Cisco Catalyst 3560-C, 3560-X and 3750-X Switches

FIPS 140-2 Non Proprietary Security Policy
Level 2 Validation

Version 0.2

March, 14
Table of Contents

1 INTRODUCTION ... 4
 1.1 PURPOSE ... 4
 1.2 MODULE VALIDATION LEVEL .. 5
 1.3 REFERENCES ... 5
 1.4 TERMINOLOGY ... 6
 1.5 DOCUMENT ORGANIZATION ... 6

2 CISCO CATALYST 3560-C, 3560-X AND 3750-X SERIES SWITCHES .. 7
 2.1 CRYPTOGRAPHIC MODULE PHYSICAL CHARACTERISTICS .. 8
 2.2 MODULE INTERFACES ... 8

3 ROLES, SERVICES, AND AUTHENTICATION .. 12
 3.1 USER ROLE ... 12
 3.2 CO ROLE .. 13
 3.3 SERVICES .. 13

4 PHYSICAL SECURITY .. 14
 4.1 MODULE OPACITY .. 14
 4.2 TAMPER EVIDENCE ... 16

5 CRYPTOGRAPHIC ALGORITHMS .. 22
 5.1.1 Approved Cryptographic Algorithms ... 22
 5.1.2 Non-Approved Algorithms .. 22
 5.1.3 Self-Tests .. 23

6 CRYPTOGRAPHIC KEY/CSP MANAGEMENT ... 24

7 SECURE OPERATION OF THE 3560C/3560X/3750X SERIES SWITCHES 28
 7.1 INITIAL SETUP .. 28
 7.2 SYSTEM INITIALIZATION AND CONFIGURATION .. 28
 7.3 REMOTE ACCESS .. 29

8 RELATED DOCUMENTATION .. 30

9 OBTAINING DOCUMENTATION ... 30
 9.1 CISCO.COM ... 30
 9.2 PRODUCT DOCUMENTATION DVD ... 30
 9.3 ORDERING DOCUMENTATION ... 30

10 DOCUMENTATION FEEDBACK ... 31

11 CISCO PRODUCT SECURITY OVERVIEW .. 31
 11.1 REPORTING SECURITY PROBLEMS IN CISCO PRODUCTS ... 31

12 OBTAINING TECHNICAL ASSISTANCE ... 32

© Copyright 2010 Cisco Systems, Inc. This document may be freely reproduced and distributed whole and intact including this Copyright Notice.
1 Introduction

1.1 Purpose

This document is the non-proprietary Cryptographic Module Security Policy for the Cisco Catalyst 3560-C, 3560-X and 3750-X series switches. This security policy describes how the modules listed below meet the security requirements of FIPS 140-2, and how to operate the router with on-board crypto enabled in a secure FIPS 140-2 mode. Modules covered in this document are listed below:

- 3560-C switches
 - 3560CG-8PC-S
 - 3560CG-8TC-S
 - 3560CPD-8PT-S
- 3560-X switches
 - WS-C3560X-24P-L
 - WS-C3560X-48T-L
- 3750-X switches
 - WS-C3750X-12S
 - WS-C3750X-24S
 - WS-C3750X-24T
 - WS-C3750X-48P
 - WS-C3750X-48T
- Service module
 - C3KX-SM-10G
- Network Field Replaceable Uplink (FRU\(^1\)) module
 - C3KX-NM-1G
 - C3KX-NM-10G
 - C3KX-NM-BLANK
 - C3KX-NM-10GT
- IOS Software Version - 15.0(2)SE4
- C3KX-FIPS-KIT 700-34443-01
- C3KX-FIPS-KIT 47-25129-01

This policy was prepared as part of the Level 2 FIPS 140-2 validation of the Catalyst 3560-C, 3560-X and 3750-X series switches.

\(^1\) The FRUlink modules implement no FIPS 140-2 security functions and are considered equivalent for the purposes of this security policy with the exception of physical security opacity requirements.
1.2 Module Validation Level

The following table lists the level of validation for each area in the FIPS PUB 140-2.

<table>
<thead>
<tr>
<th>No.</th>
<th>Area Title</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cryptographic Module Specification</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Cryptographic Module Ports and Interfaces</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Roles, Services, and Authentication</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Finite State Model</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Physical Security</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Operational Environment</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>Cryptographic Key management</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Electromagnetic Interface/Electromagnetic Compatibility</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Self-Tests</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>Design Assurance</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>Mitigation of Other Attacks</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Overall module validation level</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1- Module Validation Level

1.3 References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the routers from the following sources:

The Cisco Systems website contains information on the full line of Cisco products.

Please refer to the following websites for:

Catalyst 3560-C series switches -
Catalyst 3560-X series switches –
Catalyst 3750-X series switches –

For answers to technical or sales related questions please refer to the contacts listed on the Cisco Systems website at www.cisco.com.

The NIST Validated Modules website
(http://csrc.nist.gov/groups/STM/cmvp/validation.html) contains contact information for answers to technical or sales-related questions for the module.
1.4 **Terminology**
In this document, the Catalyst 3560-C, 3560-X and 3750-X switches are referred to as the switch.

1.5 **Document Organization**
The Security Policy document is part of the FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:

- Vendor Evidence document
- Finite State Machine
- Other supporting documentation as additional references

This document provides an overview of the Cisco Catalyst 3560-X, 3560-C and 3750-X series switches and explains the secure configuration and operation of the module. This introduction section is followed by Section 2, which details the general features and functionality of the router. Section 3 specifically addresses the required configuration for the FIPS-mode of operation.

With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Validation Submission Documentation is Cisco-proprietary and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact Cisco Systems.
2 Cisco Catalyst 3560-C, 3560-X and 3750-X series switches

The 3560-C series – Cisco® Catalyst® compact switches easily extend an intelligent, fully managed Cisco Catalyst wired switching infrastructure, including end-to-end IP and Borderless Network services, with a single Ethernet cable or fiber from the wiring closet. These attractive, small form-factor Gigabit and Fast Ethernet switches are ideal for connecting multiple devices on the retail sales floor and for extending wireless LAN networks: wherever space is at a premium and multiple cable runs could be challenging. These switches deliver advanced Layer 2 switching with intelligent Layer 2 through 4 services for the network edge, such as voice, video, and wireless LAN services, including support for routed access, Cisco TrustSec®, Media Access Control Security (MACsec), and other Cisco Borderless Network services. These models also include Power over Ethernet (PoE) pass-through that enables the compact switch to draw power from the wiring closet and pass it to end devices. The Cisco® Catalyst® 3750-X and 3560-X Series Switches are enterprise-class stackable switches that provide high availability, scalability, security, energy efficiency, and ease of operation with innovative features such as Cisco StackPower, Power over Ethernet Plus (PoE+), optional network modules, redundant power supplies, and MAC security. The Catalyst 3750-X 3560-X and 3560-C Series Switches meet FIPS 140-2 overall Level 2 requirements as multi-chip standalone modules.

The 3560-C, 3560-X and 3750-X series switches include cryptographic algorithms implemented in IOS software as well as hardware ASICs. The module provides 802.1X-rev with MACSec and MACSec Key Agreement (MKA), Cisco TrustSec (CTS), RADIUS, TACACS+, HTTPS, SNMPv3 and SSHv2. The module implements Layer 2 MACsec / IEEE 802.1AE on the downlink ports using a hardware cryptographic implementation (MACSec PHY) of AES-GCM. The module’s IOS software implements 128 bit AES-CBC, CTR-DRBG, SHA-1, HMAC-SHA-1 and RSA. Media Access Control Security (MACsec), defined in 802.1AE, provides MAC-layer encryption over wired networks by using out-of-band methods for encryption keying. The MACsec Key Agreement (MKA) Protocol provides the required session keys and manages the required encryption keys. MKA and MACsec are implemented after successful key establishment using the 802.1x Extensible Authentication Protocol (EAP) framework.
2.1 Cryptographic Module Physical Characteristics

The 3560-C series switches are a line of small form factor, fixed chassis switches. Of the configurations considered in this security policy, three models have 8 Gigabit Ethernet ports, one has 8 Fast Ethernet ports and one has 12 Fast Ethernet ports. With the exception of two models, all switches possess at least 8 PoE+ ports. More details on the interfaces are provided in the table in the following section.

2.2 Cryptographic Boundary

The cryptographic boundary is defined as being the physical enclosure of the chassis. All of the functionality described in this publication is provided by components within this cryptographic boundary.
2.3 Module Interfaces

Each module provides a number of physical and logical interfaces to the device, and the physical interfaces provided by the module are mapped to four FIPS 140-2 defined logical interfaces: data input, data output, control input, and status output. The module also supports a power interface.

The following table identifies the differences between the models of switches covered by this Security Policy:

<table>
<thead>
<tr>
<th>Model</th>
<th>Ethernet Ports</th>
<th>PoE Output Ports</th>
<th>Available PoE Power</th>
<th>Uplinks</th>
<th>MACsec</th>
</tr>
</thead>
<tbody>
<tr>
<td>3560CG-8TC-S</td>
<td>8 x 10/100/1000 Gigabit Ethernet</td>
<td>N/A</td>
<td>2 x 1G copper or 1G SFP</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3560CG-8PC-S</td>
<td>8 x 10/100/1000 Gigabit Ethernet</td>
<td>8 PoE+</td>
<td>124W</td>
<td>2 x 1G copper or 1G SFP</td>
<td>Yes</td>
</tr>
<tr>
<td>3560CPD-8PT-S</td>
<td>8 x 10/100/1000 Gigabit Ethernet</td>
<td>8 PoE</td>
<td>Up to 15.4W</td>
<td>2 x 1G (PoE+ input)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 2 - 3560-C Interface information

<table>
<thead>
<tr>
<th>Models</th>
<th>Total 10/100/1000 Ethernet Ports</th>
<th>Default AC Power Supply</th>
<th>Available PoE Power</th>
<th>MACSec</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS-C3560X-48T-L</td>
<td>48</td>
<td>350W</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>WS-C3560X-24P-L</td>
<td>24 PoE+</td>
<td>715W</td>
<td>435W</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 3 - 3560-X Interface information

© Copyright 2010 Cisco Systems, Inc.
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.
Table 4 - 3750-X Interface information

<table>
<thead>
<tr>
<th>Model</th>
<th>1G SFP Ports</th>
<th>10G SFP+ Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3KX-NM-1G</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>C3KX-NM-10G</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>C3KX-NM-10GT</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>C3KX-NM-BLANK</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>C3KX-SM-10G</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 5 - Network/Service Modules Interface information

Note: Please notice that the Network/Service modules listed in table 5 above are only available on each of Cisco Catalyst 3750-X and 3560-X switches to provide up to 2 x 10 Gigabit uplinks. Each configuration used in 3750-X and 3560-X must use one of each Network/Service modules listed in table 5 above. There is no network/service slot on each of Cisco Catalyst 3560-C switches.

The module provides a number of physical and logical interfaces to the device, and the physical interfaces provided by the module are mapped to the following FIPS 140-2 defined logical interfaces: data input, data output, control input, status output, and power. The logical interfaces and their mapping are described in the following table:

<table>
<thead>
<tr>
<th>Physical Interface</th>
<th>Logical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACsec 1G Ethernet Ports,</td>
<td>Data Input Interface</td>
</tr>
<tr>
<td>Type A USB port</td>
<td>Data Output Interface</td>
</tr>
<tr>
<td>Console Port (RJ45 and USB Type B)</td>
<td></td>
</tr>
<tr>
<td>Mgmt Port</td>
<td></td>
</tr>
<tr>
<td>MACsec 1G Ethernet Ports,</td>
<td></td>
</tr>
<tr>
<td>Physical Interface</td>
<td>Logical Interface</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td>MACsec 1G Ethernet Ports, FRUlink 1G SFP Ports, FRUlink 10G SFP+ Ports</td>
<td>Data Input Interface</td>
</tr>
<tr>
<td>Service Module 10G SFP+ Ports</td>
<td></td>
</tr>
<tr>
<td>Stackwise+ ports (only on 3750-x models)</td>
<td></td>
</tr>
<tr>
<td>Type A USB port</td>
<td></td>
</tr>
<tr>
<td>Console Port (RJ45 and USB Type B)</td>
<td></td>
</tr>
<tr>
<td>Mgmt Port</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MACsec 1G Ethernet Ports, FRUlink 1G SFP Ports, FRUlink 10G SFP+ Ports</td>
<td>Data Output Interface</td>
</tr>
<tr>
<td>Service Module 10G SFP+ Ports</td>
<td></td>
</tr>
<tr>
<td>Stackwise+ ports (only on 3750-x models)</td>
<td></td>
</tr>
<tr>
<td>Type A USB port</td>
<td></td>
</tr>
<tr>
<td>Console Port (RJ45 and USB Type B)</td>
<td></td>
</tr>
<tr>
<td>Mgmt Port</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Console Port (RJ45 and USB Type B), Mgmt Port</td>
<td>Control Input Interface</td>
</tr>
<tr>
<td>MACsec 1G Ethernet Ports, FRUlink 1G SFP Ports, FRUlink 10G SFP+ Ports</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6 – FIPS 140-2 Logical Interfaces 3560-C Switches
Table 7 – FIPS 140-2 Logical Interfaces 3560-X/3750-X

3 Roles, Services, and Authentication

Authentication is role-based. Each user is authenticated upon initial access to the module. There are two roles in the Switch that may be assumed the Crypto Officer (CO) role and the User role. The administrator of the Switch assumes the CO role in order to configure and maintain the Switch using CO services, while the Users exercise security services over the network.

3.1 User Role

The role assumed by users obtaining general security services. From a logical view, user activity exists in the data-plane. Users are authenticated using EAP methods and 802.1X-REV, and their data is protected with 802.1AE protocols.

EAP and 802.1X-REV can use password based credentials for User role authentication – in such a case the user passwords must be at least eight (8) characters long, including at least one letter and at least one number character, in length (enforced procedurally). If six (6) integers, one (1) special character and one (1) alphabet are used without repetition for an eight (8) digit PIN, the probability of randomly guessing the correct sequence is one (1) in 251,596,800 (this calculation is based on the assumption that the typical standard American QWERTY computer keyboard has 10 Integer digits, 52 alphabetic characters, and 32 special characters providing 94 characters to choose from in total. The calculation should be $10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 32 \times 52 = 251,596,800$). Therefore, the associated probability of a successful random attempt is approximately 1 in 251,596,800, which is less than 1 in 1,000,000 required by FIPS 140-2.
EAP and 802.1X-REV can also authenticate User role via certificate credentials by using 2048 bit RSA keys – in such a case the security strength is 112 bits, so the associated probability of a successful random attempt is $1 \div 2^{112}$, which is less than $1 \div 1,000,000$ required by FIPS 140-2.

3.2 CO Role

This role is assumed by an authorized CO connecting to the switch via CLI through the console port and performing management functions and module configuration. Additionally the stack master (in stacking scenario for 3750-X switches) is considered CO for stack members. From a logical view, CO activity exists only in the control plane. IOS prompts the CO for their username and password, if the password is validated against the CO’s password in IOS memory, the user is allowed entry to the IOS executive program. A CO can assign permission to access the CO role to additional accounts, thereby creating additional COs. The module supports RADIUS and TACACS+ for authentication of COs.

CO passwords must be at least eight (8) characters long, including at least one letter and at least one number character, in length (enforced procedurally). If six (6) integers, one (1) special character and one (1) alphabet are used without repetition for an eight (8) digit PIN, the probability of randomly guessing the correct sequence is one (1) in $251,596,800$ (this calculation is based on the assumption that the typical standard American QWERTY computer keyboard has 10 Integer digits, 52 alphabetic characters, and 32 special characters providing 94 characters to choose from in total. The calculation should be $10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 32 \times 52 = 251,596,800$). Therefore, the associated probability of a successful random attempt is approximately $1 \div 251,596,800$, which is less than $1 \div 1,000,000$ required by FIPS 140-2.

Additionally on a stack, the CO is authenticated via possession of SESA Authorization key that is 128 bits long. So an attacker would have a $1 \div 2^{128}$ chance of a successful authentication which is much stronger than the one in a million chance required by FIPS 140-2.

3.3 Services

<table>
<thead>
<tr>
<th>Role</th>
<th>Authentication Method</th>
<th>Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>EAP and 802.1X-REV</td>
<td>MACsec Network Functions: authentication, access control, confidentiality and data integrity services provided by the MACsec protocol.</td>
</tr>
<tr>
<td></td>
<td>Authentication,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local database,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TACACS+ or RADIUS</td>
<td></td>
</tr>
<tr>
<td>Cryptographic Officer</td>
<td>Local database,</td>
<td>Configure the switch: define network interfaces and settings, create command aliases, set the protocols the switch will support, enable interfaces and network services, set system date and time, and load authentication information.</td>
</tr>
<tr>
<td></td>
<td>TACACS+ or RADIUS,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SESA</td>
<td></td>
</tr>
</tbody>
</table>

© Copyright 2010 Cisco Systems, Inc.
This document may be freely reproduced and distributed whole and intact including this Copyright Notice.
and active sessions; view health, temperature, memory status, voltage, and packet statistics; review accounting logs, and view physical interface status.

Set Encryption/Bypass: Place module into Encryption or Bypass state.

Perform Self Tests: Perform the FIPS 140 start-up tests on demand

Unauthenticated N/A Show status (viewing LEDs), passing traffic through the device, power-cycling the device.

Perform Self Tests: occurs upon system startup

Table 8 - Services

4 Physical Security

This module is a multi-chip standalone cryptographic module.

The FIPS 140-2 level 2 physical security requirements for the modules are met by the use of opacity shields covering the front and side panels of modules to provide the required opacity and tamper evident seals to provide the required tamper evidence. The following sections illustrate the physical security provided by the module.

The following table shows the number of tamper evident labels and opacity shields that shall be installed for the module to operate in a FIPS approved mode of operation. The CO is responsible for securing and having control at all times of any unused tamper evident labels.

Table 9 - Tamper Evident Labels and Opacity Shields – All Models

<table>
<thead>
<tr>
<th>Face</th>
<th>3750x/3560x</th>
<th>3560c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tamper Evident Labels</td>
<td>Opacity Shields</td>
</tr>
<tr>
<td>Front</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Left</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Right</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Back</td>
<td>8</td>
<td>N/A</td>
</tr>
<tr>
<td>Top</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Bottom</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>6</td>
</tr>
</tbody>
</table>

4.1 Module Opacity

To install an opacity shield, follow these steps:
- Open the FIPS kit (part numbers: C3KX-FIPS-KIT 700-34443-01 for 3560X and 3750X or C3KX-FIPS-KIT 47-25129-01 for 3560C). The kit contains:
 a. Opacity shields for front and sides
 b. Tamper evident labels
2. Apply the opacity shields as per the diagram below

![Figure 3a) - Opacity Shields for 3750x/3560x](image)

2 WS-C3750X-12S and WS-C3750X-24S modules do not need opacity shields on the front face.
4.2 Tamper Evidence

Once the module has been configured to meet overall FIPS 140-2 Level 2 requirements, the module cannot be accessed without signs of tampering. The CO shall inspect for signs of tampering periodically.

To seal the system, apply serialized tamper-evidence labels as depicted in the figures below. This label placement is applicable to the C3560-X and the C3750-X models included in this validation.

Figure 3b) - Opacity Shields for 3560c

Figure 4 - Front face
Note: No extra TELs are required to be put on the top or bottom side of each C3560-X or C3750-X model while in the FIPS mode.
The 3560C tamper evident labels are detailed in the following photographs.

Group 1: 3560CG-8PC-S

![Figure 8 - Front of 3560CG-8PC-S](image1)

![Figure 9- Right side of 3560CG-8PC-S](image2)

![Figure 10- Left side of 3560CG-8PC-S](image3)

![Figure 11- Back of 3560CG-8PC-S](image4)

![Figure 12- Top of 3560CG-8PC-S](image5)
Group 2: C3560CG-8TC-S

Figure 13- Bottom of 3560CG-8PC-S

Figure 14- Front of C3560CG-8TC-S

Figure 15- Right side of C3560CG-8TC-S

Figure 16- Left side of C3560CG-8TC-S

Figure 17- Rear of C3560CG-8TC-S
Group 3: 3560CPD-8PT-S

Figure 18- Top of C3560CG-8TC-S

Figure 19- Bottom of 3560CG-8PT-S

Figure 20- Front of 3560CPD-8PT-S

Figure 21- Right side of 3560CPD-8PT-S
5 Cryptographic Algorithms

5.1.1 Approved Cryptographic Algorithms

The Cisco Switches support many different cryptographic algorithms. However, only FIPS approved algorithms may be used while in the FIPS mode of operation. The following table identifies the approved algorithms included in the Switches for use in the FIPS mode of operation.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Implementation</th>
<th>CAVP Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>CBC – IOS Common Crypto Module</td>
<td>2134</td>
</tr>
<tr>
<td></td>
<td>ECB – MACsec PHY</td>
<td>1024</td>
</tr>
<tr>
<td></td>
<td>GCM – MACsec PHY</td>
<td>1275</td>
</tr>
<tr>
<td></td>
<td>GCM – MACsec PHY (Service Module)</td>
<td>1269</td>
</tr>
<tr>
<td>HMAC</td>
<td>IOS Common Crypto Module</td>
<td>1304</td>
</tr>
<tr>
<td>DRBG</td>
<td>IOS Common Crypto Module</td>
<td>237</td>
</tr>
<tr>
<td>RSA</td>
<td>IOS Common Crypto Module</td>
<td>1100</td>
</tr>
<tr>
<td>SHS</td>
<td>IOS Common Crypto Module</td>
<td>1858</td>
</tr>
<tr>
<td>Triple-DES</td>
<td>IOS Common Crypto Module</td>
<td>1358</td>
</tr>
</tbody>
</table>

Table 10 - FIPS-Approved Algorithms for use in FIPS Mode

5.1.2 Non-Approved Algorithms

The cryptographic module implements the following non-approved algorithms that are not permitted for use in FIPS 140-2 mode of operations:

- DES
- HMAC-MD5
- MD5
- RC4

In addition, the modules support the following key establishment schemes allowed in FIPS mode:

- Diffie-Hellman (key agreement; key establishment methodology provides between 112 and 150 bits of encryption strength; non-compliant less than 112 bits of encryption strength)
- RSA (key wrapping; key establishment methodology provides 112 bits of encryption strength; non-compliant less than 112 bits of encryption strength)
- AES (Cert. #2134, key wrapping; key establishment methodology provides 128 or 256 bits of encryption strength)
5.1.3 Self-Tests

The modules include an array of self-tests that are run during startup and periodically during operations to prevent any secure data from being released and to ensure all components are functioning correctly. The modules implement the following power-on self-tests:

- **IOS Known Answer Tests:**
 - AES KAT
 - AES-CMAC KAT
 - AES-GCM KAT
 - HMAC-SHA-1 KAT
 - HMAC-SHA-256 KAT
 - HMAC-SHA-512 KAT
 - DRBG KAT
 - SHA-1 KAT
 - SHA-256 KAT
 - SHA-512 KAT
 - RSA KAT
 - Triple-DES KAT

- **MAC PHY (Service Module PHY included) crypto Known Answer Tests:**
 - AES-GCM KAT

- **Firmware Integrity Test**
 - RSA PKCS#1 v1.5 (2048 bits) signature verification with SHA-256

The modules perform all power-on self-tests automatically at boot. All power-on self-tests must be passed before any operator can perform cryptographic services. The power-on self-tests are performed after the cryptographic systems are initialized but prior any other operations; this prevents the module from passing any data during a power-on self-test failure.

In addition, the modules also provide the following conditional self-tests:

- Continuous Random Number Generator Test for the FIPS-approved RNG
- Continuous Random Number Generator Test for the non-approved RNG
- Pairwise Consistency Test for RSA
- Conditional IPSec Bypass Test
- Conditional MACSec Bypass Test
6 Cryptographic Key/CSP Management

The module securely administers both cryptographic keys and other critical security parameters such as passwords. The tamper evidence seals provide physical protection for all keys. All keys are also protected by the password-protection on the CO role login, and can be zeroized by the CO. Keys are exchanged and entered electronically. Persistent keys are entered by the CO via the console port CLI, transient keys are generated or established and stored in DRAM.

Note that the command `fips zeroize all` will zeroize a large majority of the listed CSPs. The CTS specific CSPs will require the `cts key zeroize` CLI.

The module supports the following secret and private keys and critical security parameters (CSPs):

<table>
<thead>
<tr>
<th>ID</th>
<th>Algorithm</th>
<th>Size</th>
<th>Description</th>
<th>Storage</th>
<th>Zeroization Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Keys/CSPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Password</td>
<td>Password</td>
<td>Variable (8+ characters)</td>
<td>Used to authenticate local users</td>
<td>NVRAM (plaintext)</td>
<td>Zeroized by overwriting with new password</td>
</tr>
<tr>
<td>Enable Secret</td>
<td>Password</td>
<td>Variable (8+ characters)</td>
<td>Used to authenticate local users at a higher privilege level</td>
<td>NVRAM (plaintext)</td>
<td>Zeroized by overwriting with new password</td>
</tr>
<tr>
<td>RADIUS secret</td>
<td>Shared Secret</td>
<td>Variable (8+ characters)</td>
<td>The RADIUS Shared Secret</td>
<td>NVRAM (plaintext)</td>
<td># no radius-server key</td>
</tr>
<tr>
<td>RADIUS Key wrap key</td>
<td>AES</td>
<td>128/256 bits</td>
<td>Used to protect SAK</td>
<td>DRAM (plaintext)</td>
<td>Zeroused when data structure is freed</td>
</tr>
<tr>
<td>TACACS+ secret</td>
<td>Shared Secret</td>
<td>Variable (8+ characters)</td>
<td>The TACACS+ shared secret</td>
<td>NVRAM (plaintext)</td>
<td># no tacacs-server key</td>
</tr>
<tr>
<td>DRBG entropy input</td>
<td>SP 800-90 CTR_DRBG</td>
<td>256-bits</td>
<td>HW based entropy source output used to construct seed</td>
<td>DRAM (plaintext)</td>
<td>Automatically when the switch is power cycled</td>
</tr>
<tr>
<td>DRBG seed</td>
<td>SP 800-90 CTR_DRBG</td>
<td>384-bits</td>
<td>Input to the DRBG that determines the internal state of the DRBG</td>
<td>DRAM (plaintext)</td>
<td>Automatically when the switch is power cycled</td>
</tr>
<tr>
<td>DRBG V</td>
<td>SP 800-90 CTR_DRBG</td>
<td>128-bits</td>
<td>Generated by entropy source via the CTR_DRBG derivation function. It is stored in DRAM with plaintext form</td>
<td>DRAM (plaintext)</td>
<td>Automatically when the switch is power cycled</td>
</tr>
<tr>
<td>Key/Association</td>
<td>Type</td>
<td>Length</td>
<td>Description</td>
<td>Location</td>
<td>Status</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>--------------</td>
<td>--</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>DRBG Key</td>
<td></td>
<td></td>
<td>This is the 256-bit DRBG key used for SP 800-90 CTR_DRBG</td>
<td>DRAM (plaintext)</td>
<td>Automatically when the switch is power cycled</td>
</tr>
<tr>
<td>Diffie-Hellman private key</td>
<td>DH</td>
<td>2048-4096 bits</td>
<td>The private exponent used in Diffie-Hellman (DH) exchange.</td>
<td>DRAM (plaintext)</td>
<td>Automatically after shared secret generated.</td>
</tr>
<tr>
<td>Diffie-Hellman Shared Secret</td>
<td>DH</td>
<td>2048-4096 bits</td>
<td>This is the shared secret agreed upon as part of DH exchange</td>
<td>DRAM (plaintext0)</td>
<td>Zeroized upon deletion</td>
</tr>
<tr>
<td>SSH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSH RSA private key</td>
<td>RSA</td>
<td>2048 bits</td>
<td>SSH key</td>
<td>NVRAM (plaintext)</td>
<td># fips zeroize all</td>
</tr>
<tr>
<td>SSH session key</td>
<td>Triple-DES/AES</td>
<td>168-bits/256-bits</td>
<td>This is the SSH session symmetric key.</td>
<td>DRAM (plaintext)</td>
<td>Automatically when SSH session terminated</td>
</tr>
<tr>
<td>SSH session authenticati</td>
<td>HMAC SHA-1</td>
<td>160-bits</td>
<td>This is the SSH session authentication key</td>
<td>DRAM (plaintext)</td>
<td>Automatically when SSH session terminated</td>
</tr>
<tr>
<td>TLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLS Server RSA private key</td>
<td>RSA</td>
<td>2048 bits</td>
<td>Identity certificates for module itself and also used in TLS negotiations.</td>
<td>NVRAM (plaintext)</td>
<td># fips zeroize all</td>
</tr>
<tr>
<td>TLS pre-master secret</td>
<td>Shared Secret</td>
<td>384-bits</td>
<td>Shared secret created using asymmetric cryptography from which new HTTPS session keys can be created.</td>
<td>DRAM (plaintext)</td>
<td>Automatically when session terminated.</td>
</tr>
<tr>
<td>TLS session keys</td>
<td>Triple-DES/AES</td>
<td>168-bits/256-bits</td>
<td>This is the TLS session key</td>
<td>DRAM (plaintext)</td>
<td>Automatically when session terminated.</td>
</tr>
<tr>
<td>MacSec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACsec Security Association Key (SAK)</td>
<td>AES-GCM</td>
<td>128 bits</td>
<td>Used for creating Security Associations (SA) for encrypting/decrypting the MACSec traffic in the MACSec hardware.</td>
<td>MACsec PHY (plaintext)</td>
<td>Automatically when session expires</td>
</tr>
<tr>
<td>MACsec Connectivity Association</td>
<td>AES-GCM</td>
<td>128 bits</td>
<td>A secret key possessed by members of a MACSec connectivity</td>
<td>MACsec PHY (plaintext)</td>
<td>Automatically when session expires</td>
</tr>
</tbody>
</table>

© Copyright 2010 Cisco Systems, Inc. This document may be freely reproduced and distributed whole and intact including this Copyright Notice.
<table>
<thead>
<tr>
<th>Key (CAK)</th>
<th>MACsec KEK</th>
<th>MACsec ICK</th>
<th>SESA Authorizatio n Key</th>
<th>SESA Master Session Key</th>
<th>SESA Derived Session Keys</th>
<th>CTS Pairwise Master Key (PMK)</th>
<th>Protected Access Credential (PAC) Key</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AES-GCM</td>
<td>secret</td>
<td>AES</td>
<td>AES</td>
<td>AES and HMAC-SHA-1</td>
<td>SAP/AES-GCM</td>
<td>AES-CBC</td>
</tr>
<tr>
<td></td>
<td>128 bits</td>
<td>128 bits</td>
<td>128 bits</td>
<td>128 bits</td>
<td>128 bits and 192 bits</td>
<td>256 bits</td>
<td>256 bits</td>
</tr>
<tr>
<td></td>
<td>Used to transmit SAKs to other members of a MACSec connectivity association</td>
<td>Used to verify the integrity and authenticity of MPDUs</td>
<td>Used to authorize members of a single stack on Incredible Units. Used as input to SP800-108 derivation methods to derive four additional 128 fields to transfer the Master Session Key and additional aggressive exchange material</td>
<td>Used to derive SESA session key</td>
<td>Used to protect traffic over stacking ports</td>
<td>The PMK is used to derive the PTK (Pairwise Transient Key) which in turn is used in the session encryption (symmetric) key generation process.</td>
<td>The PAC (Protected Access Credential) is dynamically provisioned in EAP-FAST phase 0 The PAC-key is a shared secret that is used to secure further communications.</td>
</tr>
<tr>
<td></td>
<td>MACsec PHY (plaintext)</td>
<td>MACsec PHY (plaintext)</td>
<td>NVRAM (plaintext)</td>
<td>DRAM (plaintext)</td>
<td>DRAM (plaintext)</td>
<td>NVRAM (plaintext)</td>
<td>NVRAM (plaintext)</td>
</tr>
<tr>
<td></td>
<td>Automatically when session expires</td>
<td>Automatically when session expires</td>
<td>"no fips authorization-key"</td>
<td>Upon completion of key exchange</td>
<td>Upon bringing down the stack</td>
<td>"cts key zeroize" CLI</td>
<td>"clear cts pacs" CLI</td>
</tr>
<tr>
<td>Secret and private keys and CSPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pairwise Transient Key (PTK)</td>
<td>SAP/AES-GCM</td>
<td>256 bits</td>
<td>Used to encrypt SAP payloads during SAP protocol implementations.</td>
<td>DRAM (plaintext)</td>
<td>Zeroized automatically when SAP implementation is terminated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Confirmation Key (KCK)</td>
<td>SAP/AES-GCM</td>
<td>160 bits</td>
<td>Used to protect SAP payloads integrity during SAP protocol implementations</td>
<td>DRAM (plaintext)</td>
<td>Zeroized automatically when SAP implementation is terminated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPSec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>skeyid</td>
<td>Shared Secret</td>
<td>160 bits</td>
<td>Used for key agreement in IKE. This key was derived in the module</td>
<td>DRAM (plaintext)</td>
<td>Automatically when session expires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>skeyid_d</td>
<td>Shared Secret</td>
<td>160 bits</td>
<td>Used for key agreement in IKE</td>
<td>DRAM (plaintext)</td>
<td>Automatically when session expires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IKE session encryption key</td>
<td>TRIPLE-DES/AES</td>
<td>168-bit TRIPLE-DES or a 256-bit AES</td>
<td>Derived in the module used for IKE payload integrity verification</td>
<td>DRAM (plaintext)</td>
<td>Automatically when session expires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IKE session authentication key</td>
<td>HMAC-SHA1</td>
<td>160 bits</td>
<td>HMAC-SHA1 key</td>
<td>DRAM (plaintext)</td>
<td>Automatically when session expires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISAKMP preshared</td>
<td>pre-shared key</td>
<td>8 characters</td>
<td>This key was configured by CO and used for User role authentication using IKE Pre-shared key based authentication mechanism</td>
<td>DRAM (plaintext)</td>
<td>Automatically when session expires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IKE RSA Authentication private Key</td>
<td>RSA</td>
<td>2048 bits</td>
<td>private key used for IKE protocol during the handshake</td>
<td>NVRAM # fips zeroize all</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPSec Authentication key</td>
<td>HMAC-SHA1</td>
<td>160 bits</td>
<td>used to authenticate the IPSec peer</td>
<td>DRAM (plaintext)</td>
<td>Automatically when session expires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPSec encryption key</td>
<td>TRIPLE-DES/AES</td>
<td>168-bit TRIPLE-DES or a 256-bit AES</td>
<td>Used to Secure IPSec traffic</td>
<td>DRAM (plaintext)</td>
<td>Automatically when session expires</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 11 – Secret and private keys and CSPs
The services accessing the CSPs, the type of access and which role accesses the CSPs are listed below.

<table>
<thead>
<tr>
<th>Role</th>
<th>Service</th>
<th>Critical Security Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Role</td>
<td>MACsec Network Functions</td>
<td>RNG Seed, RNG Seed key, DH private exponent, DH Shared Secret MACsec Security Association Key, MACsec Connectivity Association Key, MACsec KEK, MACsec ICK (X)</td>
</tr>
<tr>
<td>Cryptographic Officer</td>
<td>Manage the Switch</td>
<td>TLS Server RSA private key, SSH RSA private key, RADIUS secret, TACACS+ secret, RADIUS key wrap key, User Password, Enable Password, SESA Authorization Key (R/W/D)</td>
</tr>
<tr>
<td>Cryptographic Officer</td>
<td>Management Protocols</td>
<td>TLS Server RSA private key, TLS pre-master secret, TLS session key, SSH RSA private key, SSH session key, RADIUS secret, TACACS+ secret, SESA Master Session Key, SESA Derived Session key (X)</td>
</tr>
</tbody>
</table>

R=Read, W=Write, D=Zeroize, X=Execute

Table 12 - Role CSP Access

7 Secure Operation of the 3560c/3560x/3750x series switches

The switches meet all the overall Level 2 requirements for FIPS 140-2. Follow the setup instructions provided below to place the module in FIPS-approved mode. Operating this Switch without maintaining the following settings will remove the module from the FIPS approved mode of operation.

7.1 Initial Setup

1. The CO must apply opacity shield and tamper evidence labels as described above.

7.2 System Initialization and Configuration

1. The value of the boot field must be 0x0102. This setting disables break from the console to the ROM monitor and automatically boots. From the “configure terminal” command line, the CO enters the following syntax:

 config-register 0x0F

2. The CO must create the “enable” password for the CO role. Procedurally, the password must be at least 8 characters, including at least one letter and at least one number, and is entered when the CO first engages the “enable” command. The CO enters the following syntax at the “#” prompt:

 Switch(config)# enable secret [PASSWORD]

3. The CO must always assign passwords (of at least 8 characters, including at least one letter and at least one number) to users. Identification and authentication on the console/auxiliary port is required for Users. From the “configure terminal” command line, the CO enters the following syntax:
Switch(config)# line con 0
Switch(config)# password [PASSWORD]
Switch(config)# login local

4. To ensure all FIPS 140-2 logging is received, set the log level:

Switch(config)# logging console errors

5. The CO enables secure stacking (SESA) but configuring the Authorization key:

Switch(config)# fips authorization-key <128 bit, i.e, 16 hex byte key>

6. The CO may configure the module to use RADIUS or TACACS+ for authentication. If the module is configured to use RADIUS, the Crypto-Officer must define RADIUS or shared secret keys that are at least 8 characters long, including at least one letter and at least one number.

7. To enable MACsec:
 a. First configure the MKA Protocol:
 Switch(config)# mka policy policy-name
 Switch(config-mka-policy)# replay-protection window-size 300
 Switch(config-mka-policy)# end
 b. Then configure MACsec on the desired interfaces:
 Switch(config-if)# macsec
 Switch(config-if)# authentication host-mode multi-domain
 Switch(config-if)# authentication linksec policy must-secure
 Switch(config-if)# authentication port-control auto
 Switch(config-if)# authentication violation protect
 Switch(config-if)# mka policy policy-name
 Switch(config-if)# dot1x pae authenticator
 Switch(config-if)# end

8. The CO shall only assign users to a privilege level 1 (the default).

9. The CO shall not assign a command to any privilege level other than its default.

7.3 Remote Access

1. Remote access is permitted via SSHv2, TLS and SNMPv3. While in FIPS 140-2 Mode of Operations the switches will enforce use of Approved algorithms for the management protocols. Please be aware that, as per NIST Implementation Guidance (IG) D.8, scenario 4, those protocols and associated Key Derivation Functions (KDFs) are allowed to be used in FIPS mode but are non-compliant.
8 Related Documentation

This document deals only with operations and capabilities of the security appliances in the technical terms of a FIPS 140-2 cryptographic device security policy. More information is available on the security appliances from the sources listed in this section and from the following source:

- The NIST Cryptographic Module Validation Program website (http://csrc.nist.gov/groups/STM/cmvp/index.html) contains contact information for answers to technical or sales-related questions for the security appliances.

9 Obtaining Documentation

Cisco documentation and additional literature are available on Cisco.com. Cisco also provides several ways to obtain technical assistance and other technical resources. These sections explain how to obtain technical information from Cisco Systems.

9.1 Cisco.com

You can access the most current Cisco documentation at this URL:

http://www.cisco.com/techsupport

You can access the Cisco website at this URL:

http://www.cisco.com

You can access international Cisco websites at this URL:

9.2 Product Documentation DVD

Cisco documentation and additional literature are available in the Product Documentation DVD package, which may have shipped with your product. The Product Documentation DVD is updated regularly and may be more current than printed documentation.

The Product Documentation DVD is a comprehensive library of technical product documentation on portable media. The DVD enables you to access multiple versions of hardware and software installation, configuration, and command guides for Cisco products and to view technical documentation in HTML. With the DVD, you have access to the same documentation that is found on the Cisco website without being connected to the Internet. Certain products also have .pdf versions of the documentation available.

The Product Documentation DVD is available as a single unit or as a subscription. Registered Cisco.com users (Cisco direct customers) can order a Product Documentation DVD (product number DOC-DOCDVD=) from Cisco Marketplace at this URL:

http://www.cisco.com/go/marketplace/

9.3 Ordering Documentation

Beginning June 30, 2005, registered Cisco.com users may order Cisco documentation at the Product Documentation Store in the Cisco Marketplace at this URL:

http://www.cisco.com/go/marketplace/
10 Documentation Feedback

You can rate and provide feedback about Cisco technical documents by completing the online feedback form that appears with the technical documents on Cisco.com.

You can send comments about Cisco documentation to bug-doc@cisco.com.

You can submit comments by using the response card (if present) behind the front cover of your document or by writing to the following address:

Cisco Systems
Attn: Customer Document Ordering
170 West Tasman Drive
San Jose, CA 95134-9883

We appreciate your comments.

11 Cisco Product Security Overview

Cisco provides a free online Security Vulnerability Policy portal at this URL:

From this site, you can perform these tasks:

- Report security vulnerabilities in Cisco products.
- Obtain assistance with security incidents that involve Cisco products.
- Register to receive security information from Cisco.

A current list of security advisories and notices for Cisco products is available at this URL:

http://www.cisco.com/go/psirt

If you prefer to see advisories and notices as they are updated in real time, you can access a Product Security Incident Response Team Really Simple Syndication (PSIRT RSS) feed from this URL:

11.1 Reporting Security Problems in Cisco Products

Cisco is committed to delivering secure products. We test our products internally before we release them, and we strive to correct all vulnerabilities quickly. If you think that you might have identified a vulnerability in a Cisco product, contact PSIRT:
Emergencies — security-alert@cisco.com

An emergency is either a condition in which a system is under active attack or a condition for which a severe and urgent security vulnerability should be reported. All other conditions are considered nonemergencies.

Nonemergencies — psirt@cisco.com

In an emergency, you can also reach PSIRT by telephone:

- 1 877 228-7302
- 1 408 525-6532

Tip

We encourage you to use Pretty Good Privacy (PGP) or a compatible product to encrypt any sensitive information that you send to Cisco. PSIRT can work from encrypted information that is compatible with PGP versions 2.x through 8.x. Never use a revoked or an expired encryption key. The correct public key to use in your correspondence with PSIRT is the one linked in the Contact Summary section of the Security Vulnerability Policy page at this URL:

The link on this page has the current PGP key ID in use.

12 Obtaining Technical Assistance

Cisco Technical Support provides 24-hour-a-day award-winning technical assistance. The Cisco Technical Support & Documentation website on Cisco.com features extensive online support resources. In addition, if you have a valid Cisco service contract, Cisco Technical Assistance Center (TAC) engineers provide telephone support. If you do not have a valid Cisco service contract, contact your reseller.

12.1 Cisco Technical Support & Documentation Website

The Cisco Technical Support & Documentation website provides online documents and tools for troubleshooting and resolving technical issues with Cisco products and technologies. The website is available 24 hours a day, at this URL:

http://www.cisco.com/techsupport

Access to all tools on the Cisco Technical Support & Documentation website requires a Cisco.com user ID and password. If you have a valid service contract but do not have a user ID or password, you can register at this URL:

Note

Use the Cisco Product Identification (CPI) tool to locate your product serial number before submitting a web or phone request for service. You can access the CPI tool from the Cisco Technical Support & Documentation website by clicking the Tools & Resources link under Documentation & Tools. Choose Cisco Product Identification Tool from the Alphabetical Index drop-down list, or click the Cisco Product Identification Tool link under Alerts & RMAs. The CPI tool offers three search options: by product ID or model name; by tree view; or for certain products, by copying and pasting show command output. Search results show an illustration of your product with the serial
number label location highlighted. Locate the serial number label on your product and record the information before placing a service call.

12.2 Submitting a Service Request

Using the online TAC Service Request Tool is the fastest way to open S3 and S4 service requests. (S3 and S4 service requests are those in which your network is minimally impaired or for which you require product information.) After you describe your situation, the TAC Service Request Tool provides recommended solutions. If your issue is not resolved using the recommended resources, your service request is assigned to a Cisco engineer. The TAC Service Request Tool is located at this URL:

http://www.cisco.com/techsupport/servicerequest

For S1 or S2 service requests or if you do not have Internet access, contact the Cisco TAC by telephone. (S1 or S2 service requests are those in which your production network is down or severely degraded.) Cisco engineers are assigned immediately to S1 and S2 service requests to help keep your business operations running smoothly.

To open a service request by telephone, use one of the following numbers:

Asia-Pacific: +61 2 8446 7411 (Australia: 1 800 805 227) EMEA: +32 2 704 55 55 USA: 1 800 553-2447

For a complete list of Cisco TAC contacts, go to this URL:

http://www.cisco.com/techsupport/contacts

12.3 Definitions of Service Request Severity

To ensure that all service requests are reported in a standard format, Cisco has established severity definitions.

Severity 1 (S1) – Your network is “down,” or there is a critical impact to your business operations. You and Cisco will commit all necessary resources around the clock to resolve the situation.

Severity 2 (S2) – Operation of an existing network is severely degraded, or significant aspects of your business operation are negatively affected by inadequate performance of Cisco products. You and Cisco will commit full-time resources during normal business hours to resolve the situation.

Severity 3 (S3) – Operational performance of your network is impaired, but most business operations remain functional. You and Cisco will commit resources during normal business hours to restore service to satisfactory levels.

Severity 4 (S4) – You require information or assistance with Cisco product capabilities, installation, or configuration. There is little or no effect on your business operations.

13 Obtaining Additional Publications and Information

Information about Cisco products, technologies, and network solutions is available from various online and printed sources.

- Cisco Marketplace provides a variety of Cisco books, reference guides, documentation, and logo merchandise. Visit Cisco Marketplace, the company store, at this URL:

 http://www.cisco.com/go/marketplace/
Cisco Press publishes a wide range of general networking, training and certification titles. Both new and experienced users will benefit from these publications. For current Cisco Press titles and other information, go to Cisco Press at this URL:

http://www.ciscopress.com

Packet magazine is the Cisco Systems technical user magazine for maximizing Internet and networking investments. Each quarter, Packet delivers coverage of the latest industry trends, technology breakthroughs, and Cisco products and solutions, as well as network deployment and troubleshooting tips, configuration examples, customer case studies, certification and training information, and links to scores of in-depth online resources. You can access Packet magazine at this URL:

http://www.cisco.com/packet

iQ Magazine is the quarterly publication from Cisco Systems designed to help growing companies learn how they can use technology to increase revenue, streamline their business, and expand services. The publication identifies the challenges facing these companies and the technologies to help solve them, using real-world case studies and business strategies to help readers make sound technology investment decisions. You can access iQ Magazine at this URL:

http://www.cisco.com/go/iqmagazine

or view the digital edition at this URL:

http://ciscoiq.texterity.com/ciscoiq/sample/

Internet Protocol Journal is a quarterly journal published by Cisco Systems for engineering professionals involved in designing, developing, and operating public and private internets and intranets. You can access the Internet Protocol Journal at this URL:

http://www.cisco.com/ipj

Networking products offered by Cisco Systems, as well as customer support services, can be obtained at this URL:

Networking Professionals Connection is an interactive website for networking professionals to share questions, suggestions, and information about networking products and technologies with Cisco experts and other networking professionals. Join a discussion at this URL:

http://www.cisco.com/discuss/networking

World-class networking training is available from Cisco. You can view current offerings at this URL:

14 Definition List

AES – Advanced Encryption Standard
CMVP – Cryptographic Module Validation Program
CSEC – Communications Security Establishment Canada
CSP – Critical Security Parameter
FIPS – Federal Information Processing Standard
HMAC – Hash Message Authentication Code
HTTP – Hyper Text Transfer Protocol
KAT – Known Answer Test
LED – Light Emitting Diode
MAC – Message Authentication Code
MACsec – IEEE MAC Security protocol 802.1AE
NIST – National Institute of Standards and Technology
NVRAM – Non-Volatile Random Access Memory
PoE+ – Power over Ethernet Plus
RAM – Random Access Memory
RNG – Random Number Generator
SHA – Secure Hash Algorithm
Triple-DES – Triple Data Encryption Standard