for each
operation.

Secure Operation of Crypto-C ME 13

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

2 Secure Operation of Crypto-C ME
This section provides an overview of how to securely operate Crypto-C ME in
compliance with the FIPS 140-2 standards.

2.1 Crypto Officer and User Guidance
The Crypto Officer and User must only use algorithms approved for use in a FIPS 140
mode of operation, as listed in Table 4 on page 9. The requirements for using the
approved algorithms in a FIPS 140 mode of operation are as follows:

• The bit length for a DSA key pair must be 1024 bits.

• Bit lengths for an RSA key pair must be between 1024 and 4096 bits in multiples
of 512.

• Bit lengths for an HMAC key must be between 80 and 4096 bits.

• EC key pairs must have named curve domain parameters from the set of
NIST-recommended named curves (P192, P224, P256, P384, P521, B163, B233,
B283, B409, B571, K163, K233, K283, K409, K571). The module limits possible
curves for Dual EC DRBG to P256, P384, and P521 in accordance with SP
800-90.

• When using RSA for key wrapping, the strength of the methodology is between
80 and 150 bits of security.

• The Diffie-Hellman shared secret provides between 80 and 150 bits of encryption
strength.

• EC Diffie-Hellman primitives must use curve domain parameters from the set of
NIST-recommended named curves. Using NIST-recommended curves, the
computed Diffie-Hellman shared secret provides between 80 and 256 bits of
encryption strength.

• When using an approved RNG to generate keys, the requested security strength
for the RNG must be at least as great as the security strength of the key being
generated.

14 Secure Operation of Crypto-C ME

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

2.2 Roles
If a user of Crypto-C ME needs to operate the toolkit in different roles, then the user
must ensure that all instantiated cryptographic objects are destroyed before changing
from the Crypto User role to the Crypto Officer role, or unexpected results could
occur.

The following table lists the roles a user can operate in.

2.3 Modes of Operation
The following table lists and describes the available modes of operation.

Table 5 Crypto-C ME Roles

Role Description

R_FIPS140_ROLE_OFFICER An operator assuming the Crypto Officer role can call any Crypto-C ME
function. The complete list of the functionality available to the Crypto
Officer is outlined in “Services” on page 18.

R_FIPS140_ROLE_USER An operator assuming the Crypto User role can use the entire Crypto-C ME
API except for R_FIPS140_self_test_full(), which is reserved for
the Crypto Officer. The complete list of Crypto-C ME functions is outlined
in “Services” on page 18.

Table 6 Crypto-C ME Modes of Operation

Mode Description

R_FIPS140_MODE_FIPS140
FIPS 140-2-approved.

Provides the cryptographic algorithms listed in Table 4 on page 9. The default
random number generator is the FIPS 186-2 PRNG.
This is the Crypto-C ME default mode on start up.

R_FIPS140_MODE_FIPS140_
SSL
FIPS 140-2-approved if used
with TLS protocol
implementations.

Provides the same algorithms as R_FIPS140_MODE_FIPS140, plus the
MD5 message digest.
This mode can be used in the context of the key establishment phase in the
TLSv1 and TLSv1.1 protocol. For more information, see section 7.1
Acceptable Key Establishment Protocols in Implementation Guidance for
FIPS PUB 140-2 and the Cryptographic Module Validation Program
(http://csrc.nist.gov/groups/STM/cmvp/documents/
fips140-2/FIPS1402IG.pdf).
The implementation guidance disallows the use of the SSLv2 and SSLv3
versions. Cipher suites that include non-FIPS 140-2- approved algorithms
are unavailable.
This mode allows implementations of the TLS protocol to operate Crypto-C
ME in a FIPS 140-2-compliant manner with the FIPS 186-2 PRNG as the
default.

R_FIPS140_MODE_FIPS140_
ECC
Not FIPS 140-2-approved.

Provides the same algorithms as R_FIPS140_MODE_FIPS140, plus
ECAES and ECIAS. The random number generator in this mode is the Dual
ECDRBG.

Secure Operation of Crypto-C ME 15

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

In each mode of operation, the complete set of services, which are listed in this Security
Policy, are available to both the Crypto Officer and User roles (with the exception of
R_FIPS140_self_test_full(), which is always reserved for the Crypto Officer).

Note: Cryptographic keys must not be shared between modes. For example, a
key generated in R_FIPS140_MODE_FIPS140 mode must not be shared
with an application running in R_FIPS140_MODE_NON_FIPS140 mode.

2.4 Operating Crypto-C ME
Crypto-C ME operates in R_FIPS140_MODE_FIPS140 by default if the Crypto-C
ME library is initialized with the PRODUCT_DEFAULT_RESOURCE_LIST(). Call
R_FIPS140_get_mode() to determine the current Crypto-C ME mode.

When changing the mode of operation to a FIPS-approved mode, the module must be
re-initialized with the appropriate product resource list,
(PRODUCT_DEFAULT_RESOURCE_LIST() or
PRODUCT_FIPS140_SWITCH_RESOURCE_LIST() for R_FIPS140_MODE_FIPS140,
or PRODUCT_FIPS140_SSL_SWITCH_RESOURCE_LIST() for
R_FIPS140_MODE_FIPS140_SSL). This ensures that the module is reloaded and all
power-up self-tests are properly executed. To change the module to a non-FIPS-approved
mode, call R_FIPS140_set_mode() with one of the information identifiers listed in
Table 6 on page 14.

Note: R_FIPS140_set_mode() can only be used when changing to a
non-FIPS-approved mode.

R_FIPS140_MODE_FIPS140_
SSL_ECC
Not FIPS 140-2-approved.

Provides the same algorithms as R_FIPS140_MODE_FIPS140_SSL, plus
ECAES and ECIAS. The random number generator in this mode is the Dual
ECDRBG.
The same restrictions with respect to protocol versions and cipher suites as in
R_FIPS140_MODE_FIPS140_SSL apply.

R_FIPS140_MODE_NON_FIPS
140
Not FIPS 140-2-approved.

Allows users to operate Crypto-C ME without any cryptographic algorithm
restrictions.

R_FIPS140_MODE_DISABLED
Not FIPS 140-2-approved.

Indicates that the FIPS140 library is disabled, usually due to an internal or
caller's usage error. No future transition into other modes is permitted.

Table 6 Crypto-C ME Modes of Operation (continued)

Mode Description

16 Secure Operation of Crypto-C ME

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

After setting Crypto-C ME into a FIPS 140-2-approved mode, Crypto-C ME enforces
that only the algorithms listed in Table 4 on page 9 are available to operators. To
disable FIPS 140-2 mode, call R_FIPS140_set_mode() with the
R_FIPS140_MODE_NON_FIPS140 information identifier.

R_FIPS140_self_tests_full() is restricted to operation by the Crypto Officer.

The user of Crypto-C ME links with the static library for their platform, which loads
the Crypto-C ME shared or dynamic link master and provider libraries at runtime. For
more information, see “FIPS 140-2 Library and Modes of Operation” in the RSA
BSAFE Crypto-C ME Developers Guide.

Call R_FIPS140_get_mode() to determine the current Crypto-C ME mode. The
role can be changed by calling R_FIPS140_set_role() with one of the
information identifiers listed in Table 5 on page 14.

2.5 Startup Self-tests
Crypto-C ME provides the ability to configure when power-up self-tests are executed.
To operate Crypto-C ME in a FIPS 140-2-compliant manner, the default shipped
configuration, which executes the self-tests when the module is first loaded, must be
used.

For more information about this configuration setting, see the RSA BSAFE Crypto-C
Micro Edition Installation Guide.

2.6 Random Number Generator
In FIPS 140-2 modes, Crypto-C ME provides a default RNG. For
R_FIPS140_MODE_FIPS140 and R_FIPS140_MODE_FIPS140_SSL,
Crypto-C ME provides a FIPS 186-2 PRNG for all operations that require the
generation of random numbers. For R_FIPS140_MODE_FIPS140_ECC and
R_FIPS140_MODE_FIPS140_SSL_ECC, Crypto-C ME implements a Dual
ECDRBG internally.

In all modes, users can choose to use an approved RNG other than the default RNG,
including the FIPS 186-2 PRNG (with or without mod q), Dual ECDRBG, or HMAC
DRBG when creating a RNG object and setting this object against the operation
requiring random number generation (for example, key generation). However, when
DSA is used, the RNG used internally is always the FIPS 186-2 Change Notice 1
Option 1 with mod q PRNG.

This module also includes a non-approved Entropy RNG that is used to generate seed
material for the approved PRNGs.

Secure Operation of Crypto-C ME 17

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

2.6.1 PRNG Seeding

In the FIPS 140-2 validated library, Crypto-C ME implements deterministic random
number generators that can be called to generate random data. The quality of the
random data output from these RNGs depends on the quality of the supplied seeding
(entropy). Crypto-C ME provides internal entropy collection (for example, from high
precision timers) where possible, but it is strongly recommended to collect entropy
from external sources.

This is particularly critical if developing on embedded platforms where there are only
limited internal entropy sources available. For more information on seeding PRNGs,
see “Randomness Recommendations for Security” in RFC 1750.

The R_CR_INFO_ID_RAND_ENTROPY_FUNC identifier specifies that additional
entropy be available. R_CR_INFO_ID_RAND_ENTROPY_FUNC is set against the
R_CR object, which encapsulates the random number generator, and takes a callback
function that the random number generator then uses to gather additional entropy if
needed. For more information about R_CR_INFO_ID_RAND_ENTROPY_FUNC, see
the RSA BSAFE Crypto-C Micro Edition API Reference Guide.

18 Services

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

3 Services
The following is the list of services provided by Crypto-C ME. For more information
about these functions, see the RSA BSAFE Crypto-C Micro Edition API Reference
Guide.

BIO_append_filename()
BIO_clear_flags()
BIO_clear_retry_flags()
BIO_copy_next_retry()
BIO_debug_cb()
BIO_dump()
BIO_dump_format()
BIO_dup_chain()
BIO_f_buffer()
BIO_f_null()
BIO_find_type()
BIO_flags_to_string()
BIO_flush()
BIO_free()
BIO_free_all()
BIO_get_cb()
BIO_get_cb_arg()
BIO_get_close()
BIO_get_flags()
BIO_get_fp()
BIO_get_retry_BIO()
BIO_get_retry_flags()
BIO_get_retry_reason()
BIO_get_ssl()
BIO_get_state_cb()
BIO_get_state_cb_arg()
BIO_gets()
BIO_method_name()
BIO_method_type()
BIO_new()
BIO_new_file()
BIO_new_fp()
BIO_new_mem()
BIO_open_file()
BIO_pop()
BIO_print_hex()
BIO_printf()
BIO_push()
BIO_puts()
BIO_read()
BIO_read_filename()
BIO_reference_inc()
BIO_reset()
BIO_retry_type()
BIO_rw_filename()
BIO_s_file
BIO_s_mem()
BIO_s_null()
BIO_seek()
BIO_set_bio_cb()
BIO_set_cb()

BIO_set_cb_arg()
BIO_set_close()
BIO_set_flags()
BIO_set_fp()
BIO_should_io_special()
BIO_should_read()
BIO_should_retry()
BIO_should_write()
BIO_state_to_string()
BIO_tell()
BIO_write()
BIO_write_filename()
PRODUCT_DEFAULT_RESOURCE_LIST()
PRODUCT_FIPS140_ECC_SWITCH_RESOURCE_LIST()
PRODUCT_FIPS140_SSL_ECC_SWITCH_RESOURCE_
LIST()
PRODUCT_FIPS140_SSL_SWITCH_RESOURCE_LIST()
PRODUCT_FIPS140_SWITCH_RESOURCE_LIST()
PRODUCT_LIBRARY_FREE()
PRODUCT_LIBRARY_INFO()
PRODUCT_LIBRARY_INFO_TYPE_FROM_STRING()
PRODUCT_LIBRARY_INFO_TYPE_TO_STRING()
PRODUCT_LIBRARY_NEW()
PRODUCT_LIBRARY_VERSION()
PRODUCT_NON_FIPS140_SWITCH_RESOURCE_LIST()
R_CR_asym_decrypt()
R_CR_asym_decrypt_init()
R_CR_asym_encrypt()
R_CR_asym_encrypt_init()
R_CR_CTX_alg_supported()
R_CR_CTX_free()
R_CR_CTX_get_info()
R_CR_CTX_ids_from_sig_id()
R_CR_CTX_ids_to_sig_id()
R_CR_CTX_new()
R_CR_CTX_set_info()
R_CR_decrypt()
R_CR_decrypt_final()
R_CR_decrypt_init()
R_CR_decrypt_update()
R_CR_DEFINE_CUSTOM_CIPHER_LIST()
R_CR_DEFINE_CUSTOM_METHOD_TABLE()
R_CR_derive_key()
R_CR_derive_key_data()
R_CR_digest()
R_CR_digest_final()
R_CR_digest_init()
R_CR_digest_update()
R_CR_dup()
R_CR_encrypt()
R_CR_encrypt_final()

Services 19

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

R_CR_encrypt_init()
R_CR_encrypt_update()
R_CR_free()
R_CR_generate_key()
R_CR_generate_key_init()
R_CR_generate_parameter()
R_CR_generate_parameter_init()
R_CR_get_crypto_provider_name()
R_CR_get_default_imp_method()
R_CR_get_default_method()
R_CR_get_default_signature_map()
R_CR_get_detail()
R_CR_get_detail_string()
R_CR_get_detail_string_table()
R_CR_get_device_handle()
R_CR_get_error()
R_CR_get_error_string()
R_CR_get_file()
R_CR_get_function()
R_CR_get_function_string()
R_CR_get_function_string_table()
R_CR_get_info()
R_CR_get_line()
R_CR_get_reason()
R_CR_get_reason_string()
R_CR_get_reason_string_table()
R_CR_ID_from_string()
R_CR_ID_sign_to_string()
R_CR_ID_to_string()
R_CR_key_exchange_init()
R_CR_key_exchange_phase_1()
R_CR_key_exchange_phase_2()
R_CR_mac()
R_CR_mac_final()
R_CR_mac_init()
R_CR_mac_update()
R_CR_new()
R_CR_random_bytes()
R_CR_random_seed()
R_CR_RES_CRYPTO_CUSTOM_METHOD()
R_CR_set_info()
R_CR_sign()
R_CR_sign_final()
R_CR_sign_init()
R_CR_sign_update()
R_CR_SUB_from_string()
R_CR_SUB_to_string()
R_CR_TYPE_from_string()
R_CR_TYPE_to_string()
R_CR_verify()
R_CR_verify_final()
R_CR_verify_init()
R_CR_verify_mac()
R_CR_verify_mac_final()
R_CR_verify_mac_init()
R_CR_verify_mac_update()
R_CR_verify_update()
R_ERROR_EXIT_CODE()
R_FIPS140_free()
R_FIPS140_get_default()
R_FIPS140_get_failure_reason()

R_FIPS140_get_failure_reason_string()
R_FIPS140_get_info()
R_FIPS140_get_interface_version()
R_FIPS140_get_mode()
R_FIPS140_get_role()
R_FIPS140_get_supported_interfaces()
R_FIPS140_KAT_STATE_to_string()
R_FIPS140_library_free()
R_FIPS140_library_init()
R_FIPS140_load_module()
R_FIPS140_MODE_from_string()
R_FIPS140_MODE_to_string()
R_FIPS140_new()
R_FIPS140_RESULT_from_string()
R_FIPS140_RESULT_to_string()
R_FIPS140_ROLE_from_string()
R_FIPS140_ROLE_to_string()
R_FIPS140_self_tests_full()
R_FIPS140_self_tests_short()
R_FIPS140_set_info()
R_FIPS140_set_interface_version()
R_FIPS140_set_mode()
R_FIPS140_set_role()
R_FIPS140_STATE_from_string()
R_FIPS140_STATE_to_string()
R_FIPS140_unload_module()
R_FORMAT_from_string()
R_FORMAT_to_string()
R_free()
R_get_mem_functions()
R_HW_CTX_build_device_handle_list()
R_HW_CTX_free()
R_HW_CTX_get_device_handle_list()
R_HW_CTX_get_device_handle_list_count()
R_HW_CTX_get_device_handle_list_handle()
R_HW_CTX_get_info()
R_HW_CTX_iterate_devices()
R_HW_CTX_new()
R_HW_CTX_probe_devices()
R_HW_CTX_set_info()
R_HW_DEV_get_device_driver_id()
R_HW_DEV_get_device_name()
R_HW_DEV_get_device_number()
R_HW_DEV_get_info()
R_HW_DEV_is_equal()
R_HW_DEV_set_info()
R_HW_DRIVER_free()
R_HW_DRIVER_get_info()
R_HW_DRIVER_load_devices()
R_HW_DRIVER_new()
R_HW_DRIVER_probe_devices()
R_HW_DRIVER_set_info()
R_HW_OBJ_dup()
R_HW_OBJ_free()
R_HW_OBJ_get_info()
R_HW_OBJ_init()
R_HW_OBJ_new()
R_HW_OBJ_set_info()
R_HW_SEARCH_eof()
R_HW_SEARCH_free()
R_HW_SEARCH_get_locate_count()

20 Services

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

R_HW_SEARCH_locate()
R_HW_SEARCH_new()
R_HW_SEARCH_next()
R_HW_SEARCH_set_browse()
R_LIB_CTX_free()
R_LIB_CTX_get_detail_string()
R_LIB_CTX_get_error_string()
R_LIB_CTX_get_function_string()
R_LIB_CTX_get_info()
R_LIB_CTX_get_reason_string()
R_LIB_CTX_new()
R_LIB_CTX_set_info()
R_lock_ctrl()
R_lock_get_cb()
R_lock_get_name()
R_lock_num()
R_lock_r()
R_lock_w()
R_lock_set_cb()
R_locked_add()
R_locked_add_get_cb()
R_locked_add_set_cb()
R_lockid_new()
R_lockids_free()
R_malloc()
R_PKEY_cmp()
R_PKEY_CTX_free()
R_PKEY_CTX_get_info()
R_PKEY_CTX_get_LIB_CTX()
R_PKEY_CTX_new()
R_PKEY_CTX_set_info()
R_PKEY_decode_pkcs8()
R_PKEY_delete_device()
R_PKEY_encode_pkcs8()
R_PKEY_FORMAT_from_string()
R_PKEY_FORMAT_to_string()
R_PKEY_free()
R_PKEY_from_binary()
R_PKEY_from_bio()
R_PKEY_from_file()
R_PKEY_from_public_key_binary()
R_PKEY_get_handle()
R_PKEY_get_info()
R_PKEY_get_num_bits()
R_PKEY_get_num_primes()
R_PKEY_get_PKEY_CTX()
R_PKEY_get_private_handle()
R_PKEY_get_public_handle()
R_PKEY_get_purpose()
R_PKEY_get_type()
R_PKEY_iterate_fields()
R_PKEY_METHOD_free()
R_PKEY_METHOD_get_flag()
R_PKEY_METHOD_get_name()
R_PKEY_METHOD_get_type()
R_PKEY_new()
R_PKEY_PASSWORD_TYPE_from_string()
R_PKEY_PASSWORD_TYPE_to_string()
R_PKEY_pk_method()
R_PKEY_print()
R_PKEY_public_cmp()

R_PKEY_public_from_bio()
R_PKEY_public_from_file()
R_PKEY_public_to_bio()
R_PKEY_public_to_file()
R_PKEY_read_device()
R_PKEY_reference_inc()
R_PKEY_rsa_blinding_lib_start()
R_PKEY_rsa_no_blinding_lib_start()
R_PKEY_set_handle()
R_PKEY_set_info()
R_PKEY_set_private_handle()
R_PKEY_set_public_handle()
R_PKEY_set_purpose()
R_PKEY_to_binary()
R_PKEY_to_bio()
R_PKEY_to_file()
R_PKEY_to_public_key_binary()
R_PKEY_TYPE_from_string()
R_PKEY_TYPE_to_string()
R_PKEY_write_device()
R_realloc()
R_remalloc()
R_RES_LIST_get_item()
R_RES_LIST_get_resource()
R_RES_LIST_set_item()
R_RES_LIST_set_resource()
R_set_mem_functions()
R_SKEY_delete_device()
R_SKEY_free()
R_SKEY_get_handle()
R_SKEY_get_info()
R_SKEY_new()
R_SKEY_read_device()
R_SKEY_set_handle()
R_SKEY_set_info()
R_SKEY_write_device()
R_thread_id()
R_thread_id_get_cb()
R_thread_id_set_cb()
R_TIME_cmp()
R_time_cmp()
R_TIME_CTX_free()
R_TIME_CTX_new()
R_TIME_dup()
R_TIME_export()
R_TIME_free()
R_TIME_get_time_mi_method()
R_TIME_get_utc_time_method()
R_TIME_import()
R_TIME_new()
R_TIME_offset()
R_TIME_time()
R_unlock_r()
R_unlock_w()

Acronyms 21

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

4 Acronyms
The following table lists and describes the acronyms and definitions used throughout
this document.

Table 7 Acronyms and Definitions

Term Definition

AES Advanced Encryption Standard. A fast block cipher with a 128-bit block, and keys of lengths
128, 192, and 256 bits. Replaces DES as the US symmetric encryption standard.

API Application Programming Interface.

Attack Either a successful or unsuccessful attempt at breaking part or all of a cryptosystem. Various
attack types include an algebraic attack, birthday attack, brute force attack, chosen ciphertext
attack, chosen plaintext attack, differential cryptanalysis, known plaintext attack, linear
cryptanalysis, and middle person attack.

CBC Cipher Block Chaining. A mode of encryption in which each ciphertext depends upon all
previous ciphertexts. Changing the Initialization Vector (IV) alters the ciphertext produced
by successive encryptions of an identical plaintext.

CFB Cipher Feedback. A mode of encryption that produces a stream of ciphertext bits rather than
a succession of blocks. In other respects, it has similar properties to the CBC mode of
operation.

CRNG Continuous Random Number Generation.

CTR Counter mode of encryption that turns a block cipher into a stream cipher. It generates the
next keystream block by encrypting successive values of a counter.

DES Data Encryption Standard. A symmetric encryption algorithm with a 56-bit key. See also
Triple-DES.

Diffie-Hellman The Diffie-Hellman asymmetric key exchange algorithm. There are many variants, but
typically two entities exchange some public information (for example, public keys or random
values) and combines them with their own private keys to generate a shared session key. As
private keys are not transmitted, eavesdroppers are not privy to all of the information that
composes the session key.

DSA Digital Signature Algorithm. An asymmetric algorithm for creating digital signatures.

DRBG Deterministic Random Bit Generator.

Dual ECDRBG Dual Elliptic Curve Deterministic Random Bit Generator.

EC Elliptic Curve.

ECAES Elliptic Curve Asymmetric Encryption Scheme.

ECB Electronic Codebook. A mode of encryption that divides a message into blocks and encrypts
each block separately.

ECC Elliptic Curve Cryptography.

22 Acronyms

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

ECDH Elliptic Curve Diffie-Hellman.

ECDHC Elliptic Curve Diffie-Hellman with Components. Described NIST SP 800-56A, March 2007,
Section 5.7.1.2 Elliptic Curve Cryptography Cofactor Diffie-Hellman (ECC CDH) Primitive.

ECDSA Elliptic Curve Digital Signature Algorithm.

ECIES Elliptic Curve Integrated Encryption Scheme.

Encryption The transformation of plaintext into an apparently less readable form (called ciphertext)
through a mathematical process. The ciphertext can be read by anyone who has the key that
decrypts (undoes the encryption) the ciphertext.

FIPS Federal Information Processing Standards.

GCM Galois/Counter Mode. A mode of encryption that combines the Counter mode of encryption
with Galois field multiplication for authentication.

GMAC Galois Message Authentication Code. An authentication only variant of GCM.

HMAC Keyed-Hashing for Message Authentication Code.

HMAC DRBG HMAC Deterministic Random Bit Generator.

IV Initialization Vector. Used as a seed value for an encryption operation.

KAT Known Answer Test.

Key A string of bits used in cryptography, allowing people to encrypt and decrypt data. Can be
used to perform other mathematical operations as well. Given a cipher, a key determines the
mapping of the plaintext to the ciphertext. The types of keys include distributed key, private
key, public key, secret key, session key, shared key, subkey, symmetric key, and weak key.

MD5 A secure hash algorithm created by Ron Rivest. MD5 hashes an arbitrary-length input into a
16-byte digest.

NIST National Institute of Standards and Technology. A division of the US Department of
Commerce (formerly known as the NBS) which produces security and cryptography-related
standards.

OFB Output Feedback. A mode of encryption in which the cipher is decoupled from its ciphertext.

OS Operating System.

PC Personal Computer.

PDA Personal Digital Assistant.

PPC PowerPC.

privacy The state or quality of being secluded from the view or presence of others.

Table 7 Acronyms and Definitions

Term Definition

Acronyms 23

RSA BSAFE Crypto-C Micro Edition 3.0.0.16 Security Policy

private key The secret key in public key cryptography. Primarily used for decryption but also used for
encryption with digital signatures.

PRNG Pseudo-random Number Generator.

RC2 Block cipher developed by Ron Rivest as an alternative to the DES. It has a block size of 64
bits and a variable key size. It is a legacy cipher and RC5 should be used in preference.

RC4 Symmetric algorithm designed by Ron Rivest using variable length keys (usually 40-bit or
128-bit).

RC5 Block cipher designed by Ron Rivest. It is parameterizable in its word size, key length, and
number of rounds. Typical use involves a block size of 64 bits, a key size of 128 bits, and
either 16 or 20 iterations of its round function.

RNG Random Number Generator.

RSA Public key (asymmetric) algorithm providing the ability to encrypt data and create and verify
digital signatures. RSA stands for Rivest, Shamir, and Adleman, the developers of the RSA
public key cryptosystem.

SHA Secure Hash Algorithm. An algorithm that creates a unique hash value for each possible
input. SHA takes an arbitrary input that is hashed into a 160-bit digest.

SHA-1 A revision to SHA to correct a weakness. It produces 160-bit digests. SHA-1 takes an
arbitrary input that is hashed into a 20-byte digest.

SHA-2 The NIST-mandated successor to SHA-1, to complement the Advanced Encryption
Standard. It is a family of hash algorithms (SHA-224, SHA-256, SHA-384 and SHA-512)
that produce digests of 224, 256, 384 and 512 bits respectively.

Triple-DES A variant of DES that uses three 56-bit keys.

Table 7 Acronyms and Definitions

Term Definition

