January 26, 2015

This is to advise that the document entitled “Aruba 620 and 650 Mobility Controllers with ArubaOS FIPS Firmware Non-Proprietary Security Policy FIPS 140-2 Level 2” Version 3.2, dated July 2014, applies to Dell W-620 and W-650 Controllers with Dell AOS FIPS Firmware. Aruba Networks is the Original Equipment Manufacturer (OEM) for the Dell Networking W-Series of products. This document, provided below, is applicable for use by Dell W-Series customers for security policy information and instruction on how to place and maintain the W-600 Series Controllers in a secure FIPS 140-2 mode.

Dell Networking W-Series products are equivalent in features and functionality to the corresponding Aruba Networks product models. Accordingly, the Dell AOS FIPS firmware is the validated ArubaOS FIPS firmware version, with the exception of branding. When using the FIPS Security Policy document, the screenshots, configurations, TEL placement locations, and images can be applied to Dell Networking W-Series products without any need for changes.

Product Name Mapping:

<table>
<thead>
<tr>
<th>Aruba Networks Model name</th>
<th>Dell Networking Model name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aruba 620-F1</td>
<td>W-620-F1</td>
<td>Non-US - 32 AP Controller</td>
</tr>
<tr>
<td>Aruba 620-USF1</td>
<td>W-620-USF1</td>
<td>US - 32 AP Controller</td>
</tr>
<tr>
<td>Aruba 650-F1</td>
<td>W-650-F1</td>
<td>Non-US - 64 AP Controller</td>
</tr>
<tr>
<td>Aruba 650-USF1</td>
<td>W-650-USF1</td>
<td>US - 64 AP Controller</td>
</tr>
</tbody>
</table>

- These models include Aruba FIPS kit 4010061-01 (contains tamper evident labels)
- The exact firmware version validated was ArubaOS 6.3.1.7-FIPS

The Dell Networking W-Series products are rebranded for Dell customers, as shown in the product images below.
Dell W-620 and W-650 Mobility Controller Product Images:

If you have questions or concerns, please contact Dell Technical Support at www.dell.com/support, additional product documentation is also available by device under user manuals.

Attachment: Aruba 620 and 650 Mobility Controllers with ArubaOS FIPS Firmware Non-Proprietary Security Policy FIPS 140-2 Level 2
Aruba 620 and 650 Mobility Controllers
with ArubaOS FIPS Firmware
Non-Proprietary Security Policy
FIPS 140-2 Level 2

Version 3.2
July 2014
2

Aruba 600 Series Controllers FIPS 140-2 Level 2 Security Policy

Copyright

© 2014 Aruba Networks, Inc. Aruba Networks trademarks include, Aruba Networks®, Aruba Wireless Networks®, the registered Aruba the Mobile Edge Company logo, Aruba Mobility Management System®, Mobile Edge Architecture®, People Move. Networks Must Follow®, RFprotect®, Green Island®. All rights reserved. All other trademarks are the property of their respective owners. Open Source Code

Certain Aruba products include Open Source software code developed by third parties, including software code subject to the GNU General Public License (GPL), GNU Lesser General Public License (LGPL), or other Open Source Licenses. The Open Source code used can be found at this site:

http://www.arubanetworks.com/open_source

Legal Notice

The use of Aruba Networks, Inc. switching platforms and software, by all individuals or corporations, to terminate other vendors’ VPN client devices constitutes complete acceptance of liability by that individual or corporation for this action and indemnifies, in full, Aruba Networks, Inc. from any and all legal actions that might be taken against it with respect to infringement of copyright on behalf of those vendors.

Warranty

This hardware product is protected by the standard Aruba warranty of one year parts/labor. For more information, refer to the ARUBACARE SERVICE AND SUPPORT TERMS AND CONDITIONS.

Altering this device (such as painting it) voids the warranty.

Copyright

© 2014 Aruba Networks, Inc. Aruba Networks trademarks include, Aruba Networks®, Aruba Wireless Networks®, the registered Aruba the Mobile Edge Company logo, and Aruba Mobility Management System®.

www.arubanetworks.com

1344 Crossman Avenue
Sunnyvale, California 94089
Phone: 408.227.4500
Fax 408.227.4550
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>3</td>
</tr>
<tr>
<td>Preface</td>
<td>5</td>
</tr>
<tr>
<td>Purpose of this Document</td>
<td>5</td>
</tr>
<tr>
<td>Related Documents</td>
<td>5</td>
</tr>
<tr>
<td>Additional Product Information</td>
<td>5</td>
</tr>
<tr>
<td>Overview</td>
<td>6</td>
</tr>
<tr>
<td>Cryptographic Module Boundaries</td>
<td>7</td>
</tr>
<tr>
<td>Aruba 620 Chassis</td>
<td>7</td>
</tr>
<tr>
<td>Aruba 650 Chassis</td>
<td>9</td>
</tr>
<tr>
<td>Intended Level of Security</td>
<td>12</td>
</tr>
<tr>
<td>Physical Security</td>
<td>13</td>
</tr>
<tr>
<td>Operational Environment</td>
<td>13</td>
</tr>
<tr>
<td>Logical Interfaces</td>
<td>13</td>
</tr>
<tr>
<td>Roles and Services</td>
<td>14</td>
</tr>
<tr>
<td>Crypto Officer Role</td>
<td>14</td>
</tr>
<tr>
<td>Authentication Mechanisms</td>
<td>19</td>
</tr>
<tr>
<td>Unauthenticated Services</td>
<td>20</td>
</tr>
<tr>
<td>Non-Approved Services</td>
<td>20</td>
</tr>
<tr>
<td>Cryptographic Key Management</td>
<td>21</td>
</tr>
<tr>
<td>Implemented Algorithms</td>
<td>21</td>
</tr>
<tr>
<td>Non-FIPS Approved Algorithms Allowed in FIPS Mode</td>
<td>22</td>
</tr>
<tr>
<td>Non-FIPS Approved Algorithms</td>
<td>22</td>
</tr>
<tr>
<td>Critical Security Parameters</td>
<td>22</td>
</tr>
<tr>
<td>Self-Tests</td>
<td>28</td>
</tr>
<tr>
<td>Alternating Bypass State</td>
<td>29</td>
</tr>
<tr>
<td>Installing the Controller</td>
<td>31</td>
</tr>
<tr>
<td>Pre-Installation Checklist</td>
<td>31</td>
</tr>
<tr>
<td>Precautions</td>
<td>31</td>
</tr>
<tr>
<td>Product Examination</td>
<td>32</td>
</tr>
<tr>
<td>Package Contents</td>
<td>32</td>
</tr>
<tr>
<td>Tamper-Evident Labels</td>
<td>33</td>
</tr>
</tbody>
</table>

Aruba 600 Series Controllers FIPS 140-2 Level 2 Security Policy
Reading TELs .. 33
Required TEL Locations .. 34
 Aruba 620 .. 34
 Aruba 650 .. 36
Applying TELs ... 39
Ongoing Management ... 39
Crypto Officer Management .. 39
User Guidance ... 40
Setup and Configuration .. 41
Setting Up Your Controller .. 41
Enabling FIPS Mode ... 41
 Enabling FIPS Mode with the WebUI .. 41
 Enabling FIPS Mode with the CLI ... 41
Disallowed FIPS Mode Configurations .. 42
Preface

This security policy document can be copied and distributed freely.

Purpose of this Document

This release supplement provides information regarding the Aruba 600 Series Controllers with FIPS 140-2 Level 2 validation from Aruba Networks. The material in this supplement modifies the general Aruba hardware and firmware documentation included with this product and should be kept with your Aruba product documentation.

This supplement primarily covers the non-proprietary Cryptographic Module Security Policy for the Aruba Controller. This security policy describes how the controller meets the security requirements of FIPS 140-2 Level 2 and how to place and maintain the controller in a secure FIPS 140-2 mode. This policy was prepared as part of the FIPS 140-2 Level 2 validation of the product.

FIPS 140-2 (Federal Information Processing Standards Publication 140-2, Security Requirements for Cryptographic Modules) details the U.S. Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the National Institute of Standards and Technology (NIST) website at:

http://csrc.nist.gov/groups/STM/cmvp/index.html

Related Documents

The following items are part of the complete installation and operations documentation included with this product:

- Aruba 600 Series Mobility Controller Installation Guide
- ArubaOS 6.3 User Guide
- ArubaOS 6.3 CLI Reference Guide
- ArubaOS 6.3 Quick Start Guide
- ArubaOS 6.3 Upgrade Guide
- Aruba AP Installation Guides

Additional Product Information

More information is available from the following sources:

- The Aruba Networks Web-site contains information on the full line of products from Aruba Networks:
 http://www.arubanetworks.com
- The NIST Validated Modules Web-site contains contact information for answers to technical or sales-related questions for the product:
 http://csrc.nist.gov/groups/STM/cmvp/index.html
Overview

The Aruba 600 series Mobility Controllers are network infrastructure devices providing secure, scalable solutions for enterprise Wi-Fi, network security policy enforcement, VPN services, and wireless intrusion detection and prevention. Mobility controllers serve as central points of authentication, encryption, access control, and network coordination for all mobile network services.

The Aruba controller configurations validated during the cryptographic module testing included:

- Aruba 620-F1
- Aruba 620-USF1
- Aruba 650-F1
- Aruba 650-USF1
- FIPS Kit
 - 4010061-01 (Part number for Tamper Evident Labels)
- The exact firmware version validated was ArubaOS 6.3.1.7-FIPS

Note: For radio regulatory reasons, part numbers ending with -USF1 are to be sold in the US only. Part numbers ending with -F1 are considered ‘rest of the world’ and must not be used for deployment in the United States. From a FIPS perspective, both -USF1 and -F1 models are identical and fully FIPS compliant.
Physical Description

Cryptographic Module Boundaries
For FIPS 140-2 Level 2 validation, the Mobility Controller has been validated as a multi-chip standalone cryptographic module. The chassis physically encloses the complete set of hardware and firmware components and represents the cryptographic boundary of the switch. The cryptographic boundary is defined as encompassing the top, front, left, right, rear, and bottom surfaces of the case.

Aruba 620 Chassis
The Aruba 620 Mobility Controller chassis is 1RU non-modular. The following diagrams (Figure 1 and Figure 2) show the front and rear view of the chassis respectively. The Aruba 620 Mobility Controller chassis contains:

- 1x Console (RS-232) RJ-45 port
- 4x Fast Ethernet (10/100BASE-T) port
- 4x Fast Ethernet (10/100BASE-T) with PoE+ port
- 1x Gigabit Ethernet (1000BASE-T) port
- 1x ExpressCard® port
- 1x USB 2.0 port
- 1x AC input voltage 100-240 V, Universal Input

Figure 1 - Aruba 620 Mobility Controller Front View
The Aruba 620 is equipped with a media eject button, which allows users to eject storage devices safely and place the system in standby. Pushing the media eject button changes the state of the Aruba 620; the table below describes the states and LED behaviors associated with use of the media eject button:

Table 1: Media Eject Button LED Behavior

<table>
<thead>
<tr>
<th>Initial State</th>
<th>LED State</th>
<th>Action</th>
<th>Status LED</th>
<th>Function</th>
<th>LED Action Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS Media Operational</td>
<td>Green-solid</td>
<td>Press and hold media eject button for 1 to 5 seconds only</td>
<td>Amber-flashing</td>
<td>Un-mount all NAS media</td>
<td>Amber-solid</td>
</tr>
<tr>
<td>NAS Media Unmounted</td>
<td>Amber-solid</td>
<td>Press and hold media eject button for 1 to 5 seconds only</td>
<td>Amber-flashing</td>
<td>Mount all attached NAS devices, and return to fully functional operation</td>
<td>Green-solid</td>
</tr>
<tr>
<td>Operational</td>
<td>Green-solid</td>
<td>Press and hold media eject button for more than 5 seconds only</td>
<td>Red-flashing</td>
<td>Controller goes into Standby</td>
<td>Red-solid</td>
</tr>
</tbody>
</table>
Aruba 650 Chassis

The Aruba 650 Mobility Controller chassis is also 1RU non-modular. The following diagrams (Figure 3 and Figure 4) show the front and rear view of the chassis respectively. The Aruba 650 Mobility Controller chassis contains:

- 1x Console (RS-232) RJ-45 port
- 2x Gigabit Ethernet (10/100/1000Base-T)
- 4x Gigabit Ethernet (10/100/1000Base-T) with PoE+
- 2x Gigabit Ethernet pluggable (1000Base-X SFP)
- 1x ExpressCard® slot (may not be present on newer models)
- 4x USB 2.0 port
- 1x AC input voltage 100-240 V, Universal Input

Figure 3 - Aruba 650 Mobility Controller Front View

![Aruba 650 Mobility Controller Front View](image)

- 10/100/1000Base-T Gigabit Ethernet Ports
- USB ports
- Serial Console Port
- Media Eject Button
- 10/100/1000Base-T Gigabit Ethernet Ports with PoE
- 1000Base-X (SFP) Ports

Figure 4 - Aruba 650 Mobility Controller Rear View

![Aruba 650 Mobility Controller Rear View](image)
The Aruba 650 Series is equipped with a media eject button, which allows users to eject storage devices safely and place the system in standby. Pushing the media eject button changes the state of the Aruba 650 Series; the table below describes the states and LED behaviors associated with use of the media eject button.

Table 2: Media Eject Button LED Behavior

<table>
<thead>
<tr>
<th>Initial State</th>
<th>LED State</th>
<th>Action</th>
<th>Status LED</th>
<th>Function</th>
<th>LED Action Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS Media Operational</td>
<td>Green-solid</td>
<td>Press and hold media eject button for 1 to 5 seconds only</td>
<td>Amber-flashing</td>
<td>Un-mount all NAS media</td>
<td>Amber-solid</td>
</tr>
<tr>
<td>NAS Media Unmounted</td>
<td>Amber-solid</td>
<td>Press and hold media eject button for 1 to 5 seconds only</td>
<td>Amber-flashing</td>
<td>Mount all attached NAS devices, and return to fully functional operation</td>
<td>Green-solid</td>
</tr>
<tr>
<td>Operational</td>
<td>Green-solid</td>
<td>Press and hold media eject button for more than 5 seconds only</td>
<td>Red-flashing</td>
<td>Controller goes into Standby</td>
<td>Red-solid</td>
</tr>
<tr>
<td>Operating with NAS</td>
<td>Media un-mounted</td>
<td>Amber-solid</td>
<td>Press and hold media eject button for more than 5 seconds only</td>
<td>Red-flashing</td>
<td>Controller goes into Standby</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>---</td>
<td>--------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Standby</td>
<td>Red-solid</td>
<td>Press media eject button</td>
<td>Amber-flashing</td>
<td>Controller wake-up</td>
<td>Green-solid</td>
</tr>
</tbody>
</table>
Intended Level of Security

The Aruba 620 and 650 Mobility Controllers are intended to meet overall FIPS 140-2 Level 2 requirements as shown in Table 1.

Table 3 Intended Level of Security

<table>
<thead>
<tr>
<th>Section</th>
<th>Section Title</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cryptographic Module Specification</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Cryptographic Module Ports and Interfaces</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Roles, Services, and Authentication</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Finite State Model</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Physical Security</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Operational Environment</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>Cryptographic Key Management</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>EMI/EMC</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Self-tests</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>Design Assurance</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>Mitigation of Other Attacks</td>
<td>N/A</td>
</tr>
<tr>
<td>Overall</td>
<td>Overall module validation level</td>
<td>2</td>
</tr>
</tbody>
</table>
Physical Security

The Aruba Controller is a scalable, multi-processor standalone network device and is enclosed in a robust housing. The controller enclosure is resistant to probing and is opaque within the visible spectrum. The enclosure of the module has been designed to satisfy FIPS 140-2 Level 2 physical security requirements.

The Aruba 600 Series Controller requires Tamper-Evident Labels (TELs) to allow the detection of the opening of the chassis cover and to block the Serial console port.

To protect the Aruba 600 Series Controller from any tampering with the product, TELs should be applied by the Crypto Officer as covered under “Tamper-Evident Labels” in this document.

Operational Environment

The operational environment is non-modifiable. The control plane Operating System (OS) is Linux, a real-time, multi-threaded operating system that supports memory protection between processes. Access to the underlying Linux implementation is not provided directly. Only Aruba Networks provided interfaces are used, and the CLI is a restricted command set.

Logical Interfaces

All of these physical interfaces are separated into logical interfaces defined by FIPS 140-2, as described in the following table.

Table 4 FIPS 140-2 Logical Interfaces

<table>
<thead>
<tr>
<th>FIPS 140-2 Logical Interface</th>
<th>Module Physical Interface</th>
</tr>
</thead>
</table>
| Data Input Interface | • 10/100 Mbps Ethernet Port
| | • 10/100/1000 Mbps Ethernet Port
| | • Express Card slot (disabled)
| | • USB 2.0 ports |
| Data Output Interface | • 10/100 Mbps Ethernet Port
| | • 10/100/1000 Mbps Ethernet Port
| | • Express Card slot (disabled)
| | • USB 2.0 ports |
| Control Input Interface | • 10/100 Mbps Ethernet Port
| | • 10/100/1000 Mbps Ethernet Port
| | • Express Card slot (disabled)
| | • Media Eject Button
| | • Serial Console port (disabled) |
Table 4 FIPS 140-2 Logical Interfaces

| Status Output Interface | • 10/100 Mbps Ethernet Port
| | • 10/100/1000 Mbps Ethernet Port
| | • LEDs
| | • Serial Console port (disabled)
| Power Interface | • Power Supply
| | • Power over Ethernet (PoE) |

Data input and output, control input, status output, and power interfaces are defined as follows:

Data input and output are the packets that use the firewall, VPN, and routing functionality of the modules.

- Control input consists of manual control inputs for power and reset through the power and reset switch. It also consists of all of the data that is entered into the controller while using the management interfaces.
- Status output consists of the status indicators displayed through the LEDs, the status data that is output from the controller while using the management interfaces, and the log file.
- LEDs indicate the physical state of the module, such as power-up (or rebooting), utilization level, activation state (including fan, ports, and power). The log file records the results of self-tests, configuration errors, and monitoring data.
- A power supply is used to connect the electric power cable.

The controller distinguishes between different forms of data, control, and status traffic over the network ports by analyzing the packets header information and contents.

Roles and Services

The Aruba Controller supports role-based authentication. There are two roles in the module (as required by FIPS 140-2 Level 2) that operators may assume: a Crypto Officer role and a User role. The Administrator maps to the Crypto-Officer role and the client Users map to the User role.

Crypto Officer Role

The Crypto Officer role has the ability to configure, manage, and monitor the controller. Three management interfaces can be used for this purpose:

- SSHv2 CLI
 The Crypto Officer can use the CLI to perform non-security-sensitive and security-sensitive monitoring and configuration. The CLI can be accessed remotely by using the SSHv2 secured management session over the Ethernet ports or locally over the serial port. In FIPS mode, the serial port is disabled.

- Web Interface
 The Crypto Officer can use the Web Interface as an alternative to the CLI. The Web Interface provides a highly intuitive, graphical interface for a comprehensive set of controller management...
tools. The Web Interface can be accessed from a TLS-enabled Web browser using HTTPS (HTTP with Secure Socket Layer) on logical port 4343.

- **SNMP v3**

 The Crypto Officer can also use SNMPv3 to remotely perform non-security-sensitive monitoring using the ‘get’ and ‘getnext’ commands.

 See the table below for descriptions of the services available to the Crypto Officer role.

Table 5 - Crypto-Officer Services

<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
<th>Input</th>
<th>Output</th>
<th>CSP Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH v2.0</td>
<td>Provide authenticated and encrypted remote management sessions while using the CLI</td>
<td>SSHv2 key agreement parameters, SSH inputs, and data</td>
<td>SSHv2 outputs and data</td>
<td>6, 16 (read) 8, 9, 24, 25 (read/write)</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>Provides ability to query management information</td>
<td>SNMPv3 requests</td>
<td>SNMPv3 responses</td>
<td>34, 35 (read) 36 (read/write)</td>
</tr>
<tr>
<td>IKEv1/IKEv2-IPSec</td>
<td>Provide authenticated and encrypted remote management sessions to access the CLI functionality</td>
<td>IKEv1/IKEv2 inputs and data; IPSec inputs, commands, and data</td>
<td>IKEv1/IKEv2 outputs, status, and data; IPSec outputs, status, and data</td>
<td>29, 30, 31, 32 (read) 8, 9, 10, 11, 12, 13 (read/write) 17 (read) 18, 19, 20, 21, 22, 23 (read/write)</td>
</tr>
<tr>
<td>Configuring Network Management</td>
<td>Create management Users and set their password and privilege level; configure the SNMP agent</td>
<td>Commands and configuration data</td>
<td>Status of commands and configuration data</td>
<td>36, 37 (read/write)</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Commands and configuration data</td>
<td>Status of commands and configuration data</td>
<td>Access Level</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---------------------------------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>Configuring Module Platform</td>
<td>Define the platform subsystem firmware of the module by entering Bootrom Monitor Mode, File System, fault report, message logging, and other platform related commands</td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Configuring Hardware Controllers</td>
<td>Define synchronization features for module</td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Configuring Internet Protocol</td>
<td>Set IP functionality</td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Configuring Quality of Service (QoS)</td>
<td>Configure QOS values for module</td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Configuring VPN</td>
<td>Configure Public Key Infrastructure (PKI); configure the Internet Key Exchange (IKEv1/IKEv2) Security Protocol; configure the IPSec protocol</td>
<td></td>
<td></td>
<td>19 (read/write)</td>
</tr>
<tr>
<td>Configuring DHCP</td>
<td>Configure DHCP on module</td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Configuring Security</td>
<td>Define security features for module, including Access List, Authentication, Authorization and Accounting (AAA), and firewall functionality</td>
<td></td>
<td></td>
<td>14, 15, 16 (read/write)</td>
</tr>
<tr>
<td>Manage Certificates</td>
<td>Install, rename, and delete X.509 certificates</td>
<td></td>
<td></td>
<td>29, 30, 31, 32 (read/write)</td>
</tr>
</tbody>
</table>
Table 5 - Crypto-Officer Services

<table>
<thead>
<tr>
<th>Service Description</th>
<th>Input/Output Details</th>
<th>Access Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTPS over TLS</td>
<td>Secure browser connection over Transport Layer Security acting as a Crypto Officer service (web management interface)</td>
<td>29, 30, 31, 32 (read) 26, 27, 28 (read/write)</td>
</tr>
<tr>
<td>Status Function</td>
<td>Cryptographic officer may use CLI "show" commands or view WebUI via TLS to view the controller configuration, routing tables, and active sessions; view health, temperature, memory status, voltage, and packet statistics; review accounting logs, and view physical interface status</td>
<td>Commands and configuration data</td>
</tr>
<tr>
<td>IPSec tunnel establishment for RADIUS protection</td>
<td>Provided authenticated/encrypted channel to RADIUS server</td>
<td>IKEv1/IKEv2 inputs and data; IPSec inputs, commands, and data</td>
</tr>
<tr>
<td>Self-Test</td>
<td>Perform FIPS start-up tests on demand</td>
<td>None</td>
</tr>
<tr>
<td>Configuring Bypass Operation</td>
<td>Configure bypass operation on the module</td>
<td>Commands and configuration data</td>
</tr>
<tr>
<td>Updating Firmware</td>
<td>Updating firmware on the module</td>
<td>Commands and configuration data</td>
</tr>
<tr>
<td>Configuring Online Certificate Status Protocol (OCSP) Responder</td>
<td>Configuring OCSP responder functionality</td>
<td>OCSP inputs, commands, and data</td>
</tr>
<tr>
<td>Configuring Control Plane Security (CPSec)</td>
<td>Configuring Control Plane Security mode to protect communication with APs using IPSec and issue self signed certificates to APs</td>
<td>Commands and configuration data, IKEv1/IKEv2 inputs and data; IPSec inputs, commands, and data</td>
</tr>
</tbody>
</table>
Table 5 - Crypto-Officer Services

<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
<th>Input</th>
<th>Output</th>
<th>CSP Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeroization</td>
<td>Zeroizes all flash memory</td>
<td>Command</td>
<td>Progress information</td>
<td>All CSPs will be destroyed.</td>
</tr>
</tbody>
</table>

User Role

The User role can access the controller’s IPSec and IKEv1/IKEv2 services. Service descriptions and inputs/outputs are listed in the following table:

Table 6 - User Service

<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
<th>Input</th>
<th>Output</th>
<th>CSP Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKEv1/IKEv2-IPSec</td>
<td>Access the module’s IPSec services in order to</td>
<td>IPSec inputs, commands, and data</td>
<td>IPSec outputs, status, and data</td>
<td>29, 30, 31, 32 (read)</td>
</tr>
<tr>
<td></td>
<td>secure network traffic</td>
<td></td>
<td></td>
<td>8, 9, 10, 11, 12, 13 (read/write)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17 (read)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18, 19, 20, 21, 22, 23 (read/write)</td>
</tr>
<tr>
<td>HTTPS over TLS</td>
<td>Access the module’s TLS services in order to</td>
<td>TLS inputs, commands, and data</td>
<td>TLS outputs, status, and data</td>
<td>29, 30, 31, 32 (read)</td>
</tr>
<tr>
<td></td>
<td>secure network traffic</td>
<td></td>
<td></td>
<td>26, 27, 28 (read/write)</td>
</tr>
<tr>
<td>EAP-TLS termination</td>
<td>Provide EAP-TLS termination</td>
<td>EAP-TLS inputs, commands and data</td>
<td>EAP-TLS outputs, status and data</td>
<td>29, 30, 31, 32 (read)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26, 27, 28 (read/write)</td>
</tr>
</tbody>
</table>
802.11i Shared Key Mode | Access the module’s 802.11i services in order to secure network traffic | 802.11i inputs, commands and data | 802.11i outputs, status and data | 33 (read) 35 (read/write)

802.11i with EAP-TLS | Access the module’s 802.11i services in order to secure network traffic | 802.11i inputs, commands and data | 802.11i outputs, status, and data | 29, 30, 31, 32 (read) 34, 35 (read/write)

Self-Tests | Run Power-On Self-Tests and Conditional Tests | None | Error messages logged if a failure occurs | None

Authentication Mechanisms

The Aruba Controller supports role-based authentication. Role-based authentication is performed before the Crypto Officer enters privileged mode using admin password via Web Interface or SSHv2 or by entering enable command and password in console. Role-based authentication is also performed for User authentication.

This includes password and RSA/ECDSA-based authentication mechanisms. The strength of each authentication mechanism is described below.

Table 7 - Estimated Strength of Authentication Mechanisms

<table>
<thead>
<tr>
<th>Authentication Type</th>
<th>Role</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password-based authentication (CLI and Web Interface)</td>
<td>Crypto Officer</td>
<td>Passwords are required to be a minimum of eight characters and a maximum of 32 with a minimum of one letter and one number. If six (6) integers, one (1) special character and one (1) alphabet are used without repetition for an eight (8) digit PIN, the probability of randomly guessing the correct sequence is one (1) in 251,596,800 (this calculation is based on the assumption that the typical standard American QWERTY computer keyboard has 10 Integer digits, 52 alphabetic characters, and 32 special characters providing 94 characters to choose from in total. The calculation should be 10 x 9 x 8 x 7 x 6 x 5 x 32 x 52 = 251, 596, 800). Therefore, the associated probability of a successful random attempt is approximately 1 in 251,596,800, which is less than 1 in 1,000,000 required by FIPS</td>
</tr>
</tbody>
</table>
RSA-based authentication (IKEv1/IKEv2) | User | When using RSA based authentication, RSA key pair has modulus size of 2048 bits, thus providing 112 bits of strength. Assuming the low end of that range, the associated probability of a successful random attempt is $1 \text{ in } 2^{112}$, which is less than 1 in 1,000,000 required by FIPS 140-2.

ECDSA-based authentication (IKEv1/IKEv2) | User | ECDSA signing and verification is used to authenticate to the module during IKEv1/IKEv2. Both P-256 and P-384 curves are supported. ECDSA P-256 provides 128 bits of equivalent security, and P-384 provides 192 bits of equivalent security. Assuming the low end of that range, the associated probability of a successful random attempt is $1 \text{ in } 2^{128}$, which is less than 1 in 1,000,000 required by FIPS 140-2.

Pre-shared key-based authentication (IKEv1/IKEv2) | User | Same mechanism strength as Password-based authentication above.

Pre-shared key based authentication (802.11i) | User | Same mechanism strength as IKEv1/IKEv2 shared secret above.

EAP-TLS authentication | User | If RSA is used, 2048 bit RSA keys correspond to effective strength of 2^{112}; if ECDSA (P-256 and P-384) is used, curve P-256 provides 128 bits of equivalent security, and P-384 provides 192 bits of equivalent security.

Unauthenticated Services

The Aruba Controller can perform VLAN, bridging, firewall, routing, and forwarding functionality without authentication. These services do not involve any cryptographic processing.

Additional unauthenticated services include performance of the power-on self-test and system status indication via LEDs.

Non-Approved Services

The following non-approved services are also available to the unauthenticated operators.

- Network Time Protocol (NTP) service
- Internet Control Message Protocol (ICMP) service
- VLAN service
- Network bridging service
- Network Address Resolution Protocol (ARP) service
- Packets routing, switching and forwarding

Cryptographic Key Management

Implemented Algorithms

FIPS-approved cryptographic algorithms have been implemented in firmware and hardware.

- Hardware encryption acceleration is provided for bulk cryptographic operations for the following FIPS approved algorithms:
 - AES (Cert. #779)
 - Triple-DES (Cert. #673)
 - SHS (Cert. #781)
 - HMAC (Cert. #426)

The firmware supports the following cryptographic implementations.

- ArubaOS OpenSSL Module implements the following FIPS-approved algorithms:
 - AES (Cert. #2680)
 - CVL (Cert. #152)
 - DRBG (Cert. #433)
 - ECDSA (Cert. #469)
 - HMAC (Cert. #1666)
 - KBKDF (Cert. #16)
 - RSA (Cert. #1379)
 - SHS (Cert. #2249)
 - Triple-DES (Cert. #1607)

Note:

- RSA (Cert. #1379; non-compliant with the functions from the CAVP Historical RSA List)
 - FIPS186-2:
 - ALG[ANSIX9.31]: Key(gen)(MOD: 1024 PubKey Values: 65537)

- ECDSA (Cert. #469; non-compliant with the functions from the CAVP Historical ECDSA List)
 - FIPS186-2:
 - SIG(gen): CURVES(P-256 P-384), SHS: SHA-1

- ArubaOS Crypto Module implementation supports the following FIPS Approved Algorithms:
 - AES (Cert. #2677)
 - CVL (Cert. #150)
 - ECDSA (Cert. #466)
 - HMAC (Cert. #1663)
 - RNG (Cert. #1250)
 - RSA (Cert. #1376)
SHS (Cert. #2246)

- RSA (Cert. #1376; non-compliant with the functions from the CAVP Historical RSA List)
 - FIPS186-2:
 - ALG[ANSIX9.31]: Key(gen)(MOD: 1024 PubKey Values: 65537)

- ECDSA (Cert. #466; non-compliant with the functions from the CAVP Historical ECDSA List)
 - FIPS186-2:
 - SIG(gen): CURVES(P-256 P-384), SHS: SHA-1

- ArubaOS UBOOT Bootloader implements the following FIPS-approved algorithms:
 - RSA (Cert. #1380)
 - SHS (Cert. #2250)

Non-FIPS Approved Algorithms Allowed in FIPS Mode

- Diffie-Hellman (key agreement; key establishment methodology provides 112 bits of encryption strength; non-compliant less than 112-bits of encryption strength)
- EC Diffie-Hellman (key agreement; key establishment methodology provides 128 or 192 bits of encryption strength)
- NDRNG
- RSA (key wrapping; key establishment methodology provides 112 bits of encryption strength; non-compliant less than 112-bits of encryption strength)

Non-FIPS Approved Algorithms

The cryptographic module implements the following non-approved algorithms that are not permitted for use in the FIPS 140-2 mode of operations:

- DES
- HMAC-MD5
- MD5
- RC4

Critical Security Parameters

The following are the Critical Security Parameters (CSPs) used in the controller.

Table 8 - CSPs/Keys Used in Aruba Controllers
<table>
<thead>
<tr>
<th>#</th>
<th>CSP/Key Used in Aruba Controllers</th>
<th>Description</th>
<th>Storage</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Key Encryption Key (KEK)</td>
<td>Triple-DES 168-bit key</td>
<td>Hardcoded during manufacturing</td>
<td>Stored in Flash. Zerized by using command 'wipe out flash'. Encrypts IKEv1/IKEv2 Pre-shared key, RADIUS server shared secret, RSA private key, ECDSA private key, 802.11i pre-shared key and Passwords.</td>
</tr>
<tr>
<td>2</td>
<td>DRBG entropy input</td>
<td>SP800-90a DRBG (512 bits)</td>
<td>Derived using NON-FIPS approved HW RNG</td>
<td>Stored in plaintext in volatile memory. Zerized on reboot. DRBG initialization</td>
</tr>
<tr>
<td>3</td>
<td>DRBG seed</td>
<td>SP800-90a DRBG (384 bits)</td>
<td>Generated per SP800-90A using a derivation function</td>
<td>Stored in plaintext in volatile memory. Zerized on reboot. DRBG initialization</td>
</tr>
<tr>
<td>4</td>
<td>DRBG key</td>
<td>SP800-90a (256 bits)</td>
<td>Generated per SP800-90A</td>
<td>Stored in plaintext in volatile memory. Zerized on reboot. DRBG</td>
</tr>
<tr>
<td>5</td>
<td>DRBG V</td>
<td>SP800-90a (128 bits)</td>
<td>Generated per SP800-90A</td>
<td>Stored in plaintext in volatile memory. Zerized on reboot. DRBG</td>
</tr>
<tr>
<td>6</td>
<td>RNG seed</td>
<td>FIPS 186-2 RNG Seed (512 bits)</td>
<td>Derived using NON-FIPS approved HW RNG</td>
<td>Stored in plaintext in volatile memory. Zerized on reboot. Seed 186-2 General purpose (x-change Notice); SHA-1 RNG</td>
</tr>
<tr>
<td>7</td>
<td>RNG seed key</td>
<td>FIPS 186-2 RNG Seed key (512 bits)</td>
<td>Derived using NON-FIPS approved HW RNG</td>
<td>Stored in plaintext in volatile memory. Zerized on reboot. Seed 186-2 General purpose (x-change Notice); SHA-1 RNG</td>
</tr>
<tr>
<td>8</td>
<td>Diffie-Hellman private key</td>
<td>Diffie-Hellman private key (224 bits)</td>
<td>Generated internally during Diffie-Hellman Exchange</td>
<td>Stored in the volatile memory. Zeroized after the session is closed.</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td>Diffie-Hellman public key</td>
<td>Diffie-Hellman public key (2048 bits)</td>
<td>Generated internally during Diffie-Hellman Exchange</td>
<td>Stored in the volatile memory. Zeroized after the session is closed.</td>
</tr>
<tr>
<td></td>
<td>Note: Key size of DH Group 1 (768 bits) and DH Group 2 (1024 bits) are not allowed in FIPS mode.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Diffie-Hellman shared secret</td>
<td>Diffie-Hellman shared secret (2048 bits)</td>
<td>Established during Diffie-Hellman Exchange</td>
<td>Stored in plain text in volatile memory, Zeroized when session is closed.</td>
</tr>
<tr>
<td>11</td>
<td>EC Diffie-Hellman private key</td>
<td>Elliptic Curve Diffie-Hellman (P-256 and P-384).</td>
<td>Generated internally during EC Diffie-Hellman Exchange</td>
<td>Stored in the volatile memory. Zeroized after the session is closed.</td>
</tr>
<tr>
<td>12</td>
<td>EC Diffie-Hellman public key</td>
<td>Elliptic Curve Diffie-Hellman (P-256 and P-384).</td>
<td>Generated internally during EC Diffie-Hellman Exchange</td>
<td>Stored in the volatile memory. Zeroized after the session is closed.</td>
</tr>
<tr>
<td>14</td>
<td>RADIUS server shared secret</td>
<td>8-128 character shared secret</td>
<td>CO configured</td>
<td>Stored encrypted in Flash with the KEK. Zeroized by changing (updating) the pre-shared key through the User interface.</td>
</tr>
</tbody>
</table>
Table 8 - CSPs/Keys Used in Aruba Controllers

<table>
<thead>
<tr>
<th>#</th>
<th>CSP/Key</th>
<th>Description</th>
<th>Configuration</th>
<th>Key Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Enable secret</td>
<td>8-64 character password</td>
<td>CO configured</td>
<td>Store in ciphertext in flash. Zerized by changing (updating) through the user interface. Administrator authentication</td>
</tr>
<tr>
<td>16</td>
<td>User Passwords</td>
<td>8-64 character password</td>
<td>CO configured</td>
<td>Stored encrypted in Flash with KEK. Zerized by either deleting the password configuration file or by overwriting the password with a new one. Authentication for accessing the management interfaces, RADIUS authentication</td>
</tr>
<tr>
<td>17</td>
<td>IKEv1/IKEv2 Pre-shared key</td>
<td>64 character pre-shared key</td>
<td>CO configured</td>
<td>Stored encrypted in Flash with the KEK. Zerized by changing (updating) the pre-shared key through the User interface. User and module authentication during IKEv1, IKEv2</td>
</tr>
<tr>
<td>18</td>
<td>skeyid</td>
<td>HMAC-SHA-1/256/384 (160/256/384 bits)</td>
<td>Established during IKEv1 negotiation</td>
<td>Stored in plaintext in volatile memory. Zerized when session is closed. Key agreement in IKEv1</td>
</tr>
<tr>
<td>19</td>
<td>skeyid_d</td>
<td>HMAC-SHA-1/256/384 (160/256/384 bits)</td>
<td>Established during IKEv1 negotiation</td>
<td>Stored in plaintext in volatile memory. Zerized when session is closed. Key agreement in IKEv1</td>
</tr>
<tr>
<td>20</td>
<td>IKEv1/IKEv2 session authentication key</td>
<td>HMAC-SHA-1/256/384 (160 / 256 / 384 bits)</td>
<td>Established as a result of IKEv1/IKEv2 service implementation.</td>
<td>Stored in plaintext in volatile memory. Zerized when session is closed. IKEv1/IKEv2 payload integrity verification</td>
</tr>
<tr>
<td>21</td>
<td>IKEv1/IKEv2 session encryption key</td>
<td>Triple-DES (168 bits/AES (128/196/256 bits – 3 key Triple-DES only)</td>
<td>Established as a result of IKEv1/IKEv2 service implementation.</td>
<td>Stored in plaintext in volatile memory. Zerized when session is closed. IKEv1/IKEv2 payload encryption</td>
</tr>
<tr>
<td>CSP/Key Type</td>
<td>Description</td>
<td>Key Type</td>
<td>Key Usage</td>
<td>Security</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>22 IPSec session encryption keys</td>
<td>Triple-DES (168 bits / AES (128/196/256 bits – 3 key Triple-DES only)</td>
<td>Established during the IPSec service implementation</td>
<td>Stored in plaintext in volatile memory. Zeroized when the session is closed.</td>
<td>Secure IPSec traffic</td>
</tr>
<tr>
<td>23 IPSec session authentication keys</td>
<td>HMAC-SHA-1 (160 bits)</td>
<td>Established during the IPSec service implementation</td>
<td>Stored in plaintext in volatile memory. Zeroized when the session is closed.</td>
<td>User authentication</td>
</tr>
<tr>
<td>24 SSHv2 session keys</td>
<td>AES (128/196/256 bits)</td>
<td>Established during the SSHv2 key exchange</td>
<td>Stored in plaintext in volatile memory. Zeroized when the session is closed.</td>
<td>Secure SSHv2 traffic</td>
</tr>
<tr>
<td>25 SSHv2 session authentication key</td>
<td>HMAC-SHA-1 (160-bit)</td>
<td>Established during the SSHv2 key exchange</td>
<td>Stored in plaintext in volatile memory. Zeroized when the session is closed.</td>
<td>Secure SSHv2 traffic</td>
</tr>
<tr>
<td>26 TLS pre-master secret</td>
<td>48 byte secret</td>
<td>Externally generated</td>
<td>Stored in plaintext in volatile memory. Zeroized when the session is closed.</td>
<td>TLS key agreement</td>
</tr>
<tr>
<td>27 TLS session encryption key</td>
<td>AES 128/192/256 bits</td>
<td>Generated in the module during the TLS service implementation</td>
<td>Stored in plaintext in volatile memory. Zeroized when the session is closed.</td>
<td>TLS session encryption</td>
</tr>
<tr>
<td>28 TLS session authentication key</td>
<td>HMAC-SHA-1/256/384 (160/256/384 bits)</td>
<td>Generated in the module during the TLS service implementation</td>
<td>Stored in plaintext in volatile memory. Zeroized when the session is closed.</td>
<td>TLS session authentication</td>
</tr>
<tr>
<td>29 RSA Private Key</td>
<td>RSA 2048 bit private key</td>
<td>Generated in the module</td>
<td>Stored in flash memory encrypted with KEK. Zeroized by the CO command \textbf{write erase all.}</td>
<td>Used by TLS and EAP-TLS/PEAP protocols during the handshake, used for signing OCSP responses, and used by IKEv1/IKEv2 for device authentication and for signing certificates</td>
</tr>
<tr>
<td>No.</td>
<td>CSP/Key</td>
<td>Description</td>
<td>Status</td>
<td>Usage</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30</td>
<td>RSA Public key</td>
<td>RSA 2048 bit public key</td>
<td>Generated in the module</td>
<td>Stored in flash memory encrypted with KEK. Zeroized by the CO command write erase all.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Used by TLS and EAP-TLS/PEAP protocols during the handshake, used for signing OCSP responses, and used by IKEv1/IKEv2 for device authentication and for signing certificates.</td>
</tr>
<tr>
<td>31</td>
<td>ECDSA Private Key</td>
<td>ECDSA suite B P-256 and P-384 curves</td>
<td>Generated in the module</td>
<td>Stored in flash memory encrypted with KEK. Zeroized by the CO command write erase all.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Used by TLS and EAP-TLS/PEAP protocols during the handshake.</td>
</tr>
<tr>
<td>32</td>
<td>ECDSA Public Key</td>
<td>ECDSA suite B P-256 and P-384 curves</td>
<td>Generated in the module</td>
<td>Stored in flash memory encrypted with KEK. Zeroized by the CO command write erase all.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Used by TLS and EAP-TLS/PEAP protocols during the handshake.</td>
</tr>
<tr>
<td>33</td>
<td>802.11i Pre-Shared Key (PSK)</td>
<td>8-63 character 802.11i pre-shared secret for use in 802.11i (SP 800-108) key derivation</td>
<td>CO configured</td>
<td>Stored in flash memory encrypted with KEK. Zeroized by the CO command write erase all.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Used by the 802.11i protocol</td>
</tr>
<tr>
<td>34</td>
<td>802.11i Pair-Wise Master key (PMK)</td>
<td>802.11i secret key (256-bit)</td>
<td>Derived during the EAP-TLS/PEAP handshake</td>
<td>Stored in the volatile memory. Zeroized on reboot.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Used by the 802.11i protocol</td>
</tr>
<tr>
<td>35</td>
<td>802.11i session key</td>
<td>AES-CCM key (128 bits), AES-GCM key (128/256 bits)</td>
<td>Derived from 802.11 PMK</td>
<td>Stored in plaintext in volatile memory. Zeroized on reboot.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Used for 802.11i encryption</td>
</tr>
<tr>
<td>36</td>
<td>SNMPv3 authentication password</td>
<td>8-64 character password</td>
<td>CO configured</td>
<td>Stored in flash memory encrypted with KEK. Zeroized by the CO command write erase all.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Used for SNMPv3 authentication</td>
</tr>
<tr>
<td>37</td>
<td>SNMPv3 privacy password</td>
<td>8-64 character password</td>
<td>CO configured</td>
<td>Stored in flash memory encrypted with KEK. Zeroized by the CO command write erase all.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Used to derive SNMPv3 session key</td>
</tr>
</tbody>
</table>
Table 8 - CSPs/Keys Used in Aruba Controllers

<table>
<thead>
<tr>
<th>No</th>
<th>CSP/Key Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>SNMPv3 session key</td>
</tr>
</tbody>
</table>

Self-Tests

The Aruba Controller performs both power-up and conditional self-tests. In the event any self-test fails, the controller will enter an error state, log the error, and reboot automatically.

The following self-tests are performed:

ArubaOS OpenSSL Module:
- AES (encrypt/decrypt) KATs
- Triple-DES (encrypt/decrypt) KATs
- DRBG KAT
- RSA KAT
- ECDSA Sign/Verify
- SHA (SHA1, SHA256, SHA384 and SHA512) KATs
- HMAC (HAMAC-SHA1, HMAC-SHA256, HMAC-SHA384 and HMAC-SHA512) KATs

ArubaOS Crypto Module
- AES (encrypt/decrypt) KATs
- Triple-DES (encrypt/decrypt) KAT
- SHA (SHA1, SHA256, SHA384 and SHA512) KAT
- HMAC (HAMAC-SHA1, HMAC-SHA256, HMAC-SHA384 and HMAC-SHA512) KAT
- RSA KAT
- ECDSA Sign/Verify
- FIPS 186-2 RNG KAT

ArubaOS Uboot BootLoader Module
- Firmware Integrity Test: RSA PKCS#1 v1.5 (2048 bits) signature verification with SHA-1

Aruba Hardware Known Answer Tests:
- AES (encrypt/decrypt) KATs
- AES-CCM KAT
- AES-GCM KAT
- Triple-DES(encrypt/decrypt) KATs
- HMAC (HAMAC-SHA1) KAT

The following Conditional Self-tests are performed in the controller:

ArubaOS OpenSSL Module
- Bypass Tests (Wired Bypass Test and Wireless Bypass Test)
- CRNG Test to Approved RNG (DRBG)
- ECDSA Pairwise Consistency Test
- RSA Pairwise Consistency Test

ArubaOS Crypto Module
- CRNG Test to Approved RNG (FIPS 186-2 RNG)
- ECDSA Pairwise Consistency Test
- RSA Pairwise Consistency Test

ArubaOS Uboot BootLoader Module
- Firmware Load Test - RSA PKCS#1 v1.5 (2048 bits) signature verification

Conditional Tests on Hardware:
- CRNG Test to non-Approved RNGs

Self-test results are logged in a log file. Upon successful completion of the power-up self tests, the module logs a KATS: passed message into a log file. Confirm the file update by checking the associated time of the file.

In the event of a hardware KATs failure, the log file records one of the following messages depending on the algorithm being validated:
- AES256 HMAC-SHA1 hash failed
- AES256 Encrypt failed
- AES256 Decrypt Failed
- 3DES HMAC-SHA1 hash failed
- 3DES Encrypt failed
- 3DES Decrypt Failed
- DES HMAC-SHA1 hash failed
- DES Encrypt failed
- DES Decrypt Failed
- HW KAT test failed for AESCCM CTR. Rebooting
- AESCCM Encrypt Failed

This text is followed by this message:
The POST Test failed!!!!
Rebooting...

Alternating Bypass State

The controller implements an alternating bypass state when:
- a port is configured in trusted mode to provide unauthenticated services
- a configuration provides wireless access without encryption

The alternating bypass status can be identified by retrieving the port configuration or the wireless network configuration.
Installing the Controller

This chapter covers the physical installation of the Aruba 620 and 650 Mobility Controllers with FIPS 140-2 Level 2 validation. The Crypto Officer is responsible for ensuring that the following procedures are used to place the controller in a FIPS-approved mode of operation.

This chapter covers the following installation topics:

- Precautions to be observed during installation
- Requirements for the controller components and rack mounting gear
- Selecting a proper environment for the controller
- Mounting the controller in a rack
- Connecting power to the controller

Pre-Installation Checklist

The following tools and equipment are required for installation of an Aruba 650 Series controller.

- Rack Mount Bracket (x2, not used for tabletop installation)
- 6-32 x 1/4” Phillips Flat Head Screws (4x, included with rack mount brackets)
- 12-24 x 5/8” Phillips Flat Head Screws (4x, 19-inch (48.26 cm) rack system mount screws).
- Suitable Screwdrivers for both screw types.
- AC Power Cord (country-specific)
- Left and right side bezels (not used for rack mounting)

To deploy an Aruba 650 Series controller on a flat surface, such as a tabletop, insert the four rubber mounting feet to the bottom of the unit, attach side bezels by snapping them into place and then place the unit on a hard flat surface.

The following tools and equipment are required for installation of an Aruba 620 controller.

- Rack Mount Bracket (x2, not used for tabletop installation)
- Screws (4x, included with rack mount brackets)
- Suitable Screwdriver.
- AC Power Cord (country-specific)
- Left and right side bezels (not used for rack mounting)

To deploy an Aruba 620 controller on a flat surface, such as a tabletop, insert the four rubber mounting feet to the bottom of the unit, attach side bezels by snapping them into place and then place the unit on a hard flat surface.

Precautions

- Installation should be performed only by a trained technician.
- Dangerous voltage in excess of 240 VAC is always present while the Aruba power supply is plugged into an electrical outlet. Remove all rings, jewelry, and other potentially conductive material before working with this product.
- Never insert foreign objects into the chassis, the power supply, or any other component, even when the power supplies have been turned off, unplugged, or removed.
- Main power is fully disconnected from the controller only by unplugging all power cords from their power outlets. For safety reasons, make sure the power outlets and plugs are within easy reach of the operator.
- Do not handle electrical cables that are not insulated. This includes any network cables.
- Keep water and other fluids away from the product.
• Comply with electrical grounding standards during all phases of installation and operation of the product. Do not allow
the controller chassis, network ports, power supplies, or mounting brackets to contact any device, cable, object, or
person attached to a different electrical ground. Also, never connect the device to external storm grounding sources.
• Installation or removal of the chassis or any module must be performed in a static-free environment. The proper use
of anti-static body straps and mats is strongly recommended.
• Keep modules in anti-static packaging when not installed in the chassis.
• Do not ship or store this product near strong electromagnetic, electrostatic, magnetic or radioactive fields.
• Do not disassemble chassis or modules. They have no internal user-serviceable parts. When service or repair is
needed, contact Aruba Networks.

Product Examination

The units are shipped to the Crypto Officer in factory-sealed boxes using trusted commercial carrier shipping companies. The Crypto Officer should examine the carton for evidence of tampering. Tamper-evidence includes tears, scratches, and other irregularities in the packaging.

Package Contents

The product carton should include the following:
• Aruba 620 or 650 Mobility Controller
• Rack/tabletop mounting kit
• Aruba User Documentation CD
• Tamper-Evident Labels
Tamper-Evident Labels

After testing, the Crypto Officer must apply Tamper-Evident Labels (TELs) to the controller. When applied properly, the TELs allow the Crypto Officer to detect the opening of the chassis cover, the removal or replacement of modules or cover plates, or physical access to restricted ports. Vendor provides FIPS 140 designated TELs which have met the physical security testing requirements for tamper evident labels under the FIPS 140-2 Standard. TELs are not endorsed by the Cryptographic Module Validation Program (CMVP).

The tamper-evident labels shall be installed for the module to operate in a FIPS Approved mode of operation.

Aruba Provides double the required amount of TELs. If a customer requires replacement TELs, please call customer support and Aruba will provide the TELs (Part # 4010061-01).

The Crypto officer shall be responsible for keeping the extra TELs at a safe location and managing the use of the TELs.

Reading TELs

Once applied, the TELs included with the controller cannot be surreptitiously broken, removed, or reapplied without an obvious change in appearance:

Figure 2 Tamper-Evident Labels

Each TEL also has a unique serial number to prevent replacement with similar labels.
Required TEL Locations

Aruba 620

This section displays all the TEL locations on the Aruba 620. The Aruba 620 requires a minimum of 8 TELs to be applied as follows:

To detect opening of the chassis cover:
1. Spanning the front face plate and left and bottom chassis cover
2. Spanning the front face plate and top chassis cover
3. Spanning the front face plate and bottom chassis cover
4. Spanning the front face plate and right and bottom chassis cover
5. Spanning the front face plate and right and bottom chassis cover
6. Spanning the front face plate and top chassis cover
7. Spanning the front face plate and bottom chassis cover
8. Spanning the front face plate and left and bottom chassis cover

To detect access to restricted ports:
3. Spanning the Express Card slot
7. Spanning the serial port

Figure 5 - Aruba 620 — Front view

Figure 6 - Aruba 620 — Back view
Figure 7 - Aruba 620 — Left-side view

Figure 8 - Aruba 620 — Right-side view

Figure 9 - Aruba 620 — Top view
Aruba 650

This section displays all the TEL locations on the Aruba 650. The Aruba 650 requires a minimum of 8 TELs to be applied as follows:

To detect opening of the chassis cover:
1. Spanning the front face plate and left chassis cover
2. Spanning the front face plate and bottom chassis cover
3. Spanning the front face plate and right chassis cover
4. Spanning the right chassis cover and top chassis cover
6. Spanning the left chassis cover and top chassis cover

7. Spanning the front face plate and bottom chassis cover

8. Spanning the rear face plate and bottom chassis cover

To detect access to restricted ports:
2. Spanning the serial port

5. Spanning the Express Card slot (if Express Card slot is present)

Figure 11 - Aruba 650 — Front view

Figure 12 - Aruba 650 — Back view

Figure 13 - Aruba 650 — Left-side view
Figure 14 - Aruba 650 — Right-side view

Figure 15 - Aruba 650 — Top view

Figure 16 - Aruba 650 — Bottom view
Applying TELs

The Crypto Officer should employ TELs as follows:

- Before applying a TEL, make sure the target surfaces are clean and dry.
- Do not cut, trim, punch, or otherwise alter the TEL.
- Apply the wholly intact TEL firmly and completely to the target surfaces.
- Press down firmly across the entire label surface, making several back-and-forth passes to ensure that the label securely adheres to the chassis.
- Ensure that TEL placement is not defeated by simultaneous removal of multiple modules.
- Allow 24 hours for the TEL adhesive seal to completely cure.
- Record the position and serial number of each applied TEL in a security log.

Once the TELs are applied, the Crypto Officer (CO) should perform initial setup and configuration as described in the next chapter.

Ongoing Management

The Aruba 600 Series Controllers meet FIPS 140-2 Level 2 requirements. The information below describes how to keep the controller in FIPS-approved mode of operation. The Crypto Officer must ensure that the controller is kept in a FIPS-approved mode of operation.

Crypto Officer Management

The Crypto Officer must ensure that the controller is always operating in a FIPS-approved mode of operation. This can be achieved by ensuring the following:

- FIPS mode must be enabled on the controller before Users are permitted to use the controller (see “Enabling FIPS Mode” in this document.)
- The admin role must be root.
- Passwords must be at least eight characters long.
- VPN services can only be provided by IPsec or L2TP over IPsec.
- Access to the controller Web Interface is permitted only using HTTPS over a TLS tunnel. Basic HTTP and HTTPS over SSL are not permitted.
- Only SNMP read-only may be enabled.
- Only FIPS-approved algorithms can be used for cryptographic services (such as HTTPS, L2, AES-CBC, SSH, and IKEv1/IKEv2-IPSec), which include AES, Triple-DES, SHA-1, HMAC SHA-1, and RSA signature and verification.
- TFTP can only be used to load backup and restore files. These files are: Configuration files (system setup configuration), the WMS database (radio network configuration), and log files. (FTP and TFTP over IPsec can be used to transfer configuration files.)
- The controller logs must be monitored. If a strange activity is found, the Crypto Officer should take the controller off line and investigate.
- The Tamper-Evident Labels (TELs) must be regularly examined for signs of tampering. The Crypto Officer shall be responsible for developing an inspection schedule in compliance with agency-specific policies.
- The Crypto Officer shall not configure the Diffie-Hellman algorithm with 768-bits (Group 1) or 1024-bits (Group 2) in FIPS mode for IKEv1/IKEv2-IPSec and SSHv2.
User Guidance

The User accesses the controller VPN functionality as an IPsec client. The user can also access the controller 802.11i functionality as an 802.11 client. Although outside the boundary of the controller, the User should be directed to be careful not to provide authentication information and session keys to others parties.
Setup and Configuration

The Aruba 600 Series Controllers meet FIPS 140-2 Level 2 requirements. The sections below describe how to place and keep the controller in FIPS-approved mode of operation. The Crypto Officer (CO) must ensure that the controller is kept in a FIPS-approved mode of operation.

The controller can operate in two modes: the FIPS-approved mode, and the standard non-FIPS mode. By default, the controller operates in non-FIPS mode.

Setting Up Your Controller

To set up your controller:
1. Make sure that the controller is not connected to any device on your network.
2. Boot up the controller.
3. Connect your PC or workstation to a line port on the controller.

For further details, see the ArubaOS 6.3 Quick Start Guide.

Enabling FIPS Mode

For FIPS compliance, users cannot be allowed to access the controller until the CO changes the mode of operation to FIPS mode. There are two ways to enable FIPS mode:

- Use the WebUI
- Use the CLI

Enabling FIPS Mode with the WebUI

The IP address of the controller will be set during initial setup of the controller, as described in the ArubaOS 6.3 Quick Start Guide. When you connect a PC or workstation to a line port on the controller, you can connect to this IP address through a Web browser.

To log in with the WebUI:
1. Open a Web browser and connect to https://ip_address.
2. Log in using the username/password set during the initial setup procedure.
3. Go to the Configuration > Network > Controller > System Settings page (the default page when you click the Configuration tab).
4. Click the FIPS Mode for Controller Enable checkbox.

Enabling FIPS Mode with the CLI

Login to the controller using an SSHv2 client. After entering the “enable” command and supplying the enable secret (established during the initial setup procedure), enable FIPS mode using the following commands:

```
#configure terminal
Enter Configuration commands, one per line. End with CNTL/Z
(config) #fips enable
(config) #exit
#write memory
Saving Configuration...
```
Configuration Saved.

To verify that FIPS mode has been enabled, issue the command "show fips".

Disallowed FIPS Mode Configurations

When you enable FIPS mode, the following configuration options are disallowed:

- All WEP features
- WPA
- TKIP mixed mode
- Any combination of DES, MD5, and PPTP