FIPS 140-2 Non-Proprietary Security Policy
Aegis Secure Key 3.0 Cryptographic Module
Author: Robert Davidson
Date: Wednesday, December 03, 2014
Document Issue: REV A December 3, 2014

This document may be copied without the author’s permission, provided that it is copied in its entirety without any modification.

Apricorn is a trademark or a registered trademark of Apricorn, Inc. in certain countries. All Apricorn product names and logos are trademarks or registered trademarks of Apricorn, Inc. in certain countries. All other company and product names and logos are trademarks or registered trademarks of their respective owners in certain countries.
Table of Contents

1. References .. 3
2. Target Audience .. 3
3. Introduction .. 4
 3.1 Purpose of the Security Policy ... 4
 3.2 Cryptographic Module Description .. 4
4. Security Levels .. 6
5. Interfaces and Ports .. 7
6. Cryptographic Key and CSP Management .. 7
 6.1 PIN Access Codes ... 7
 6.2 Random Number Generation ... 7
 6.3 AES Master Key .. 7
 6.4 Zeroization ... 7
7. Identification and Authentication Policy ... 8
 7.1 Roles ... 8
 7.2 Authentication .. 9
8. Access Control Policy ... 10
9. Physical Security Policy ... 11
10. Regulatory Compliance .. 11
11. Security Rules.. 12
12. Mitigation of Other Attacks Policy .. 13
13. Acronyms .. 13
1. References

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIST</td>
<td>FIPS PUB 140-2: Security Requirements For Cryptographic Modules, December, 2002</td>
</tr>
<tr>
<td>NIST</td>
<td>Derived Test Requirements for FIPS PUB 140-2, March, 2004</td>
</tr>
<tr>
<td>NIST</td>
<td>Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation Program, May, 2006</td>
</tr>
<tr>
<td>NIST</td>
<td>FIPS 197</td>
</tr>
<tr>
<td>NIST</td>
<td>FIPS 180-4</td>
</tr>
<tr>
<td>NIST</td>
<td>SP800-90</td>
</tr>
<tr>
<td>NIST</td>
<td>SP800-38E</td>
</tr>
</tbody>
</table>

Table 1 - References

2. Target Audience

- NIST, CSE, Accredited Laboratory and the FIPS 140-2 Validation Group
- Developers Working on the Release
- Product Verification
- Documentation
- Product and Development Managers
- Security Assurance
- Administrator and General User
3. Introduction

This Security Policy document contains a description of the Aegis Secure Key 3.0 Cryptographic Module (also referred to herein as the cryptographic module, or simply the module). This document contains a specification of the security rules under which the module must operate as derived from the requirements of FIPS 140-2.

3.1 Purpose of the Security Policy

There are three major reasons that this security policy is defined for, and must be followed by, the cryptographic module:

- This document is required for FIPS 140-2 validation.
- This document allows individuals and organizations to determine whether the cryptographic module, as implemented, satisfies the stated security policy.
- This document describes the capabilities, protection, and access rights provided by the cryptographic module, allowing individuals and organizations to determine whether it will meet their security requirements.

3.2 Cryptographic Module Description

The cryptographic module is a multi-chip standalone cryptographic module. Specifically, the module is a USB 3.0 to Solid State Memory Module which implements hardware encryption dependent on operator authentication.

The cryptographic boundary is defined by the opaque metal enclosure and the epoxy covered area of the PCB that includes all security relevant components of the module.

The module provides secure encrypted (AES-XTS 256) storage, ensuring that only authorized operators have access to the protected data.

Access is granted by use of a keypad whereby the authorized operator inputs a personal identification number (PIN) to access and unlock the secured data.

<table>
<thead>
<tr>
<th>Aegis Secure Key 3.0 Cryptographic Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware Version</td>
</tr>
<tr>
<td>Hardware Part Number</td>
</tr>
</tbody>
</table>

Table 2 – Cryptographic Module Version

List of all Approved Security Functions:

The cryptographic module offers FIPS Approved cryptographic security functions including the following:

- Random number generation (SP800-90 HASH DRBG – 256 Cert. #260)
- Symmetric encryption/decryption (AES-XTS Cert. #2235)
- Secure hash (SHA 256 Cert. #1911)

NOTICE: Users should reference the transition tables that will be available at the CMVP Web site (http://csrc.nist.gov/groups/STM/cmvp/). The data in the tables will inform Users of the risks associated with using a particular algorithm and a given key length.
List of all non-Approved Security Functions:
- Non-deterministic hardware random number generation (for seeding Approved DRBG)
The cryptographic module is designed to meet FIPS 140-2 Level 3 cryptographic module requirements for the storage of user credentials and file systems. The module will only operate in the “FIPS Approved” mode of operation (i.e. non-FIPS mode is not supported).

4. Security Levels

The cryptographic module meets an overall security of FIPS 140-2 Level 3. The FIPS 140-2 specification defines security requirements that are grouped into Security Requirement Areas. These areas are tested individually for a specific level of achievement. The table below defines the targeted level in each section for the module.

<table>
<thead>
<tr>
<th>FIPS 140-2 Security Requirement</th>
<th>Target Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Module Specification</td>
<td>Level 3</td>
</tr>
<tr>
<td>Cryptographic Module Ports and Interfaces</td>
<td>Level 3</td>
</tr>
<tr>
<td>Roles, Services and Authentication</td>
<td>Level 3</td>
</tr>
<tr>
<td>Finite State Model</td>
<td>Level 3</td>
</tr>
<tr>
<td>Physical Security</td>
<td>Level 3</td>
</tr>
<tr>
<td>Operational Environment</td>
<td>N/A</td>
</tr>
<tr>
<td>Cryptographic Key Management</td>
<td>Level 3</td>
</tr>
<tr>
<td>EMI/EMC</td>
<td>Level 3</td>
</tr>
<tr>
<td>Self-Tests</td>
<td>Level 3</td>
</tr>
<tr>
<td>Design Assurance</td>
<td>Level 3</td>
</tr>
<tr>
<td>Mitigation of Other Attacks</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 3 – Security Levels
5. Interfaces and Ports

There are four physical ports on the cryptographic module: a Super Speed Universal Serial Bus (USB 3.0), a keypad, a SATA connector for the external storage device, and signals to drive three external status LEDs.

<table>
<thead>
<tr>
<th>Physical Port</th>
<th>Logical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super Speed Universal Serial Bus (USB 3.0)</td>
<td>Data Input/ Data Output/Power</td>
</tr>
<tr>
<td>Keypad</td>
<td>Control Input (manual controls)</td>
</tr>
<tr>
<td>SATA</td>
<td>Data Input/ Data Output/Power</td>
</tr>
<tr>
<td>LEDs output (Red, Blue, Green)</td>
<td>Status Output</td>
</tr>
</tbody>
</table>

Table 4 – Interfaces and Ports

6. Cryptographic Key and CSP Management

6.1 PIN Access Codes
On the cryptographic module, each personal identification number (PIN) has a minimum of seven digits and maximum of sixteen digits. The module supports one Administrator PIN and one General User PIN code.

6.2 Random Number Generation
The cryptographic module contains a non-deterministic hardware random number generator (NDRNG) that uses an internal, unpredictable physical source of entropy that is outside of human control. Random numbers generated by the NDRNG are used as seeding values for the FIPS Approved Deterministic Random Bit Generator (SP800-90 HASH DRBG Cert #260). Continuous RNG tests are performed on the outputs of the NDRNG and on the outputs of the Approved SP800-90 DRBG.

6.3 AES Master Key
The cryptographic module uses an AES 256-bit key to encrypt/decrypt protected data. The AES 256-bit key is generated using the FIPS Approved deterministic random bit generator (SP800-90 HASH DRBG Cert #260).

6.4 Zeroization
The module supports active zeroization of all critical security parameters. When zeroization occurs, all critical security parameters are permanently destroyed.
7. Identification and Authentication Policy

7.1 Roles
The cryptographic module performs identity based authentication via verification of the PIN code for the Administrator role and General User role.

The human that takes physical possession of the module and initializes the PIN for the first time is the Administrator. The Administrator role is the Cryptographic Officer role as defined in the FIPS 140-2 standard. The Administrator role is responsible for the overall security of the module.

The Administrator can change his/her own personal identification number (PIN) and can access all of the data stored within the device, as well as add and erase general user.

The General User role is the User role as defined in the FIPS 140-2 standard. The General User role has limited privileges and access to limited services of the module. The General User can change his/her own personal identification number (PIN) and access all of the data stored within the storage device.

The cryptographic module supports up to 2 authenticated operators; at least one authenticated operator will be an Administrator.
7.2 Authentication
The cryptographic module requires a minimum of seven digits and maximum of sixteen digits for a personal identification number (PIN). When the module is powered on, it will allow a maximum of 10 attempts to correctly enter the PIN code. The human that takes physical possession of the module and initializes the PIN for the first time is the Administrator.

<table>
<thead>
<tr>
<th>Role</th>
<th>Type of Authentication</th>
<th>Authentication Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator (Cryptographic Officer)</td>
<td>Identity-based</td>
<td>Personal Identification Number (PIN)</td>
</tr>
<tr>
<td>General User (User)</td>
<td>Identity-based</td>
<td>Personal Identification Number (PIN)</td>
</tr>
</tbody>
</table>

Table 5 - Roles and required authentication

<table>
<thead>
<tr>
<th>Authentication Mechanism</th>
<th>Strength of Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN code verification</td>
<td>A minimum seven digit PIN is used, with each digit selected from 10 possible characters.</td>
</tr>
<tr>
<td></td>
<td>Therefore the probability of a random attempt to authenticate to the module is 1/10,000,000 which is much less than 1/1,000,000.</td>
</tr>
<tr>
<td></td>
<td>The probability of multiple consecutive attempts to authenticate to the module during a one minute period is 10/10,000,000 which is much less than 1/100,000.</td>
</tr>
</tbody>
</table>

Table 6 – Strengths of authentication mechanisms
8. Access Control Policy

The cryptographic module supports two roles: Administrator and General User. The type of services corresponding to each of the supported roles is described below.

Types of Access:
- Read: R
- Write: W
- Zeroize: Z
- N/A: Not applicable

<table>
<thead>
<tr>
<th>Role</th>
<th>Service</th>
<th>Cryptographic Keys and CSPs</th>
<th>Type of Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator (Cryptographic Officer) General User (User) No Role Required (Unauthenticated services that are not security relevant and do not require an authorized/authenticated operator)</td>
<td>Login/Unlock: authenticate operator to the module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Logout/Unlock: de-authenticate the operator and lockup the module</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>X</td>
<td>Write Data: receive plaintext data from host, AES encrypt data to external storage, outside of the cryptographic boundary</td>
<td>AES Master Key</td>
<td>R</td>
</tr>
<tr>
<td>X</td>
<td>Read Data: AES decrypt data from external storage, output plaintext to host outside of the cryptographic boundary</td>
<td>AES Master Key</td>
<td>R</td>
</tr>
<tr>
<td>X</td>
<td>Change PIN: update the PIN</td>
<td>Admin PIN</td>
<td>W</td>
</tr>
<tr>
<td>X</td>
<td>Set self-destruct: prepare the module for duress event</td>
<td>Admin PIN</td>
<td>W</td>
</tr>
<tr>
<td>X</td>
<td>Self-destruct: reinitialize the module</td>
<td>Admin PIN User PIN AES Master Key DRBG Internal State</td>
<td>Z</td>
</tr>
<tr>
<td>X</td>
<td>Delete all User PINs: overwrite and supersede all PINs</td>
<td>User PIN Admin PIN</td>
<td>W Z</td>
</tr>
<tr>
<td>X</td>
<td>Set unattended: set idle timeout value in minutes</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>X</td>
<td>Set read only: Sets the device to only all reading of the data</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>X</td>
<td>Set Lock override: Sets the device to ignore re-enumeration over the USB bus</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
9. Physical Security Policy

Epoxy coating and metal enclosure
The module is encapsulated with a hard, opaque, tamper-evident epoxy coating and a metal enclosure.

<table>
<thead>
<tr>
<th>Physical Security Mechanisms</th>
<th>Recommended Frequency of Inspection/Test</th>
<th>Inspection/Test Guidance Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard, opaque, tamper-evident epoxy coating and metal enclosure</td>
<td>In accordance with Administrator role organizational security policy</td>
<td>Inspect the cryptographic boundary for scratches, gouges, scrapes, deformations, and any other suspicious signs of malice and tampering. If any evidence of tampering exists the Administrator role is required to cease use of the cryptographic module immediately.</td>
</tr>
</tbody>
</table>

Table 8 – Physical Security

10. Regulatory Compliance

The cryptographic module has been tested for and passes the following:
11. Security Rules

- The cryptographic module shall always run in a FIPS Approved mode of operation (i.e. non-FIPS mode shall not be supported). It shall be possible to determine that the module is in FIPS mode by powering up the module (automatically invoke the self-tests) and observe LED status as follows: RED LED is solid on to indicate self-tests completed successfully; RED LED is flashing permanently to indicate an error state.

- The firmware version can be determined by the “Get Status” service with the following LED pattern:
 - Firmware version 6.5: BLUE LED flashing six times then RED LED flashes one time, then BLUE LED flashing five times, then RED LED flashes one time (to indicate firmware version 6.5).

- The cryptographic module shall enforce separation of all data inputs, data outputs, control inputs, status outputs via defined ports and interfaces.

- The cryptographic module shall receive power via its defined power interface.

- The cryptographic module shall not support a maintenance interface or bypass capability.

- The cryptographic module shall not support the output of any cryptographic keys or CSPs in any form.

- During error states, the cryptographic module shall: enforce the inhibition of all data outputs, cease to provide any cryptographic or otherwise security relevant services, and provide non-security relevant error status.

- The cryptographic module shall support Identity-based authentication.

- The cryptographic module shall provide a hard, opaque, tamper evident enclosure.

- The cryptographic module shall enforce a non-modifiable operational environment.

- The cryptographic module shall protect all critical security parameters from unauthorized disclosure, modification, and substitution.

- The cryptographic module shall provide a non-Approved non-deterministic hardware random number generator strictly for the purposes of seeding the Approved deterministic random bit generator.

- The cryptographic module shall not support manual key entry or any other type of key entry/output.

- The cryptographic module shall support zeroization to destroy all critical security parameters.

- The cryptographic module shall conform to applicable EMI/EMC requirements.

- The cryptographic module shall perform all required self-tests:
 - Power-up Self-tests
 - SHA-256 KAT
 - SP800-90 HASH DRBG KAT
 - AES-XTS Encrypt KAT
 - AES-XTS Decrypt KAT
 - Firmware integrity test (16-bit EDC)
 - Conditional Self-tests
 - Continuous RNG test on Approved SP800-90 HASH DRBG
 - Continuous RNG test on non-Approved NDRNG
 - Firmware load test: N/A
 - Manual key entry test: N/A
 - Pairwise consistency test: N/A
 - Bypass test: N/A
12. Mitigation of Other Attacks Policy

The module is not designed to mitigate any specific attacks outside the scope of FIPS 140-2.

<table>
<thead>
<tr>
<th>Other Attacks</th>
<th>Mitigation Mechanism</th>
<th>Specific Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Table 8 – Mitigation of Other Attacks

13. Acronyms

- AES: Advanced Encryption Standard
- CMVP: Cryptographic Module Validation Program
- CSE: Communications Security Establishment
- CSP: Critical Security Parameters
- DRBG: Deterministic Random Bit Generator
- EDC: Error Detection Code
- EMI/EMC: Electromagnetic Interference/Electromagnetic Compatibility
- FIPS: Federal Information Processing Standards
- KAT: Known Answer Test
- LED: Light Emitting Diode
- NIST: National Institute of Standards and Technology
- NDRNG: Non-Deterministic Random Number Generator
- N/A: Not Applicable
- PIN: Personal Identification Numbers
- RNG: Random Number Generator
- SATA: Serial Advanced Technology Attachment
- SHA: Secure Hashing Algorithm
- USB: Universal Serial Bus
- XTS: XEX Tweakable Block Cipher with Ciphertext Stealing