FIPS 140-2 Security Policy

FortiWiFi-60C
FortiWiFi-60C: FIPS 140-2 Security Policy
25 October 2012
01-430-158790-20111208
for FortiOS 4.0 MR3
© Copyright 2012 Fortinet, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Trademarks
Dynamic Threat Prevention System (DTPS), APSecure, FortiASIC, FortiBIOS, FortiBridge, FortiClient, FortiGate®, FortiGate Unified Threat Management System, FortiGuard®, FortiGuard-Antispam, FortiGuard-Antivirus, FortiGuard-Intrusion, FortiGuard-Web, FortiLog, FortiAnalyzer, FortiManager, Fortinet®, FortiOS, FortiPartner, FortiProtect, FortiReporter, FortiResponse, FortiShield, FortiVoIP, and FortiWiFi are trademarks of Fortinet, Inc. in the United States and/or other countries. The names of actual companies and products mentioned herein may be the trademarks of their respective owners.
Contents

Overview .. 2
References ... 2
Introduction .. 2
Security Level Summary .. 3
Module Description ... 3
 Cryptographic Module Ports and Interfaces 4
 FortiWiFi-60C .. 4
 Web-Based Manager .. 5
 Command Line Interface 6
Roles, Services and Authentication 6
 Roles .. 6
 FIPS Approved Services 7
 Authentication ... 8
Physical Security ... 9
Operational Environment 10
Cryptographic Key Management 11
 Random Number Generation 11
 Key Zeroization .. 11
 Algorithms .. 11
 Cryptographic Keys and Critical Security Parameters 12
Alternating Bypass Feature 13
Key Archiving .. 14
Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC) .. 14
Mitigation of Other Attacks 14
FIPS 140-2 Compliant Operation 14
 Enabling FIPS-CC mode 15
Self-Tests .. 16
Non-FIPS Approved Services 16
Overview

This document is a FIPS 140-2 Security Policy for Fortinet Incorporated’s FortiWiFi-60C Multi-Threat Security System. This policy describes how the FortiWiFi-60C (hereafter referred to as the ‘module’) meet the FIPS 140-2 security requirements and how to operate the module in a FIPS compliant manner. This policy was created as part of the Level 2 FIPS 140-2 validation of the module.

This document contains the following sections:

- Introduction
- Security Level Summary
- Module Description
- Mitigation of Other Attacks
- FIPS 140-2 Compliant Operation
- Self-Tests
- Non-FIPS Approved Services

References

This policy deals specifically with operation and implementation of the module in the technical terms of the FIPS 140-2 standard and the associated validation program. Other Fortinet product manuals, guides and technical notes can be found at the Fortinet technical documentation website at http://docs.forticare.com.

Additional information on the entire Fortinet product line can be obtained from the following sources:

- Find on-line product support for registered products in the technical support section of the Fortinet corporate website at http://www.fortinet.com/support.
- Find contact information for technical or sales related questions in the contacts section of the Fortinet corporate website at http://www.fortinet.com/contact.
- Find security information and bulletins in the FortiGuard Center of the Fortinet corporate website at http://www.fortinet.com/FortiGuardCenter.

Introduction

The FortiGate/FortiWiFi product family spans the full range of network environments, from SOHO to service provider, offering cost effective systems for any size of application. FortiGate/FortiWiFi appliances detect and eliminate the most damaging, content-based threats from email and Web traffic such as viruses, worms, intrusions, inappropriate Web content and more in real time — without degrading network performance. In addition to providing application level firewall protection, FortiGate/FortiWiFi appliances deliver a full range of network-level services — VPN, intrusion prevention, web filtering, antivirus, antispam and traffic shaping — in dedicated, easily managed platforms.
All FortiGate/FortiWiFi appliances employ Fortinet’s unique FortiASIC™ content processing chip and the powerful, secure, FortiOS™ firmware achieve breakthrough price/performance. The unique, ASIC-based architecture analyzes content and behavior in real time, enabling key applications to be deployed right at the network edge where they are most effective at protecting enterprise networks. They can be easily configured to provide antivirus protection, antispam protection and content filtering in conjunction with existing firewall, VPN, and related devices, or as complete network protection systems. The modules support High Availability (HA) in both Active-Active (AA) and Active-Passive (AP) configurations.

FortiGate/FortiWiFi appliances support the IPSec industry standard for VPN, allowing VPNs to be configured between a FortiGate/FortiWiFi appliance and any client or gateway/firewall that supports IPSec VPN. FortiGate/FortiWiFi appliances also provide SSL VPN services using TLS 1.0 in the FIPS-CC mode of operation.

Security Level Summary

The module meets the overall requirements for a FIPS 140-2 Level 2 validation.

Table 1: Summary of FIPS security requirements and compliance levels

<table>
<thead>
<tr>
<th>Security Requirement</th>
<th>Compliance Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Module Specification</td>
<td>2</td>
</tr>
<tr>
<td>Cryptographic Module Ports and Interfaces</td>
<td>3</td>
</tr>
<tr>
<td>Roles, Services and Authentication</td>
<td>3</td>
</tr>
<tr>
<td>Finite State Model</td>
<td>2</td>
</tr>
<tr>
<td>Physical Security</td>
<td>2</td>
</tr>
<tr>
<td>Operational Environment</td>
<td>N/A</td>
</tr>
<tr>
<td>Cryptographic Key Management</td>
<td>2</td>
</tr>
<tr>
<td>EMI/EMC</td>
<td>2</td>
</tr>
<tr>
<td>Self-Tests</td>
<td>2</td>
</tr>
<tr>
<td>Design Assurance</td>
<td>3</td>
</tr>
<tr>
<td>Mitigation of Other Attacks</td>
<td>2</td>
</tr>
</tbody>
</table>

Module Description

The FortiWiFi-60C is a multiple chip, standalone cryptographic module consisting of production grade components contained in a physically protected enclosure in accordance with FIPS 140-2 Level 2 requirements.

The FortiWiFi-60C has 8 network interfaces with a status LED for each network interface (3 10/100 Base-T, 5 10/100/1000 Base-T). The FortiWiFi-60C also includes an IEEE 802.11a/b/g/n compliant WiFi interface with a separate status LED.

The FortiWiFi-60C has one ARM compatible CPU.

The module is a 1u desktop device. The module has an optional rackmount adapter that allow installation in standard 19” equipment racks.

The module does not have external ventilation fans.

The validated firmware version is FortiOS 4.0, build 8892, 111128.
Cryptographic Module Ports and Interfaces

FortiWiFi-60C

Figure 1: FortiWiFi-60C Front and Rear Panels

![FortiWiFi-60C Front and Rear Panels Diagram]

Table 2: FortiWiFi-60C Status LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Green</td>
<td>The module is powered on.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>The module is powered off.</td>
</tr>
<tr>
<td>Status</td>
<td>Flashing</td>
<td>The module is starting up.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>The module is running normally.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>The module is powered off.</td>
</tr>
<tr>
<td>HA</td>
<td>Green</td>
<td>HA is enabled.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>The unit is in stand-alone mode.</td>
</tr>
<tr>
<td>SDHC</td>
<td>Green</td>
<td>SDHC installed and detected.</td>
</tr>
<tr>
<td></td>
<td>Flashing</td>
<td>Read/write activity.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>SDHC not installed or detected.</td>
</tr>
</tbody>
</table>
Table 3: FortiWiFi-60C Rear Panel Connectors and Ports

<table>
<thead>
<tr>
<th>Connector</th>
<th>Type</th>
<th>Speed</th>
<th>Supported Logical Interfaces</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ports 1 to 5</td>
<td>RJ-45</td>
<td>10/100/1000 Base-T</td>
<td>Data input, data output, control input and status output</td>
<td>Multimode fiber optic connections to gigabit optical networks.</td>
</tr>
<tr>
<td>WAN1, WAN2, DMZ</td>
<td>RJ-45</td>
<td>10/100 Base-T</td>
<td>Data input, data output, control input and status output</td>
<td>Copper gigabit connection to 10/100/1000 copper networks.</td>
</tr>
<tr>
<td>WiFi</td>
<td>Antennae</td>
<td>Up to 72 Mbps</td>
<td>Data input, data output, control input and status output</td>
<td>Wireless LAN connection.</td>
</tr>
<tr>
<td>CONSOLE</td>
<td>RJ-45</td>
<td>9600 bps</td>
<td>Control input, status output</td>
<td>Optional connection to the management computer. Provides access to the command line interface (CLI).</td>
</tr>
<tr>
<td>USB</td>
<td>USB</td>
<td>N/A</td>
<td>Key loading and archiving, configuration backup and restore</td>
<td>Optional connection for USB token.</td>
</tr>
</tbody>
</table>

Web-Based Manager

The FortiWiFi web-based manager provides GUI based access to the module and is the primary tool for configuring the module. The manager requires a web browser on the management computer and an Ethernet connection between the FortiWiFi unit and the management computer.

A web-browser that supports Transport Layer Security (TLS) 1.0 is required for remote access to the web-based manager when the module is operating in FIPS-CC mode. HTTP access to the web-based manager is not allowed in FIPS-CC mode and is disabled.
Command Line Interface

The FortiWiFi Command Line Interface (CLI) is a full-featured, text based management tool for the module. The CLI provides access to all of the possible services and configuration options in the module. The CLI uses a console connection or a network (Ethernet) connection between the FortiWiFi unit and the management computer. The console connection is a direct serial connection. Terminal emulation software is required on the management computer using either method. For network access, a Telnet or SSH client that supports the SSH v2.0 protocol is required (SSH v1.0 is not supported in FIPS-CC mode). Telnet access to the CLI is not allowed in FIPS-CC mode and is disabled.

Roles, Services and Authentication

Roles

When configured in FIPS-CC mode, the module provides the following roles:

• Crypto Officer
• Network User

The Crypto Officer role is initially assigned to the default ‘admin’ operator account. The Crypto Officer role has read-write access to all of the module’s administrative services. The initial Crypto Officer can create additional operator accounts. These additional accounts are assigned the Crypto Officer role and can be assigned a range of read/write or read only access permissions including the ability to create operator accounts.
The module provides a **Network User** role for end-users (Users). Network users can make use of the encrypt/decrypt services, but cannot access the module for administrative purposes.

The module does not provide a Maintenance role.

FIPS Approved Services

The following tables detail the types of FIPS approved services available to each role, the types of access for each role and the Keys or CSPs they affect.

The role names are abbreviated as follows:

- **Crypto Officer** (CO)
- **User** (U)

The access types are abbreviated as follows:

- **Read Access** (R)
- **Write Access** (W)
- **Execute Access** (E)

Table 4: Services available to Crypto Officers

<table>
<thead>
<tr>
<th>Service</th>
<th>Access</th>
<th>Key/CSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>authenticate to module</td>
<td>WE</td>
<td>Operator Password, Diffie-Hellman Key, HTTP/TLS and SSH Server/Host Keys, HTTPS/TLS and SSH Session Authentication Keys, and HTTPS/TLS Session Encryption Keys, RNG Seed, RNG AES Key</td>
</tr>
<tr>
<td>show system status</td>
<td>WE</td>
<td>N/A</td>
</tr>
<tr>
<td>show FIPS-CC mode enabled/disabled</td>
<td>WE</td>
<td>N/A</td>
</tr>
<tr>
<td>enable FIPS-CC mode of operation</td>
<td>WE</td>
<td>Configuration Integrity Key</td>
</tr>
<tr>
<td>execute factory reset (zeroize keys, disable FIPS mode, console/CLI only)</td>
<td>E</td>
<td>See "Key Zeroization" on page 11</td>
</tr>
<tr>
<td>execute FIPS-CC on-demand self-tests (console only)</td>
<td>E</td>
<td>Configuration Integrity Key, Firmware Integrity Key</td>
</tr>
<tr>
<td>add/delete operators and network users</td>
<td>WE</td>
<td>Operator Password, Network User Password</td>
</tr>
<tr>
<td>set/reset operator and network user passwords</td>
<td>WE</td>
<td>Operator Password, Network User Password</td>
</tr>
<tr>
<td>backup configuration file</td>
<td>WE</td>
<td>Configuration Encryption Key, Configuration Backup Key</td>
</tr>
<tr>
<td>read/set/delete/modify module configuration</td>
<td>WE</td>
<td>N/A</td>
</tr>
<tr>
<td>enable/disable alternating bypass mode</td>
<td>WE</td>
<td>N/A</td>
</tr>
</tbody>
</table>
The modules implement identity based authentication. Operators must authenticate with a user-id and password combination to access the modules remotely or locally via the console. Remote operator authentication is done over HTTPS (TLS) or SSH. Password entry is obfuscated using asterisks and the module does not provide feedback on the authentication process - i.e. the module does not indicate if the password or the user/operator account is incorrect for a failed authentication attempt.

By default, Network User access to the modules is based on firewall policy and authentication by IP address or fully qualified domain names. Network Users can optionally be forced to authenticate to the modules using a username/password combination to enable use of the IPSec VPN encrypt/decrypt or bypass services. For Network Users invoking the SSL-VPN encrypt/decrypt services, the modules support authentication with a user-id/password combination. Network User authentication is done over HTTPS and does not allow access to the modules for administrative purposes.

Note that operator authentication over HTTPS/SSH and Network User authentication over HTTPS are subject to a limit of 3 failed authentication attempts in 1 minute. Operator authentication using the console is not subject to a failed authentication limit, but the number of authentication attempts per minute is limited by the bandwidth available over the serial connection.

Table 4: Services available to Crypto Officers

<table>
<thead>
<tr>
<th>Service/CSP</th>
<th>Access</th>
<th>Key/CSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>read/set/delete/modify IPSec/SSL VPN configuration</td>
<td>N/A</td>
<td>IPSec: IPSec Manual Authentication Key, IPSec Manual Encryption Key, IKE Pre-Shared Key, IKE RSA Key, SSL: HTTPS/TLS Server/Host Key, HTTPS/TLS Session Authentication Key, HTTPS/TLS SSH Session Encryption Key</td>
</tr>
<tr>
<td>read/set/delete/modify HA configuration</td>
<td>WE</td>
<td>HA Password, HA Encryption Key</td>
</tr>
<tr>
<td>execute firmware update</td>
<td>E</td>
<td>Firmware Update Key</td>
</tr>
<tr>
<td>read log data</td>
<td>WE</td>
<td>N/A</td>
</tr>
<tr>
<td>delete log data (console/CLI only)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>execute system diagnostics (console/CLI only)</td>
<td>WE</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 5: Services available to Network Users

<table>
<thead>
<tr>
<th>Service/CSP</th>
<th>Access</th>
<th>Key/CSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>authenticate to module</td>
<td>E</td>
<td>Network User Password, Diffie-Hellman Key, HTTPS/TLS Server/Host Key, HTTPS/TLS Session Authentication Key, HTTPS/TLS Session Encryption Key, RNG Seed, RNG AES Key</td>
</tr>
<tr>
<td>IPSec VPN controlled by firewall policies</td>
<td>E</td>
<td>Diffie-Hellman Key, IKE and IPSec Keys, RNG Seed, RNG AES Key</td>
</tr>
<tr>
<td>SSL VPN controlled by firewall policies</td>
<td>E</td>
<td>Network User Password, Diffie-Hellman Key, HTTPS/TLS Server/Host Key, HTTPS/TLS Session Authentication Key, HTTPS/TLS Session Encryption Key, RNG Seed, RNG AES Key</td>
</tr>
</tbody>
</table>

Authentication

The modules implement identity based authentication. Operators must authenticate with a user-id and password combination to access the modules remotely or locally via the console. Remote operator authentication is done over HTTPS (TLS) or SSH. Password entry is obfuscated using asterisks and the module does not provide feedback on the authentication process - i.e. the module does not indicate if the password or the user/operator account is incorrect for a failed authentication attempt.
The minimum password length is 8 characters when in FIPS-CC mode (maximum password length is 32 characters). Using a strong password policy, where operator and network user passwords are at least 8 characters in length and use a mix of alphanumeric (printable) characters from the ASCII character set (as explained in "FIPS 140-2 Compliant Operation" on page 14), the odds of guessing a password are $1\text{ in } 8!2^{32}945$.

For Network Users invoking the IPSec VPN encrypt/decrypt services, the module acts on behalf of the Network User and negotiates a VPN connection with a remote module. The strength of authentication for IPSec services is based on the authentication method defined in the specific firewall policy: IPSec manual authentication key, IKE pre-shared key or IKE RSA key (RSA certificate). The odds of guessing the authentication key for each IPSec method is:

- $1\text{ in } 16^{10}$ for the IPSec Manual Authentication key (based on a 40 digit, hexadecimal key)
- $1\text{ in } 94^{8}$ for the IKE Pre-shared Key (based on an 8 character, ASCII printable key)
- $1\text{ in } 2^{1024}$ for the IKE RSA Key (based on a 1024bit RSA key size)

Therefore the minimum odds of guessing the authentication key for IPSec is $1\text{ in } 94^{8}$, based on the IKE Pre-shared key.

Physical Security

The modules meet FIPS 140-2 Security Level 2 requirements by using production grade components and an opaque, sealed enclosure. Access to the enclosure is restricted through the use of tamper-evident seals to secure the overall enclosure.

The seals are serialized red wax/plastic with black lettering that reads “Fortinet Security Seal”.

The tamper seals are not applied at the factory prior to shipping. It is the responsibility of the Crypto Officer to apply the seals before use to ensure full FIPS 140-2 compliance. The seals must be installed for the module to operate in a FIPS Approved mode of operation. Once the seals have been applied, the Crypto Officer must develop an inspection schedule to verify that the external enclosure of the module and the tamper seals have not been damaged or tampered with in any way. The Crypto Officer is also responsible for securing and controlling any unused seals.

The surfaces should be cleaned with rubbing alcohol to remove dirt and oil before applying the seals. Ensure the surface is completely clean and dry before applying the seals. If a seal needs to be re-applied, completely remove the old seal and clean the surface with an adhesive remover before following the instructions for applying a new seal.

Additional seals can be ordered through your Fortinet sales contact. Reference the following SKU when ordering: FIPS-SEAL-RED. Specify the number of seals required based on the specific module as described below.

The FortiWiFi-60C uses 2 seals to secure:

- the external enclosure (one seals, see Figure 3)
- the SDHC slot (one seal, see Figure 4)
Operational Environment

This section is not applicable to the modules. The modules utilize a firmware based, proprietary and non-modifiable operating system that does not provide a programming environment.
Cryptographic Key Management

Random Number Generation

The modules use a firmware based, deterministic random number generator that conforms to ANSI X9.31 Appendix A.2.4.

Key Zeroization

The following keys are zeroized by executing a factory reset followed by a firmware update.

- ANSI X9.31 RNG AES Key
- Firmware Update Key
- Firmware Integrity Key
- Configuration Integrity Key
- Configuration Backup Key
- SSH Server/Host Key
- HTTPS/TLS Server/Host Key

All other keys and CSPs are zeroized when the operator executes a factory reset or when enabling or disabling the FIPS-CC mode of operation.

See Table 8 on page 12 for a complete list of keys and CSPs.

Algorithms

Table 6: FIPS Approved or Allowed Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>NIST Certificate Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNG (ANSI X9.31 Appendix A)</td>
<td>996</td>
</tr>
<tr>
<td>Triple-DES</td>
<td>961, 1234, 1235</td>
</tr>
<tr>
<td>AES</td>
<td>1408, 1899, 1900</td>
</tr>
<tr>
<td>SHA-1</td>
<td>1278, 1668, 1669</td>
</tr>
<tr>
<td>HMAC SHA-1</td>
<td>829, 1139, 1140</td>
</tr>
<tr>
<td>RSA ANSI X9.31 (key generation, signature generation and verification)</td>
<td>685, 973</td>
</tr>
<tr>
<td>RSA PKCS1 (digital signature creation and verification)</td>
<td>685, 973</td>
</tr>
</tbody>
</table>

Table 7: Non-FIPS Approved Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES (disabled in FIPS-CC mode)</td>
</tr>
<tr>
<td>MD5 (disabled in FIPS-CC mode except for use in the TLS protocol)</td>
</tr>
<tr>
<td>HMAC MD5 (disabled in FIPS-CC mode)</td>
</tr>
<tr>
<td>Diffie-Hellman (key agreement; key establishment methodology provides between 96 and 196 bits of encryption strength)</td>
</tr>
<tr>
<td>RSA (key wrapping; key establishment methodology provides 80 or 112 bits of encryption strength)</td>
</tr>
<tr>
<td>SHA-256 (non-compliant)</td>
</tr>
<tr>
<td>HMAC SHA-256 (non-compliant)</td>
</tr>
<tr>
<td>AES-CCM (non-compliant)</td>
</tr>
</tbody>
</table>
Note that some algorithms may be classified as deprecated, restricted, or legacy-use. Please consult NIST SP 800-131A for details.

Cryptographic Keys and Critical Security Parameters

The following table lists all of the cryptographic keys and critical security parameters used by the module. The following definitions apply to the table:

- **Key or CSP**: The key or CSP description.
- **Storage**: Where and how the keys are stored.
- **Usage**: How the keys are used.

<table>
<thead>
<tr>
<th>Key or CSP</th>
<th>Storage</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffie-Hellman Keys</td>
<td>SDRAM Plaintext</td>
<td>Key agreement and key establishment</td>
</tr>
<tr>
<td>IPSec Manual Authentication Key</td>
<td>Flash RAM AES encrypted</td>
<td>Used as IPSec Session Authentication Key</td>
</tr>
<tr>
<td>IPSec Manual Encryption Key</td>
<td>Flash RAM AES encrypted</td>
<td>Used as IPSec Session Encryption Key</td>
</tr>
<tr>
<td>IPSec Session Authentication Key</td>
<td>SDRAM Plain-text</td>
<td>IPSec peer-to-peer authentication using HMAC SHA-1</td>
</tr>
<tr>
<td>IPSec Session Encryption Key</td>
<td>SDRAM Plain-text</td>
<td>VPN traffic encryption/decryption using Triple-DES or AES</td>
</tr>
<tr>
<td>IKE Pre-Shared Key</td>
<td>Flash RAM AES encrypted</td>
<td>Used to generate IKE protocol keys</td>
</tr>
<tr>
<td>IKE Authentication Key</td>
<td>SDRAM Plaintext</td>
<td>IKE peer-to-peer authentication using HMAC SHA-1 (SKEYID_A)</td>
</tr>
<tr>
<td>IKE Key Generation Key</td>
<td>SDRAM Plaintext</td>
<td>IPSec SA keying material (SKEYID_D)</td>
</tr>
<tr>
<td>IKE Session Encryption Key</td>
<td>SDRAM Plain-text</td>
<td>Encryption of IKE peer-to-peer key negotiation using Triple-DES or AES (SKEYID_E)</td>
</tr>
<tr>
<td>IKE RSA Key</td>
<td>Flash Ram Plaintext</td>
<td>Used to generate IKE protocol keys</td>
</tr>
<tr>
<td>RNG Seed (ANSI X9.31 Appendix A.2.4)</td>
<td>Flash RAM Plaintext</td>
<td>Seed used for initializing the RNG</td>
</tr>
<tr>
<td>RNG AES Key (ANSI X9.31 Appendix A.2.4)</td>
<td>Flash RAM Plaintext</td>
<td>AES Seed key used with the RNG</td>
</tr>
<tr>
<td>Firmware Update Key</td>
<td>Flash RAM Plaintext</td>
<td>Verification of firmware integrity when updating to new firmware versions using RSA public key</td>
</tr>
<tr>
<td>Firmware Integrity Key</td>
<td>Flash RAM Plaintext</td>
<td>Verification of firmware integrity in the firmware integrity test using RSA public key</td>
</tr>
<tr>
<td>HTTPS/TLS Server/Host Key</td>
<td>Flash RAM Plaintext</td>
<td>RSA private key used in the HTTPS/TLS protocols</td>
</tr>
<tr>
<td>HTTPS/TLS Session Authentication Key</td>
<td>SDRAM Plaintext</td>
<td>HMAC SHA-1 key used for HTTPS/TLS session authentication</td>
</tr>
<tr>
<td>HTTPS/TLS Session Encryption Key</td>
<td>SDRAM Plaintext</td>
<td>AES or Triple-DES key used for HTTPS/TLS session encryption</td>
</tr>
</tbody>
</table>
The primary cryptographic function of the module is as a firewall and VPN device. The module implements two forms of alternating bypass for VPN traffic: policy based (for IPSec and SSL VPN) and interface based (for IPSec VPN only).

Policy Based VPN
Firewall policies with an action of IPSec or SSL-VPN mean that the firewall is functioning as a VPN start/end point for the specified source/destination addresses and will encrypt/decrypt traffic according to the policy. Firewall policies with an action of allow mean that the firewall is accepting/sending plaintext data for the specified source/destination addresses.

A firewall policy with an action of accept means that the module is operating in a bypass state for that policy. A firewall policy with an action of IPSec or SSL-VPN means that the module is operating in a non-bypass state for that policy.

Interface Based VPN
Interface based VPN is supported for IPSec only. A virtual interface is created and any traffic routed to the virtual interface is encrypted and sent to the VPN peer. Traffic received from the peer is decrypted. Traffic through the virtual interface is controlled using firewall policies. However, unlike policy based VPN, the action is restricted to Accept or Deny and all traffic controlled by the policy is encrypted/decrypted.

When traffic is routed over the non-virtual interfaced, the module is operating in a bypass state. When traffic is routed over the virtual interface, the module is operating in a non-bypass state.
In both cases, two independent actions must be taken by a CO to create bypass firewall policies: the CO must create the bypass policy and then specifically enable that policy.

Key Archiving

The module supports key archiving to a management computer or USB token as part of a module configuration file backup. Operator entered keys are archived as part of the module configuration file. The configuration file is stored in plain text, but keys in the configuration file are either AES encrypted using the Configuration Encryption Key or stored as a keyed hash using HMAC-SHA-1 using the Configuration Backup Key.

Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)

The module is declared to conform with EMI/EMC requirements for Class B (business use) devices as specified by Part 15, Subpart B, of the FCC rules.

Mitigation of Other Attacks

The module includes a real-time Intrusion Prevention System (IPS) as well as antivirus protection, antispam and content filtering. Use of these capabilities is optional.

The FortiOS IPS has two components: a signature based component for detecting attacks passing through the FortiWiFi appliance and a local attack detection component that protects the firewall from direct attacks. Functionally, signatures are similar to virus definitions, with each signature designed to detect a particular type of attack. The IPS signatures are updated through the FortiGuard IPS service. The IPS engine can also be updated through the FortiGuard IPS service.

FortiOS antivirus protection removes and optionally quarantines files infected by viruses from web (HTTP), file transfer (FTP), and email (POP3, IMAP, and SMTP) content as it passes through the FortiWiFi modules. FortiOS antivirus protection also controls the blocking of oversized files and supports blocking by file extension. Virus signatures are updated through the FortiGuard antivirus service. The antivirus engine can also be updated through the FortiGuard antivirus service.

FortiOS antispam protection tags (SMTP, IMAP, POP3) or discards (SMTP only) email messages determined to be spam. Multiple spam detection methods are supported including the FortiGuard managed antispam service.

FortiOS web filtering can be configured to provide web (HTTP) content filtering. FortiOS web filtering uses methods such as banned words, address block/exempt lists, and the FortiGuard managed content service.

Whenever a IPS, antivirus, antispam or filtering event occurs, the modules can record the event in the log and/or send an alert email to an operator.

For complete information refer to the FortiGate Installation Guide for the specific module in question, the FortiGate Administration Guide and the FortiGate IPS Guide.

FIPS 140-2 Compliant Operation

FIPS 140-2 compliant operation requires both that you use the module in its FIPS-CC mode of operation and that you follow secure procedures for installation and operation of the FortiWiFi unit. You must ensure that:

- The FortiWiFi unit is configured in the FIPS-CC mode of operation.
- The FortiWiFi unit is installed in a secure physical location.
• Physical access to the FortiWiFi unit is restricted to authorized operators.
• Administrative passwords are at least 8 characters long.
• Administrative passwords are changed regularly.
• Administrator account passwords must have the following characteristics:
 • One (or more) of the characters should be capitalized
 • One (or more) of the characters should be numeric
 • One (or more) of the characters should be non alpha-numeric (e.g. punctuation mark)
• Administration of the module is permitted using only validated administrative methods. These are:
 • Console connection
 • Web-based manager via HTTPS
 • Command line interface (CLI) access via SSH
• Diffie-Hellman groups of less than 1024 bits (Group 5) are not used.
• Client side RSA certificates must use 1024 bit or greater key sizes.
• LDAP based authentication must use secure LDAP (LDAPS).
• Only approved algorithms are used (see Table 6 on page 11).

The module can be used in either of its two operation modes: NAT/Route or Transparent. NAT/Route mode applies security features between two or more different networks (for example, between a private network and the Internet). Transparent mode applies security features at any point in a network. The current operation mode is displayed on the web-based manager Status page and in the output of the `get system status` CLI command. Also, on LCD-equipped modules, Transparent mode is indicated by “FIPS-CC-TP” and NAT/Route by “FIPS-CC-NAT” on the LCD display.

Enabling FIPS-CC mode

To enable the FIPS 140-2 compliant mode of operation, the operator must execute the following command from the Local Console:

 config system fips
 set status enable

The Operator is required to supply a password for the admin account which will be assigned to the Crypto Officer role.

The supplied password must be at least 8 characters long and correctly verified before the system will restart in FIPS-CC mode.

Upon restart, the module will execute self-tests to ensure the correct initialization of the module’s cryptographic functions.

After restarting, the Crypto Officer can confirm that the module is running in FIPS-CC mode by executing the following command from the CLI:

 get system status

If the module is running in FIPS-CC mode, the system status output will display the line:

 FIPS-CC mode: enable

Note that enabling/disabling the FIPS-CC mode of operation will automatically invoke the key zeroization service. The key zeroization is performed immediately after FIPS-CC mode is enabled/disabled.
Self-Tests

The module executes the following self-tests during startup and initialization:

- Firmware integrity test using RSA signatures
- Configuration/VPN bypass test using HMAC SHA-1
- Triple-DES, CBC mode, encrypt/decrypt known answer test
- AES, CBC mode, encrypt/decrypt known answer test
- HMAC SHA-1 known answer test
- SHA-1 known answer test (tested as part of HMAC SHA-1 known answer test)
- RSA signature generation/verification known answer test
- RNG known answer test

The results of the startup self-tests are displayed on the console during the startup process. The startup self-tests can also be initiated on demand using the CLI command `execute fips kat all` (to initiate all self-tests) or `execute fips kat <test>` (to initiate a specific self-test).

The module executes the following conditional tests when the related service is invoked:

- Continuous RNG test
- RSA pairwise consistency test
- Configuration/VPN bypass test using HMAC SHA-1
- Firmware load test using RSA signatures

If any of the self-tests or conditional tests fail, the module enters an error state as shown by the console output below:

```
Self-tests failed
Entering error mode...
The system is going down NOW !!
The system is halted.
```

All data output and cryptographic services are inhibited in the error state.

Non-FIPS Approved Services

The module also provides the following non-FIPS approved services:

- Encrypted configuration backups using the backup configuration password
- LLTP and PPTP VPN

If the above services are used, the module is not considered to be operating in the FIPS approved mode of operation.