

IBM® Crypto for C

version 8.2.2.0
 FIPS 140-2 Non-Proprietary

Security Policy, version 1.7

July 24, 2013

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 2
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

This document is the property of International Business Machines Corporation
(IBM® Corp.). This document may only be reproduced in its entirety without
modifications.

© Copyright 2013 IBM Corp. / atsec information security corp. All Rights Reserved

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 3
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

Table of Contents

1. References and Abbreviations ... 4
1.1 References ... 4
1.2 Abbreviations .. 4

2 Introduction ... 7
2.1 Purpose of the Security Policy ... 7
2.2 Target Audience .. 7

3. Cryptographic Module Definition .. 8
3.1 Cryptographic Module Boundary ... 11

4. FIPS 140-2 Specifications ... 13
4.1 Ports and Interfaces ... 13
4.2 Roles, Services and Authentication ... 13

4.2.1 Roles and Authentication .. 13
4.2.2 Authorized Services .. 14
4.2.3 Access Rights within Services .. 23
4.2.4 Operational Rules and Assumptions .. 24

4.3 Operational Environment ... 25
4.3.1 Assumptions ... 25
4.3.2 Installation and Initialization .. 25

4.4 Cryptographic Key Management ... 26
4.4.1 Implemented Algorithms .. 26
4.4.2 Key Generation ... 26
4.4.3 Key Establishment .. 27
4.4.4 Key Entry and Output ... 28
4.4.5 Key Storage .. 28
4.4.6 Key Zeroization ... 28

4.5 Self-Tests ... 28
4.5.1 Show Status .. 29
4.5.2 Startup Tests ... 29
4.5.3 Conditional Tests ... 30
4.5.4 Severe Errors .. 31

4.6 Design Assurance .. 32
4.7 Mitigation of Other Attacks ... 33

5. API Functions .. 34

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 4
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

1. References and Abbreviations

1.1 References
Reference Author Title

FIPS140-2 NIST FIPS PUB 140-2: Security Requirements For Cryptographic
Modules, May 2001

FIPS140-2-DTR NIST Derived Test Requirements for FIPS PUB 140-2,
November 2001

FIPS140-2-IG NIST Implementation Guidance for FIPS PUB 140-2 and the
Cryptographic Module Validation Program

SP800-131A NIST Special Publication 800-131A: Transitions:
Recommendation for Transitioning the Use of
Cryptographic Algorithms and Key Lengths

SP800-38C NIST Recommendation for Block Cipher Modes of Operation:
The CCM Mode for Authentication and Confidentiality

SP800-38D NIST Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC

1.2 Abbreviations
ANS.1 Abstract Syntax Notation One. A notation for describing data structures.

AES The Advanced Encryption Standard. The AES is intended to be issued as a FIPS
standard and will replace DES. In January 1997 the AES initiative was announced and
in September 1997 the public was invited to propose suitable block ciphers as candidates
for the AES. NIST is looking for a cipher that will remain secure well into the next
century. NIST selected Rijndael as the AES algorithm.

AES_CCM AES counter mode as documented in NIST SP800-38C

AES_GCM AES Galois counter mode as documented in NIST SP800-38D

AES-NI Intel® Advanced Encryption Standard (AES) New Instructions (AES-NI)

Camellia A 128 bit block cipher developed by NTT

CMAC Cipher based MAC. As documented in NIST SP800-38B

CMVP (The NIST) Cryptographic Module Validation Program; an integral part of the
Computer Security Division at N IST, the CMVP encompasses validation testing for
cryptographic modules and algorithms

CPACF CP (central processor) assist for Cryptographic Functions

Crypto Cryptographic capability/functionality

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 5
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

CSEC The Communications Security Establishment Canada; an entity operating under the
Canadian Department of National Defense, CSEC provides technical advice, guidance
and services to the Government of Canada to maintain the security of its information
and information infrastructures. The CMV Program was established by NIST and CSEC
in July 1995.

DER Distinguished Encoding Rules

DES The Data Encryption Standard, an encryption block cipher defined and endorsed by
the U.S. government in 1977 as an official standard; the details can be found in the
latest official FIPS (Federal Information Processing Standards) publication
concerning DES. It was originally developed at IBM. DES has been extensively
studied since its publication and is the most well-known and widely used
cryptosystem in the world.

DH

Diffie-Hellman key agreement protocol (also called exponential key agreement) was
developed by Diffie and Hellman in 1976 and published in the ground-breaking paper
“New Directions in Cryptography”. The protocol allows two users to exchange a secret
key over an insecure medium without any prior secrets.

DSA The Digital Signature Algorithm (DSA) was published by NIST in the Digital
Signature Standard (DSS)

ECC Elliptic curve cryptography. A potentially faster and more secure replacement for
prime field based asymmetric algorithms such as RSA and Diffie-Hellman

ECDH Elliptic curve Diffie-Hellman

ECDSA Elliptic Curve digital signature algorithm

ICC IBM Crypto for C-language is a general-purpose cryptographic provider module.

Libcrypt The cryptography engine of OpenSSL.

MD2
MD4
MD5

MD2, MD4, and MD5 are message-digest algorithms developed by Rivest. They
are meant for digital signature applications where a large message has to be
"compressed" in a secure manner before being signed with the private key. All
three algorithms take a message of arbitrary length and produce a 128-bit
message digest. While the structures of these algorithms are somewhat similar, the
design of MD2 is quite different from that of MD4 and MD5 and MD2 was optimized
for 8-bit machines, whereas MD4 and MD5 were aimed at 32-bit machines.
Description and source code for the three algorithms can be found as Internet
RFCs 1319 - 1321.

MDC2 A seldom used hash algorithm developed by IBM

NIST (The) National Institute of Standards and Technology; NIST is a non-regulatory
federal agency within the U.S. Commerce Department's Technology
Administration. NIST's mission is to develop and promote measurement,
standards, and technology to enhance productivity, facilitate trade, and improve
the quality of life. NIST oversees the Cryptographic Module Validation Program.

OpenSSL A collaborative effort to develop a robust, commercial-grade, full-featured and
Open Source toolkit implementing the Secure Socket Layer (SSL V1/V3) and
Transport Layer Security (TLS V1) protocols.

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 6
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

PKCS#1 A standard that describes a method for encrypting data using the RSA public-key
crypto system

PRNG Pseudo-Random number generator. Essentially a sequence generator which, if
the internal state is unknown, is unpredictable and has good distribution
characteristics.

RC2 A variable key-size block cipher designed by Rivest for RSA Data Security. "RC"
stands for "Ron's Code" or "Rivest's Cipher." It is faster than DES and is designed
as a "drop-in" replacement for DES. It can be made more secure or less secure
than DES against exhaustive key search by using appropriate key sizes. It has a
block size of 64 bits and is about two to three times faster than DES in software.
The algorithm is confidential and proprietary to RSA Data Security. RC2 can be
used in the same modes as DES.

RC4 A stream cipher designed by Rivest for RSA Data Security. It is a variable key-size
stream cipher with byte-oriented operations.

RSA A public-key cryptosystem for both encryption and authentication; it was invented in
1977 by Ron Rivest, Adi Shamir, and Leonard Adleman.

SHA-1 The Secure Hash Algorithm, the algorithm specified in the Secure Hash Standard
(SHS), was developed by NIST and published as a federal information processing
standard. SHA-1 was a revision to SHA that was published in 1994. The revision
corrected an unpublished flaw in SHA.

SHA-2 A set of hash algorithms intended as an upgrade to SHA-1. These support a wider
range of hash sizes than SHA-1 and should be more secure

Triple DES Based on the DES standard; the plaintext is, in effect, encrypted three times. Triple
DES (TDEA), as specified in ANSI X9.52, is recognized as a FIPS approved
algorithm.

TRNG True Random number generator. A random number generator using an entropy
source. May have worse distribution characteristics than a PRNG, but its output
cannot be predicted even with knowledge of its previous state.

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 7
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

2 Introduction

This document is a non-proprietary FIPS 140-2 Security Policy for the IBM Crypto for C
(ICC), version 8.2.2.0 cryptographic module. It contains a specification of the rules under
which the module must operate and describes how this module meets the requirements
as specified in FIPS PUB 140-2 (Federal Information Processing Standards Publication
140-2) for a Level 1 multi-chip standalone software module. This Policy forms a part of
the submission package to the testing lab.

 FIPS 140-2 specifies the security requirements for a cryptographic module
protecting sensitive information. Based on four security levels for cryptographic
modules this standard identifies requirements in eleven sections. For more
information about the standard visit http://csrc.nist.gov/publications/fips/fips140-
2/fips1402.pdf. For more information on the FIPS 140-2 standard and validation
program please refer to the NIST website at
http://csrc.nist.gov/groups/STM/cmvp/.

 For more information about IBM software please visit http://www.ibm.com

2.1 Purpose of the Security Policy
 There are three major reasons that a security policy is required. It is required for

FIPS 140-2 validation. It allows individuals and organizations to determine whether the
cryptographic module, as implemented, satisfies the stated security policy describes
the capabilities, protection, and access rights provided by the cryptographic module,
allowing individuals and organizations to determine whether it will meet their security
requirements.

2.2 Target Audience

This document is intended to be part of the package of documents that are submitted for
FIPS validation. It is intended for the following people:

 Developers working on the release
 Product Verification
 Documentation
 Product and Development Managers

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 8
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

3. Cryptographic Module Definition

This section defines the software cryptographic module that is being submitted for
validation to FIPS PUB 140-2, level 1.

The IBM Crypto for C version 8.2.2.0 (ICC) cryptographic module is implemented in the C
programming language. It is packaged as dynamic (shared) libraries usable by
applications written in a language that supports C language linking conventions (e.g., C,
C++, Java, Assembler, etc.) for use on commercially available operating systems. The
ICC allows these applications to access cryptographic functions using an Application
Programming Interface (API) provided through an ICC import library and based on the
API defined by the OpenSSL group.

The cryptographic module provided to the customer consists of:

 ICC static stub: static library (object code) that is linked into the customer’s

application, performs the integrity checks on the Crypto Module and communicates
with it. C headers (source code) containing the API prototypes and other definitions
needed for linking the static library.

 ICC shared library: Shared library (executable code) containing the IBM code
needed to meet FIPS and functional requirements not provided within the OpenSSL
libraries (e.g., TRNG, PRNG, self-tests, startup/shutdown). Contains also zlib, used
for TRNG entropy estimation.

 Libcrypt: Shared library (executable code) containing the OpenSSL cryptographic
library.

There is a different set of the cryptographic module (static and shared libraries) for each
of the target platforms.

The cryptographic module (specifically OpenSSL) takes advantage of the AES-NI and
CPACF features supported by some of the testing platforms that are part of the
operational environment:

 Advanced Encryption Standard (AES) New Instructions (AES-NI) is an extension
to the x86 instruction set architecture for microprocessors from Intel and AMD
proposed by Intel in March 2008. The purpose of the instruction set is to improve
the speed of applications performing encryption and decryption using the
Advanced Encryption Standard (AES). The new AES-NI instruction set is
comprised of six new instructions that perform several compute intensive parts of
the AES algorithm. These instructions can execute using significantly less clock

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 9
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

cycles than a software solution. Four of the new instructions are for accelerating
the encryption/decryption of a round and two new instructions are for round key
generation.

 Central Processor Assist for Cryptographic Functions (CPACF) is a set of
cryptographic instructions on the z196 processors. These instructions provide for
high speed cryptography. The CPACF Data Encryption Standard (DES) / Triple
Data Encryption Standard (Triple-DES) enablement feature (feature 3863)
provides clear keys for DES and Triple-DES instructions. This feature provides:

o DES 64-bit keys (including 8 parity bits)

o Triple-DES 192-bit keys (including 24 parity bits)

o Advance Encryption Standard (AES) for 128, 192 and 256 bit keys.

o SHA1, SHA-224, SHA-256, SHA-384 and SHA-512.

o Pseudo Random Number Generation (PRNG).

OpenSSL 1.0.1, which is part of the cryptographic module, implements hardware
acceleration for AES and SHA only. Triple-DES and PRNG are not supported.

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 10
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

The following table presents the variants of the cryptographic module that were tested
and validated with their corresponding hardware and software platforms in the
operational environment:

Hardware platform Operating system ICC variants

32-bits 64-bits

ALTECH SH67H3
Intel® Core™ i7-
2600

Microsoft Windows Server 2008® 64-bit
(with and without AES-NI)

 

IBM 8835 52X AMD
Opteron 246

Microsoft Windows Server 2008® 32-bit 

IBM RS6000 7037-
A50 PowerPC 5 64

AIX® 6.1 64-bit  

Sun Fire T1000
UltraSPARC T1

Solaris® 10 64-bit  

ALTECH SH67H3
Intel® Core™ i7-
2600

Red Hat Linux Enterprise Server 5 64-bit
(with and without AES-NI)

 

IBM 8835 52X AMD
Opteron 246

Red Hat Linux Enterprise Server 5 32-bit 

IBM System p5 185
7037-A50 IBM
PowerPC 970

Red Hat Linux Enterprise Server 5 64-bit  

IBM z196 type
2817 model M32
zSeries 196

Red Hat Linux Enterprise Server 5 64-bit
(with and without CPACF)

 

Table 1 - Target platforms

As outlined in G.5 of the Implementation Guidance for FIPS 140-2 (December 21, 2012
Update), the module maintains its compliance on other operating systems (Windows,
AIX®, Solaris® and Linux), provided:

 The operating system meets the operational environment requirements at the
module’s level of validation, and runs in a single-user mode.

 The module does not require modification to run in the new environment.
 The CMVP makes no statement as to the correct operation of the module or the

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 11
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

security strengths of the generated keys when ported.

3.1 Cryptographic Module Boundary
The relationship between ICC and IBM applications is shown in the following diagram. ICC
comprises a static stub linked into the IBM application which bootstraps and validates the
two cryptographic shared libraries.

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 12
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

 IBM Application - The IBM application using ICC. This contains the application
code, and the ICC static stub.

 IBM Application code - The program using ICC to perform cryptographic functions.
 ICC Static stub - Linked in to the application, this contains signatures of the ICC and

OpenSSL shared libraries, plus code to bootstrap the loading of the shared libraries.
 ICC shared library - This contains IBM code needed to meet FIPS and functional

requirements not provided within the OpenSSL libraries. TRNG, PRNG, self test,
startup/shutdown.

 zlib - A statically linked copy of zlib used for TRNG entropy estimation.
 Libcrypt - The OpenSSL cryptographic shared library.

The logical boundary of Cryptographic Module - consists of ICC Static stub, ICC shared
library, zlib and Libcrypt bounded by the dashed green line in the figure. While the
signatures of the ICC components used for the integrity check of the ICC during its
initialization are contained in the ICC static stub, all of the validated cryptographic
algorithms are implemented in ICC shared library, zlib and Libcrypt whose binary object
code is enclosed in the dashed red lines.

The physical boundary of the cryptographic module is defined to be the enclosure of the
computer that runs the ICC software.

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 13
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

4. FIPS 140-2 Specifications

4.1 Ports and Interfaces
The ICC meets the requirements of a multi-chip standalone module. Since the ICC is a
software module, its interfaces are defined in terms of the API that it provides. Data
Input Interface is defined as the input data parameters of those API functions that accept,
as their arguments, data to be used or processed by the module. The return value or
arguments of appropriate types, data generated or otherwise processed by the API
functions to the caller constitute Data Output Interface. Control Input Interface is
comprised of the call used to initiate the module and the API functions used to control the
operation of the module as well as environment variables.

Status Output Interface is defined as the API functions ICC_GetStatus and ICC_GetValue
that provide information about the status of the module. The functions ICC_GetStatus and
ICC_GetValue may be called anytime after ICC_Init to indicate the status of the ICC
module.

4.2 Roles, Services and Authentication

4.2.1 Roles and Authentication

The ICC implements the following two roles: Crypto-Officer role and User role (there is no
Maintenance Role). The Operating System (OS) provides functionality to require any user to
be successfully authenticated prior to using any system services. However, the Module
does not support user identification or authentication that would allow for distinguishing
users between the two supported roles. Only a single operator assuming a particular role
may operate the Module at any particular moment in time. The OS authentication
mechanism must be enabled to ensure that none of the Module’s services are available
to users who do not assume an authorized role.

The Module does not identify nor authenticate any user (in any role) that is accessing
the Module. This is only acceptable for a FIPS 140-2, Security Level 1 validation.

The two roles are defined per the FIPS140-2 standard as follows:

1. Crypto Officer - any entity that can access services implemented in the Module
and, install and initialize the Module.

2. User - any entity that can access services implemented in the Module.

The table below lists the Roles and their associated authentication:

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 14
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

Role Authentication
Type

Authentication
Data

Authentication
Mechanism

Authentication
Strength

Crypto Officer Not required Not required Not required Not required

User Not required Not required Not required Not required

Table 2 - Roles and Services

4.2.2 Authorized Services

An operator is implicitly assumed in the User or Cryptographic Officer role based
upon the operations chosen. Both User and Cryptographic Officer can call all services
implemented in the Module as listed in the tables below. Only Cryptographic Officer can
install and initialize the Module. If the operator installs and/or initializes the Module,
then he is in the Cryptographic Officer role. Otherwise, the operator is in the User role.

Table 3 provides a summary of the services and access supported by the ICC. Table 4
provides services supported by the ICC in non-FIPS mode of operation.

Service Notes Modes IS FIPS-
Approved?

If yes,

Cert #

Cryptographic
Keys, CSPs and
access

Symmetric Algorithms

AES encryption &
decryption

128, 192,or 256-
bit keys (FIPS
197)

Encrypt/Decrypt

(with and without
AES-NI support)

(with and without
CPACF support)

CBC,ECB, CFB1,
CFB8, CFB128,
OFB

Yes

Cert #2155,
2156, 2157,
2158, 2159,
2160, 2161,
2162, 2163,
2164, 2165,
2166, 2167,
2169, 2170,
2171, 2172,
2179, 2213,
2214

AES Symmetric
key

Read/
Write

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 15
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

Service Notes Modes IS FIPS-
Approved?

If yes,

Cert #

Cryptographic
Keys, CSPs and
access

Triple-DES
encryption &
decryption

192-bit (of which
168 bits are key
bits and the rest
are parity bits)
keys (SP 800-67)

Encrypt/Decrypt

CBC, ECB,
CFB64, OFB

Yes

Cert #1365,
1366, 1367,
1368, 1369,
1370, 1371,
1372, 1373,
1374, 1375,
1376, 1377,
1379

Triple-DES
Symmetric key

Read/
Write

Public Key Algorithms

DSA
Key/Parameter
Generation

L=1024-bit, N=160
(FIPS 186-2)

N/A Yes

Cert #670,
671, 672, 673,
674, 675, 676,
677, 678, 679,
680, 681, 682,
683, 756, 757

DSA public and
private key

Write

DSA
Key/Parameter
Generation

L=512, N=160

L=2048, N=224

L=2048, N=256
L=3072, N=256

(FIPS 186-3)

Available only in
non-FIPS mode

N/A No DSA public and
private key

Write

DSA Signature
Generation

L=1024, N=160

(FIPS 186-2)

N/A Yes

Cert #670,
671, 672, 673,
674, 675, 676,
677, 678, 679,
680, 681, 682,
683, 756, 757

DSA private
key

Read

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 16
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

Service Notes Modes IS FIPS-
Approved?

If yes,

Cert #

Cryptographic
Keys, CSPs and
access

DSA Signature
Generation

L=512, N=160

L=2048, N=224

L=2048, N=256
L=3072, N=256

(FIPS 186-3)

Available only in
non-FIPS mode

N/A No DSA private
key

Read

DSA Signature
Verification

L=1024, N=160

(FIPS 186-2)

N/A Yes

Cert #670,
671, 672, 673,
674, 675, 676,
677, 678, 679,
680, 681, 682,
683, 756, 757

DSA public key Read

DSA Signature
Verification

L=512, N=160

L=2048, N=224

L=2048, N=256
L=3072, N=256

(FIPS 186-3)

Available only in
non-FIPS mode

N/A No DSA public key Read

ECDSA KeyPair P: 192, 224, 256,
384, 521

K: 163, 233, 283,
409, 571

B: 163, 233, 283,
409, 571

N/A Yes

Cert #325,
326, 327, 328,
329, 330, 331,
332, 333, 334,
335, 336, 337,
338, 398, 399

ECDSA public
and private key

Write

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 17
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

Service Notes Modes IS FIPS-
Approved?

If yes,

Cert #

Cryptographic
Keys, CSPs and
access

ECDSA PKV P: 192, 224, 256,
384, 521

K: 163, 233, 283,
409, 571

B: 163, 233, 283,
409, 571

N/A Yes

Cert #325,
326, 327, 328,
329, 330, 331,
332, 333, 334,
335, 336, 337,
338, 398, 399

ECDSA key
material

Write

ECDSA Signature
Generation

P: 192, 224, 256,
384, 521

K: 163, 233, 283,
409, 571

B: 163, 233, 283,
409, 571

N/A Yes

Cert #325,
326, 327,328,
329, 330, 331,
332, 333, 334,
335, 336, 337,
338, 398, 399

ECDSA private
key

Read

ECDSA Signature
Verification

P: 192, 224, 256,
384, 521

K: 163, 233, 283,
409, 571

B: 163, 233, 283,
409, 571

N/A Yes

Cert #325,
326, 327, 328,
329, 330, 331,
332, 333, 334,
335, 336, 337,
338, 398, 399

ECDSA public
key

Read

RSA Key
Generation

ANSI X9.31

(1024 to 4096 bits)

N/A Yes

Cert #1109,
1110, 1111,
1112, 1113,
1114, 1115,
1116, 1117,
1118, 1119,
1120, 1121,
1123, 1253,
1254

RSA public and
private key

Write

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 18
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

Service Notes Modes IS FIPS-
Approved?

If yes,

Cert #

Cryptographic
Keys, CSPs and
access

RSA Signature
Generation

PKCS#1.5

(1024 to 4096 bits)

(SHA-1,SHA-
224,SHA-
256,SHA-
384,SHA-512)

(with and without
CPACF support)

N/A Yes

Cert #1109,
1110, 1111,
1112, 1113,
1114, 1115,
1116, 1117,
1118, 1119,
1120, 1121,
1123, 1253,
1254

RSA private
key

Read

RSA Signature
Verification

PKCS#1.5 (1024
to 4096 bits)

(SHA-1,SHA-
224,SHA-
256,SHA-
384,SHA-512)

(with and without
CPACF support)

N/A Yes

Cert #1109,
1110, 1111,
1112, 1113,
1114, 1115,
1116, 1117,
1118, 1119,
1120, 1121,
1123, 1253,
1254

RSA public key Read

RSA Key Wrapping Encrypt / Decrypt
(1024 to 4096 bits)

Allowed to be
used in FIPS
mode

N/A No RSA public and
private key

Read

Diffie-Hellman (DH) 1024 to 4096 bits
modulus

Allowed to be
used in FIPS
mode

Key agreement
and Key
Generation

No DH public and
private key

Read/
Write

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 19
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

Service Notes Modes IS FIPS-
Approved?

If yes,

Cert #

Cryptographic
Keys, CSPs and
access

EC Diffie-Hellman
(ECDH)

P: 192, 224, 256,
384, 521

K: 163, 233, 283,
409, 571

B: 163, 233, 283,
409, 571

(SP 800-56A)

Allowed to be
used in FIPS
mode

Key agreement
and Key
Generation

No ECDH public
and private key

Read/
Write

Hash Functions

SHA-1 message
digest generation

FIPS 180-4 N/A Yes

Cert #1874,
1875, 1876,
1877, 1878,
1879, 1880,
1881, 1882,
1883, 1884,
1885, 1886,
1889, 1904,
1905

None N/A

SHA-224, SHA-
256,

SHA-384,

SHA-512 message
digest generation

FIPS 180-4,
SHA-2 algorithms

(with and without
CPACF support)

N/A Yes

Cert #1874,
1875, 1876,
1877, 1878,
1879, 1880,
1881, 1882,
1883, 1884,
1885, 1886,
1889, 1904,
1905

None N/A

Message Authentication Codes (MACs)

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 20
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

Service Notes Modes IS FIPS-
Approved?

If yes,

Cert #

Cryptographic
Keys, CSPs and
access

HMAC-SHA-1,

HMAC-SHA-224,

HMAC-SHA-256,

HMAC-SHA-384,

HMAC-SHA-512

FIPS 198, 198-1

(with and without
CPACF support)

N/A Yes

Cert #1319,
1320, 1321,
1322, 1323,
1324, 1325,
1326, 1327,
1328, 1329,
1330, 1331,
1333, 1506,
1507

HMAC-SHA-1
key,

HMAC-SHA-
224 key,

HMAC-SHA-
256 key,

HMAC-SHA-
384 key,
HMAC-SHA-
512 key

Write

AES-128-CMAC,

AES-192-CMAC,

AES-256-CMAC

128, 192,or 256 bit
keys (FIPS 197)

Encrypt/Decrypt

(with and without
AES-NI support)

(with and without
CPACF support)

N/A Yes

Cert #2155,
2156, 2157,
2158, 2159,
2160, 2161,
2162, 2165,
2166, 2167,
2169, 2170,
2179, 2427,
2429, 2431,
2433, 2438,
2443

CMAC-AES-
128 key,

CMAC-AES-
192 key,

CMAC-AES-
256 key

Write

Triple-DES _CMAC
(CMAC with three
key Triple-DES)

192-bit keys (FIPS
197)

CBC Yes

Cert #1365,
1366, 1367,
1368, 1369,
1370, 1371,
1372, 1373,
1374, 1375,
1376, 1377,
1379

CMAC-Triple-
DES key (192-
bit)

Write

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 21
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

Service Notes Modes IS FIPS-
Approved?

If yes,

Cert #

Cryptographic
Keys, CSPs and
access

AES_CCM 128, 192,or 256 bit
keys (SP800-38C)

(with and without
AES-NI support)

(with and without
CPACF support)

N/A Yes

Cert #2155,
2156, 2157,
2158, 2159,
2160, 2161,
2162, 2165,
2166, 2167,
2169, 2170,
2179, 2427,
2429, 2431,
2433, 2438,
2443

AES_CCM key Write

AES_GCM 128, 192,or 256 bit
keys (FIPS 197,
SP800-38D)

(with and without
AES-NI support)

(with and without
CPACF support)

N/A Yes

Cert #2421,

2422, 2423,

2424, 2425,

2426, 2427,

2428, 2429,

2430, 2432,

2434, 2435,

2436, 2437,

2438, 2439,

2440, 2441,

2443

AES_GCM key Write

Random Number Generation

DRBG 800-90A SP 800-90A

(with and without
AES-NI support)

(with and without
CPACF support)

HMAC_DRBG
(SHA-1, SHA-224,
SHA-256, SHA-
384, SHA-512),
HASH_DRBG
(SHA-1, SHA-224,
SHA-256, SHA-
384, SHA-512),
CTR_DRBG
(AES-128-ECB,
AES-192-ECB,
AES-256-ECB)

Yes

Cert #240,
241, 242, 243,
244, 245, 246,
247, 248, 249,
250, 251, 252,
253, 326, 327,
328, 329, 330,
331

Seed Write

Table 3 - Services and Access

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 22
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

Service Notes Is FIPS-Approved?

DES encryption/decryption Cipher algorithm No

CAST encryption/decryption Cipher algorithm No

Camellia Cipher algorithm No

Blowfish Cipher algorithm No

RC4 Cipher algorithm No

RC2 encryption/decryption Cipher algorithm No

MD2 Hash function No

MD4 Hash function No

MD5 Hash function No

HMAC-MD5 Keyed Message
Authentication function

No

MDC2 Hash function No

RIPEMD Hash function No

Key Derivation Function SP800-108 KDF The KBKDF is a FIPS-
Approved algorithm, but its
implementation in this
module is not certified by the
CAVP and hence is non-
compliant to the FIPS 140-2
standard.

Table 4- Other services only available in non-FIPS mode

CAVEAT#1: [SP800-131A] describes the transition associated with the use of
cryptographic algorithms and key lengths; based on the information included in this
publication the usage of following algorithms implemented in this cryptographic module
is discouraged as they cannot be used in FIPS mode after the transition period:

 DSA Key Generation and Digital Signature Generation with keys of length < 2048
bits, disallowed after 2013.

 RSA Key Generation and Digital Signature Generation with keys of length < 2048

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 23
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

bits, disallowed after 2013.

 Diffie-Hellman’s Key Agreement using finite fields with 1024 bit keys, disallowed
after 2013.

 Diffie-Hellman’s Key Agreement using elliptic curves with keys of length < 224
bits, disallowed after 2013.

 RSA Key Wrapping with keys of length < 2048 bits, disallowed after 2013.

 SHA-1 for digital signature generation, disallowed after 2013.

 HMAC with key lengths < 112 bits, disallowed after 2013.

 Two-key Triple DES Encryption: acceptable through 2010, restricted use from 2011
through 2015, disallowed after 2015.

 Two-key Triple DES Decryption: Acceptable through 2010, legacy-use after 2010.

Users are encouraged to check on a periodic basis for new versions of this publication
and verify whether updates in the transitional periods in these or others cryptographic
algorithms and key sizes may affect FIPS approved services in this cryptographic
module.

CAVEAT #2: In case of power loss in the cryptographic module, the keys used for the
AES GCM shall be re-distributed.

When operating in FIPS approved mode no unapproved algorithms may be used. There
is an allowance for key establishment and exchange to use any algorithm when
operating in FIPS approved mode (under the phrase “commercially available methods
may be used”). The ICC will not limit the algorithms but in the ICC policy it will list the
FIPS approved algorithms, the allowances/exceptions (e.g., SSL key exchange and
establishment) and the algorithms that are not FIPS approved.

Note: MD5 is not a FIPS-approved algorithm, but it is allowed to be used in the FIPS
mode in the context of TLS 1.0 and 1.1 as part of pseudorandom function. This module
does not implement the TLS protocols. Rather it provides primitives for the calling
application who may support TLS. The use of MD5 from this module in the context of TLS in
the FIPS mode does not imply the TLS implementation’s compliance with any applicable
standards.

4.2.3 Access Rights within Services
An operator performing a service within any role can read/write cryptographic keys and
critical security parameters (CSP) only through the invocation of a service by use of the
Cryptographic Module API. Each service within each role can only access the
cryptographic keys and CSPs that the service’s API defines. The following cases exist:

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 24
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

 A cryptographic key or CSP is provided to an API as an input parameter; this
indicates read/write access to that cryptographic key or CSP.

 A cryptographic key or CSP is returned from an API as a return value; this indicates
read access to that cryptographic key or CSP.

The details of the access to cryptographic keys and CSPs for each service are
indicated in the rightmost column of Table 2. The indicated access rights apply to
both the User role and Cryptographic Officer role who invokes services.

4.2.4 Operational Rules and Assumptions
The following operational rules must be followed by any user of the cryptographic module:

1. The Module is to be used by a single human operator at a time and may not be
actively shared among operators at any period of time.

2. The OS authentication mechanism must be enabled in order to prevent
unauthorized users from being able to access system services.

3. All keys entered into the module must be verified as being legitimate and
belonging to the correct entity by software running on the same machine as the
module.

4. In case of power loss in the module, the keys used for the AES GCM shall be
re-distributed.

5. Since the ICC runs on a general-purpose processor all main data paths of the
computer system will contain cryptographic material. The following items need to
apply relative to where the ICC will execute:

 Virtual (paged) memory must be secure (local disk or a secure network)

 The system bus must be secure.

 The disk drive that ICC is installed on must be in a secure environment.

6. The above rules must be upheld at all times in order to ensure continued system
security and FIPS 140-2 mode compliance after initial setup of the validated
configuration. If the module is removed from the above environment, it is assumed not
to be operational in the validated mode until such time as it has been returned to the
above environment and re-initialized by the user to the validated condition.

NOTE: It is the responsibility of the Crypto-Officer to configure the operating system to
operate securely and ensure that only a single operator may operate the Module at any
particular moment in time.

The services provided by the Module to a User are effectively delivered through the use of

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 25
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

appropriate API calls. In this respect, the same set of services is available to both the User
and the Crypto-Officer.

When a client process attempts to load an instance of the Module into memory, the
Module runs an integrity test and a number of cryptographic functionality self-tests. If all the
tests pass successfully, the Module makes a transition to “FIPS Operation” state, where the
API calls can be used by the client to obtain desired cryptographic services. Otherwise, the
Module enters to “Error” state and returns an error to the calling application. When the
Module is in “Error” state, no FIPS-approved services should be available, and all of data
input and data output except the status information should be inhibited.

4.3 Operational Environment
Along with the conditions stated above in paragraph 5.2.4 (“Operational Rules and
Assumptions”), the criteria below must be followed in order to achieve, and maintain, a
FIPS 140-2 mode of operation:

4.3.1 Assumptions
The following assumptions are made about the operating environment of the
cryptographic module:

1. The prevention of unauthorized reading, writing, or modification of the module’s
memory space (code and data) by an intruder (human or machine) is assured.

2. The prevention of replacement or modification of the legitimate cryptographic
module code by an intruder (human or machine) is assured.

3. The module is initialized to the FIPS 140-2 mode of operation

4.3.2 Installation and Initialization
The following steps must be performed to install and initialize the module for operating
in a FIPS 140-2 compliant manner:

1. The operating system must be configured to operate securely and to prevent
remote login. This is accomplished by disabling all services (within the
Administrative tools) that provide remote access (e.g., – ftp, telnet, ssh, and
server) and disallowing multiple operators to log in at once.

2. The operating system must be configured to allow only a single user. This is
accomplished by disabling all user accounts except the administrator. This can be
done through the Computer Management window of the operating system.

3. The module must be initialized to operate in FIPS 140-2 mode; this is done by the
following calling sequence:

 ICC_Init() to create the crypto module context.

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 26
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

 ICC_SetValue() to set the parameter FIPS_APPROVED_MODE to "on"

 ICC_Attach() to load the library, perform the self-tests and turn the crypto
module in an operational state

4.4 Cryptographic Key Management

4.4.1 Implemented Algorithms
The IBM Crypto for C (ICC) version 8.2.2.0 supports the algorithms (and modes, as
applicable) listed above in Table 2 in section 5.2.2.

4.4.2 Key Generation

Key generation has dependency on random number generator DRBG 800-90A, which is
detailed below. DRBG 800-90A is used to generate RSA/DSA/ECDSA/DH/ECDH key pairs
as well as AES keys and Triple-DES keys. Key sizes for AES keys can be 128-bit, 192-bit or
256-bit. Key size for Triple-DES key is 192 bits long of which 168 bits are key bits and the
rest are the parity bits.

In FIPS mode, RSA key generation is carried out in accordance with the algorithms
described in ANSI X9.31, the code used is the same as that used in the openssl-fips-1.2
sources.

Also in FIPS mode, DSA and ECDSA key generation is carried out in accordance with the
algorithms described in FIPS 186-2 and ANSI X9.62, respectively.

In non-FIPS mode, the normal OpenSSL (PKCS style) RSA key generation is used.

The ICC provides X9.31 and PKCS#1 compatible algorithms for processing signatures
(creating and verifying) the function of which is available as specified in the API's in this
document. These algorithms are also available for encryption and decryption where it is
used as PKCS#1 compatible.

In addition, there is a set of lower level interfaces for encryption and decryption where the
algorithm can be used as PKCS#1 compatible but it also allows other types of padding
operations to be used. See RSA encryption functions for the definition of the functions and
for the list of padding modes.

DRBG 800-90A Random Number Generator

The DRBG used by the cryptographic module is implemented following SP800-90A. Several
FIPS approved algorithms in SP800-90A can be chosen, but the default algorithm is HMAC-
SHA256.

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 27
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

The DRBG uses a True Random Number Generator (TRNG) to establish the initial state of
the DRBG and to reseed the engine after a certain amount of time.

The TRNG extracts entropy from time measurement jitter (minute variations of clock edges).
Only one bit (that is, the least significant moving bit) is taken from each timer sample. Bits
from multiple samples are concatenated to form a bitstring as entropy input to seed the
DRBG. An n-bit string requires the TRNG to obtain n timer samples and then concatenate 1
bit from each timer sample. The internal TRNG engine feeds entropy on demand into the
DRBG (seed and reseed). The state of the TRNG entropy estimation test is cleared on exit.

The minimum guaranteed entropy of the raw entropy source (i.e. 1 bit from a timer sample)
is 0.5 bits per bit. This is ensured by the following continuous tests performed on the TRNG:

 Distribution of the raw entropy source: this uses an integer version of the min-entropy
entropy assessment algorithm to guarantee >= 0.5bits/bit in each batch of data
extracted from the raw source.

 Check on the output from the TRNG cores. (After any post-processing of the raw
entropic source) This is a simple Chi-Squared statistical test on a relatively small
number of 4 bit samples to ensure that the input distribution of incoming bits is
reasonable.

 Check on the long term entropy of the generated data. This uses a compression
function over a substantial data set (1k bytes) and checks that the data is less than
50% compressible.

The DRBG seed and nonce are of the same length (440 bits each for HMAC-SHA256) and
obtained from separate and independent calls to the TRNG. Since the DRBG is internalized
by 440 bit of entropy data ((440+440)*0.5 = 440), the DRBG supports 256 bits of effective
security strength in its output.

4.4.3 Key Establishment

The ICC uses the following as key establishment methodologies:

 Diffie-Hellman (DH) with 1024-4096 bit keys providing 80-150 bits of security
strength.

 Elliptic Curve Diffie-Hellman (ECDH) with curves (P-192, P-224, P-256, P-384, P-
521, K-163, K-233, K-283, K-409, K-571, B-163, B-233, B-283, B-409, B-571)
providing 80-256 bits of security strength.

 RSA Encrypt/Decrypt for Key Wrapping with 1024-4096 bit keys providing 80-150
bits of security strength.

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 28
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

4.4.4 Key Entry and Output

The ICC module does not support manual key entry or intermediate key generation key
output. In addition, the ICC module does not produce key output in plaintext format outside
its physical boundary.

4.4.5 Key Storage

The module does not provide any long-term key storage and no keys are ever stored on
the hard disk.

4.4.6 Key Zeroization

ICC modifies the default OpenSSL scrubbing code to zero objects instead of filling with
pseudo random data and adds explicit testing for zeroization.

Key zeroization services are performed via the following API functions:

Key Zeroization Services API functions
Clean up memory locations used by low-
level arithmetic functions

ICC_BN_clear_free()
ICC_BN_CTX_free()

Clean up symmetric cipher context ICC_EVP_CIPHER_CTX_free()
Clean up RSA context ICC_RSA_free()
Clean up DSA context ICC_DSA_free()
Clean up Diffie-Hellman context ICC_DH_free()
Clean up asymmetric key contexts ICC_EVP_PKEY_free()
Clean up HMAC context ICC_HMAC_CTX_free()
Clean up ECDSA and ECDH contexts ICC_EC_KEY_free()
Clean up CMAC context ICC_CMAC_CTX_free()
Clean up AES-GCM context ICC_AES_GCM_CTX_free()
Clean up RNG context ICC_RNG_CTX_free()

It is the calling application’s responsibility to appropriately utilize the provided zeroization
methods (i.e. API functions) as listed in the table above to clean up involved cryptographic
contexts before they are released.

4.5 Self-Tests
The ICC implements a number of self-tests to check proper functioning of the module.
This includes power-up self-tests (which are also callable on demand) and conditional

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 29
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

self-tests. The self-test can be initiated by calling the function ICC_SelfTest, which
returns the operational status of the module (after the self-tests are run) and an error
code with description of the error (if applicable). Additionally, when the module is
performing self-tests, no API functions are available and no data output is possible until
the self-tests are successfully completed.

4.5.1 Show Status
Two functions indicate the status of the ICC module:

 ICC_GetStatus
o Shows the state of the ICC module

 ICC_GetValue
o Get the ICC version
o Inform whether the ICC module is in FIPS / non-FIPS mode
o Current entropy estimate for the DRBG 800-90A seed source

Both functions may be called anytime after ICC_Init.

4.5.2 Startup Tests
The module performs self-tests automatically when the API function ICC_Attach is
called or on demand when the API function ICC_SelfTest is called.

Whenever the startup tests are initiated the module performs the following; if any of
these tests fail, the module enters the error state:

 Integrity Test of Digital Signature: the ICC uses an integrity test which uses a

2048-bit CAVS-validated RSA public key (PKCS#1.5) and SHA-256 hashing. This
RSA public key is stored inside the static stub and relies on the operating system
for protection.

 Cryptographic algorithm tests:

Known Answer Tests for encryption and decryption are performed for the following
FIPS approved and allowed algorithms:

- Triple-DES – CBC
- AES 256 – CBC
- AES_GCM
- AES_CCM

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 30
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

One way known answer tests are performed for the following FIPS approved
algorithms:

- SHA-1
- SHA-224
- SHA-256
- SHA-384
- SHA-512
- SHA-1 HMAC
- SHA-224 HMAC
- SHA-256 HMAC
- SHA-384 HMAC
- SHA-512 HMAC
- CMAC-AES-256-CBC

Known Answer Tests for signature generation and verification are performed
on the following algorithms:

- RSA signature generation with 2048 modulus
- RSA signature verification with 2048 modulus
- DSA signature generation with 1024 modulus
- DSA signature verification with 1024 modulus
- ECDSA signature generation with P-384
- ECDSA signature verification with P-384

Other Known Answer Tests:

- DRBG 800-90A
- RSA encryption with 2048 modulus
- RSA decryption with 2048 modulus

In FIPS mode a failure occurred during self-tests is considered a fatal error, in non-
FIPS modes the failing algorithms become unavailable. Additionally, if any of the self-
tests fail, the FIPS mode will not be enabled and none of the FIPS-approved
algorithms will be available.

4.5.3 Conditional Tests
Pairwise consistency tests for public and private key generation: the
consistency of the keys is tested by the calculation and verification of a digital
signature. If the digital signature cannot be verified, the test fails. Pairwise

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 31
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

consistency tests are performed on the following algorithms:

- DSA
- ECDSA
- RSA

Continuous RNG tests: the module implements Continuous RNG tests as
follows:

DRBG 800-90A

- The DRBG 800-90A generates a minimum of 8 bytes per request. If

less than 8 bytes are requested, the rest of the bytes is discarded and
the next request will generate new random data.

- The first 8 bytes of every request is compared with the last 8 bytes

requested, if the bytes match an error is generated.

- For the first request made to any instantiation of a DRBG 800-90A,
two internal 8 byte cycles are performed.

- The DRBG 800-90A relies on the environment (i.e. proper shutdown

of the shared libraries) for resistance to retrospective attacks on data.

- The DRBG 800-90A performs known answer tests when first
instantiated and health checks at intervals as specified in the
standard.

True Random Number Generator (TRNG)

- A non-deterministic RNG is used to seed the RNG. Every time a new

seed or n bytes is required (either to initialize the RNG, reseed the
RNG periodically or reseed the RNG by user’s demand), the
cryptographic module performs a comparison between the SHA-1
message digest using the new seed and the previously calculated
digest. If the values match, the TRNG generates a new stream of
bytes until the continuous RNG test passes.

4.5.4 Severe Errors
When severe errors are detected (e.g., self-test failure or a conditional test failure) then all
security related functions shall be disabled and no partial data is exposed through the data
output interface. The only way to transition from the error state to an operational state is

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 32
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

to reinitialize the cryptographic module (from an uninitialized state). The error state can be
retrieved via the status interface (see Section 5.5.1 above).

4.6 Design Assurance
The ICC module design team utilizes IBM’s Configuration Management Version Control
(CMVC) system.

CMVC integrates four facets of the software development process in a distributed
development environment to facilitate project-wide coordination of development
activities across all phases of the product development life cycle:

1. Configuration Management – the process of identifying, managing and controlling
software modules as they change over time.

2. Version Control – the storage of multiple versions of a single file along with
information about each version.

3. Change Control – centralizes the storage of files and controls changes to files
through the process of checking files in and out.

4. Problem Tracking – the process of effectively tracking all reported defects and
proposed design changes through to their resolution and implementation.

Files are stored in a file system on the server by means of a version control system. All
other development data is stored in a relational database on the CMVC server. A CMVC
client is a workstation that runs the CMVC client software (or browser for the web
interface) to access the information and files stored on a CMVC server.
CMVC is used to perform the following tasks:

1. Organizing Development Data
2. Configuring CMVC Processes
3. Reporting Problems and Design Changes
4. Tracking Features and Defects

All source code is tracked using CMVC; documents are available in Lotus Notes
database “Team Rooms” with version numbers assigned by document owner.

CMVC monitors changes with defects, features, and integrated problem tracking. Each of
these restricts file changes so that they are made in a systematic manner. CMVC can
require users to analyze the time and resources required to make changes, verify
changes, and select files to be changed, approve work to be done, and test the
changes. The requirements for changes are controlled by processes. Family
administrators can create processes for components and releases to use, configuring them
from CMVC sub processes.

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 33
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

Finally, the CMVC administrator policy mandates a regular audit of access check of all
user accounts.

4.7 Mitigation of Other Attacks
The cryptographic module is not designed to mitigate any specific attacks.

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 34
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

5. API Functions
The module API functions are fully described in the IBM Crypto for C (ICC) Design
Document. The following list enumerates the API functions supported.

Functions marked with (CO) are crypto officer functions. Functions marked with (non-
FIPS mode) are not allowed to be called when running in FIPS mode. They may be
usable only in development or test conditions

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 35
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

 ICC_EC_GROUP_set_asn1_flag

 ICC_EVP_CIPHER_CTX_flags

 ICC_EVP_CIPHER_CTX_set_flags

 ICC_GetStatus

 ICC_Init (CO)

 ICC_SetValue (CO)

 ICC_GetValue

 ICC_Attach (CO)

 ICC_Cleanup

 ICC_SelfTest

 ICC_GenerateRandomSeed

 ICC_OBJ_nid2sn

 ICC_EVP_get_digestbyname

 ICC_EVP_get_cipherbyname

 ICC_EVP_MD_CTX_new

 ICC_EVP_MD_CTX_free

 ICC_EVP_MD_CTX_init

 ICC_EVP_MD_CTX_cleanup

 ICC_EVP_MD_CTX_copy

 ICC_EVP_MD_type

 ICC_EVP_MD_size

 ICC_EVP_MD_block_size

 ICC_EVP_MD_CTX_md

 ICC_EVP_Digestinit

 ICC_EVP_DigestUpdate

 ICC_EVP_DigestFinal

 ICC_EVP_CIPHER_CTX_new

 ICC_EVP_CIPHER_CTX_free

 ICC_EVP_CIPHER_CTX_init

 ICC_EVP_CIPHER_CTX_cleanup

 ICC_EVP_CIPHER_CTX_set_key_length

 ICC_EVP_CIPHER_CTX_set_padding

 ICC_EVP_CIPHER_block_size

 ICC_EVP_CIPHER_key_length

 ICC_EVP_CIPHER_iv_length

 ICC_EVP_CIPHER_type

 ICC_EVP_CIPHER_CTX_cipher

 ICC_DES_random_key

 ICC_DES_set_odd_parity

 ICC_EVP_EncryptInit

 ICC_EVP_EncryptUpdate

 ICC_EVP_EncryptFinal

 ICC_EVP_DecryptInit

 ICC_EVP_DecryptUpdate

 ICC_EVP_DecryptFinal

 ICC_EVP_OpenInit

 ICC_EVP_OpenUpdate

 ICC_EVP_OpenFinal

 ICC_EVP_SealInit

 ICC_EVP_SealUpdate

 ICC_EVP_SealFinal

 ICC_EVP_SignInit

 ICC_EVP_SignUpdate

 ICC_EVP_SignFinal

 ICC_EVP_VerifyInit

 ICC_EVP_VerifyUpdate

 ICC_EVP_VerifyFinal

 ICC_EVP_ENCODE_CTX_new

 ICC_EVP_ENCODE_CTX_free

 ICC_EVP_EncodeInit

 ICC_EVP_EncodeUpdate

 ICC_EVP_EncodeFinal

 ICC_EVP_DecodeInit

 ICC_EVP_DecodeUpdate

 ICC_EVP_DecodeFinal

 ICC_RAND_bytes

 ICC_RAND_seed

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 36
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

 ICC_EVP_PKEY_decrypt

 ICC_EVP_PKEY_encrypt

 ICC_EVP_PKEY_new

 ICC_EVP_PKEY_free

 ICC_EVP_PKEY_size

 ICC_RSA_new

 ICC_RSA_generate_key

 ICC_RSA_check_key

 ICC_EVP_PKEY_set1_RSA

 ICC_EVP_PKEY_get1_RSA

 ICC_RSA_free

 ICC_RSA_private_encrypt

 ICC_RSA_private_decrypt

 ICC_RSA_public_encrypt

 ICC_RSA_public_decrypt

 ICC_i2d_RSAPrivateKey

 ICC_i2d_RSAPublicKey

 ICC_d2i_PrivateKey

 ICC_d2i_PublicKey

 ICC_EVP_PKEY_set1_DH

 ICC_EVP_PKEY_get1_DH

 ICC_DH_new

 ICC_DH_new_generate_key

 ICC_DH_ check

 ICC_DH_free

 ICC_DH_size

 ICC_DH_compute_key

 ICC_DH_generate_parameters

 ICC_DH_get_PublicKey

 ICC_id2_DHparams

 ICC_d2i_DHparams

 ICC_EVP_PKEY_set1_DSA

 ICC_EVP_PKEY_get1_DSA

 ICC_DSA_dup_DH

 ICC_DSA_sign

 ICC_DSA_verify

 ICC_DSA_size

 ICC_DSA_new

 ICC_DSA_free

 ICC_DSA_generate_key

 ICC_DSA_generate_parameters

 ICC_i2d_DSAPrivateKey

 ICC_d2i_DSAPrivateKey

 ICC_i2d_DSAPublicKey

 ICC_d2i_DSAPublicKey

 ICC_i2d_DSAparams

 ICC_d2i_DSAparams

 ICC_ERR_get_error

 ICC_ERR_peek_error

 ICC_ERR_peek_last_error

 ICC_ERR_error_string

 ICC_ERR_error_string_n

 ICC_ERR_lib_error_string

 ICC_ERR_func_error_string

 ICC_ERR_reason_error_string

 ICC_ERR_clear_error

 ICC_ERR_remove_state

 ICC_BN_bn2bin

 ICC_BN_bin2bn

 ICC_BN_num_bits

 ICC_BN_num_bytes

 ICC_BN_new

 ICC_BN_clear_free

 ICC_RSA_blinding_off

 ICC_EVP_CIPHER_CTX_ctrl

 ICC_RSA_size

 ICC_BN_CTX_new

 ICC_BN_CTX_free

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 37
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

 ICC_BN_mod_exp

 ICC_HMAC_CTX_new

 ICC_HMAC_CTX_free

 ICC_HMAC_Init

 ICC_HMAC_Update

 ICC_HMAC_Final

 ICC_BN_div

 ICC_d2i_DSA_PUBKEY

 ICC_i2d_DSA_PUBKEY

 ICC_ECDSA_SIG_new

 ICC_ECDSA_SIG_free

 ICC_i2d_ECDSA_SIG

 ICC_d2i_ECDSA_SIG

 ICC_ECDSA_sign

 ICC_ECDSA_verify

 ICC_ECDSA_size

 ICC_EVP_PKEY_set1_EC_KEY

 ICC_EVP_PKEY_get1_EC_KEY

 ICC_EC_KEY_new_by_curve_name

 ICC_EC_KEY_new

 ICC_EC_KEY_free

 ICC_EC_KEY_generate_key

 ICC_EC_KEY_get0_group

 ICC_EC_METHOD_get_field_type

 ICC_EC_GROUP_method_of

 ICC_EC_POINT_new

 ICC_EC_POINT_free

 ICC_EC_POINT_get_affine_coordinates_GFp

 ICC_EC_POINT_set_affine_coordinates_GFp

 ICC_EC_POINT_get_affine_coordinates_GF2m

 ICC_EC_POINT_set_affine_coordinates_GF2m

 ICC_EC_KEY_get0_public_key

 ICC_EC_KEY_set_public_key

 ICC_EC_KEY_get0_private_key

 ICC_EC_KEY_set_private_key

 ICC_ECDH_compute_key

 ICC_d2i_ECPrivateKey

 ICC_i2d_ECPrivateKey

 ICC_d2i_ECParameters

 ICC_i2d_ECParameters

 ICC_EC_POINT_is_on_curve

 ICC_EC_POINT_is_at_infinity

 ICC_EC_KEY_check_key

 ICC_EC_POINT_mul

 ICC_EC_GROUP_get_order

 ICC_EC_POINT_dup

 ICC_PKCS5_pbe_set

 ICC_PKCS5_pbe2_set

 ICC_PKCS12_pbe_crypt

 ICC_X509_ALGOR_free

 ICC_OBJ_txt2nid

 ICC_EVP_EncodeBlock

 ICC_EVP_DecodeBlock

 ICC_CMAC_CTX_new

 ICC_CMAC_CTX_free

 ICC_CMAC_Init

 ICC_CMAC_Update

 ICC_CMAC_Final

 ICC_AES_GCM_CTX_new

 ICC_AES_GCM_CTX_free

 ICC_AES_GCM_CTX_ctrl

 ICC_AES_GCM_Init

 ICC_AES_GCM_EncryptUpdate

 ICC_AES_GCM_DecryptUpdate

 ICC_AES_GCM_EncryptFinal

 ICC_AES_GCM_DecryptFinal

 ICC_AES_GCM_GenerateIV (non-FIPS mode)

 ICC_AES_GCM_GenerateIV_NIST

IBM® Crypto for C, version 8.2.2.0
FIPS 140-2 Non-Proprietary Security Policy, version 1.7

July 24, 2013

Non-Proprietary FIPS 140-2 Security Policy 38
IBM Crypto for C version 8.2.2.0© 2013 IBM Corp. / atsec information security corp. This document can be reproduced and
distributed only whole and intact, including this copyright notice.

 ICC_GHASH

 ICC_AES_CCM_Encrypt

 ICC_AES_CCM_Decrypt

 ICC_get_RNGbyname

 ICC_RNG_CTX_new

 ICC_RNG_CTX_free

 ICC_RNG_CTX_Init

 ICC_RNG_Generate

 ICC_RNG_ReSeed

 ICC_RNG_CTX_ctrl

 ICC_RSA_sign

 ICC_RSA_verify

 ICC_EC_GROUP_get_degree

 ICC_EC_GROUP_get_curve_GFp

 ICC_EC_GROUP_get_curve_GF2m

 ICC_EC_GROUP_get0_generator

 ICC_i2o_ECPublicKey

 ICC_o2i_ECPublicKey

 ICC_BN_cmp

 ICC_BN_add

 ICC_BN_sub

 ICC_BN_mod_mul

 ICC_EVP_PKCS82PKEY

 ICC_EVP_PKEY2PKCS8

 ICC_PKCS8_PRIV_KEY_INFO_free

 ICC_d2i_PKCS8_PRIV_KEY_INFO

 ICC_i2d_PKCS8_PRIV_KEY_INFO

 ICC_d2i_ECPKParameters

 ICC_i2d_ECPKParameters

 ICC_EC_GROUP_free

 ICC_EC_KEY_set_group

 ICC_EC_KEY_dup

 ICC_SP800_108_get_KDFbyname (non-FIPS mode)

 ICC_SP800_108_KDF (non-FIPS mode)

 ICC_DSA_SIG_new

 ICC_DSA_SIG_free

 ICC_d2i_DSA_SIG

 ICC_i2d_DSA_SIG

 ICC_RSA_X931_derive_ex

 ICC_Init

 ICC_lib_init (non-FIPS mode)

 ICC_lib_cleanup (non-FIPS mode)

 ICC_MemCheck_start (non-FIPS mode)

 ICC_MemCheck_stop (non-FIPS mode)

.

