Security Policy

No: 010-105847-01 Rev: 2

Title: Christie F-IMB Security Policy

Product(s): Christie F-IMB 4K Integrated Media Block (IMB)

Prepared by: Kevin Draper

Prep’d Date: 02/02/2015

Last Updated: 12/18/2015
Detailed Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description of Changes</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>First Revision</td>
<td>08/26/2015</td>
</tr>
<tr>
<td>2</td>
<td>Initial Public Release</td>
<td>12/15/2015</td>
</tr>
</tbody>
</table>

This document may only be reproduced in its entirety without revision including this statement.

Copyright ©2015 Christie Digital Systems Canada Inc.
Table of Contents

1. SCOPE .. 5
 1.1 REFERENCE DOCUMENTS ... 5

2. PRODUCT OVERVIEW ... 5
 2.1 VALIDATED MODULE VERSIONS ... 5

3. SECURITY LEVELS .. 6

4. MODES OF OPERATION .. 7

5. CRYPTOGRAPHIC BOUNDARY .. 7

6. BLOCK DIAGRAM ... 10

7. APPROVED ALGORITHMS ... 11

8. NON-APPROVED ALGORITHMS IN FIPS MODE .. 11

9. NON-APPROVED ALGORITHMS ... 12

10. PORTS AND INTERFACES ... 13

11. AUTHENTICATION .. 13

12. ROLES AND SERVICES .. 15
 12.1 CRYPTO OFFICER SERVICES .. 15
 12.2 USER SERVICES ... 16
 12.3 PROJECTOR SERVICES .. 17
 12.4 UNAUTHENTICATED SERVICES .. 17
 12.5 NON-APPROVED SERVICES ... 17

13. CRITICAL SECURITY PARAMETERS & PUBLIC KEYS ... 19
 13.1 CRITICAL SECURITY PARAMETERS (CSPs) ... 19
 13.2 PUBLIC KEYS ... 20

14. PHYSICAL SECURITY .. 21

15. OPERATIONAL ENVIRONMENT .. 21

16. SELF-TESTS .. 23

17. MITIGATION OF OTHER ATTACKS .. 23

18. SECURITY RULES ... 24

19. ACRONYMS .. 25

20. APPENDIX A: CRITICAL SECURITY PARAMETERS .. 26

21. APPENDIX B: PUBLIC KEYS ... 33
Table of Figures

Figure 1 Front view of Christie F-IMB .. 7
Figure 2 Top View of Christie F-IMB .. 8
Figure 3 Bottom View of Christie F-IMB ... 9
Figure 4 Module Block Diagram ... 10

List of Tables

Table 1 Reference Documents .. 5
Table 2 Validated module versions ... 5
Table 3 FIPS 140-2 Security Levels .. 6
Table 4 Ports and Interfaces .. 13
Table 5 Roles and Required Identification and Authentication 13
Table 6 Strength of Authentication Mechanism ... 14
Table 7 Crypto Officer Services ... 16
Table 8 User Services ... 16
Table 9 Projector Services .. 17
Table 10 Unauthenticated Services ... 17
Table 11 Non-Approved Services ... 17
Table 12 Critical Security Parameters .. 19
Table 13 Public Keys .. 20
Table 14 Inspection/Testing of Physical Security Mechanisms 21
Table 15 Mitigation of Other Attacks .. 23
1. SCOPE

This document is the Cryptographic Module Security Policy for the Christie F-IMB 4K Integrated Media Block (IMB) (also referred to herein as the Christie F-IMB, the cryptographic module, or simply the module). This policy is a specification of the security rules under which the Christie F-IMB operates and meets the requirements of FIPS 140-2 Level 2.

1.1 REFERENCE DOCUMENTS

<table>
<thead>
<tr>
<th>Document No.</th>
<th>Description</th>
</tr>
</thead>
</table>

Table 1 Reference Documents

2. PRODUCT OVERVIEW

The Christie F-IMB is a multi-chip embedded cryptographic module. It is a DCI-compliant integrated media block solution to enable the playback of the video, audio and timed text essence on a Christie “Fusion” Series 3 digital cinema projector (2K or 4K projector). The F-IMB enables playback of encrypted cinema content packaged as an industry standard Digital Cinema Package (DCP). The F-IMB supports playback of digital cinema content from a network attached storage (NAS) device.

2.1 VALIDATED MODULE VERSIONS

The validated module consists of the following:

<table>
<thead>
<tr>
<th>Hardware version</th>
<th>Firmware version</th>
</tr>
</thead>
<tbody>
<tr>
<td>000-105081-01</td>
<td>1.6.0-4217</td>
</tr>
</tbody>
</table>

Table 2 Validated module versions
3. SECURITY LEVELS

The IMB is tested to meet the FIPS security requirements shown in Table 3.

<table>
<thead>
<tr>
<th>FIPS 140-2 Security Requirements</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cryptographic Module Specification</td>
<td>2</td>
</tr>
<tr>
<td>2. Cryptographic Module Ports and Interfaces</td>
<td>2</td>
</tr>
<tr>
<td>3. Roles, Services and Authentication</td>
<td>3</td>
</tr>
<tr>
<td>4. Finite State Model</td>
<td>2</td>
</tr>
<tr>
<td>5. Physical Security</td>
<td>3</td>
</tr>
<tr>
<td>6. Operational Environment</td>
<td>N/A</td>
</tr>
<tr>
<td>7. Cryptographic Key Management</td>
<td>2</td>
</tr>
<tr>
<td>8. EMI/EMC</td>
<td>2</td>
</tr>
<tr>
<td>9. Self-Tests</td>
<td>2</td>
</tr>
<tr>
<td>10. Design Assurance</td>
<td>3</td>
</tr>
<tr>
<td>11. Mitigation of Other Attacks</td>
<td>N/A</td>
</tr>
<tr>
<td>FIPS Overall Level</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 3 FIPS 140-2 Security Levels
4. MODES OF OPERATION

The Christie F-IMB provides a FIPS Approved mode of operation and a non-Approved mode of operation.

To determine that the module is running in a FIPS Approved mode of operation, the operator shall verify the FIPS LED status:

- Orange – module is running power-up self-tests.
- Green – module has successfully performed self-tests and is running in FIPS mode.
- Red – module has entered an error state; all cryptographic operations are inhibited.

The non-Approved mode of operation uses the TI ECDH algorithm via the “Projector Status” Service. TI ECDH is strictly disallowed in the FIPS Approved mode of operation. Use of the “Projector Status” Service Places the module in the non-Approved mode of operation. Upon completion of the “Projector Status” Service, the module automatically transitions back into the FIPS Approved mode of operation.

5. CRYPTOGRAPHIC BOUNDARY

The illustrations below indicate the cryptographic boundary and the physical ports defined on the boundary.

The cryptographic boundary is the outer physical perimeter of the module’s PCB board; the effective security boundary is the physical perimeter of the module’s metal Security Enclosure.

Everything outside the metal Security Enclosure is excluded from FIPS 140-2 Requirements. Unlabelled connectors are not interfaces on the cryptographic boundary.

![Front view of Christie F-IMB](image)

Figure 1 Front view of Christie F-IMB
Figure 2 Top View of Christie F-IMB

*Note: All components which lie outside the security enclosure are not security relevant
* Note: All components which lie outside the security enclosure are not security relevant

Figure 3 Bottom View of Christie F-IMB
6. BLOCK DIAGRAM

Figure 4 Module Block Diagram
7. APPROVED ALGORITHMS

The cryptographic module supports the following Approved algorithms:

- Symmetric Key Encryption/Decryption
 - Advanced Encryption Standard (AES) – Cert #2043 [CBC Mode]
 - Advanced Encryption Standard (AES) – Cert #2042 [CBC/ECB Mode]
- Asymmetric Key Signature Generation & Verification
 - RSA (2048 bits) – Cert #1062
- Secure Hash Standard (SHS)
 - SHA-1 – Cert #1789
 - SHA-1 – Cert #1788
 - SHA-256 – Cert #1788
- Random Number Generators (DRNG)
 - DRNG – ANSI X9.31 – Cert #1066, 1230
 - DRNG - FIPS 186-2 – Cert #1066
- Message Authentication
 - HMAC-SHA1 – Keyed-Hash Message Authentication Code (128-bit key) – Cert #1242
 - HMAC-SHA1 – Keyed-Hash Message Authentication Code (160-bit key) – Cert #1241
- Key Derivation
 - KDF - SP 800-135 - Cert #97

\[\text{Note: TLS v1.1 is latent functionality and not directly exposed to any service provided by the module}\]

The following protocols have not been reviewed or tested by the CAVP and CMVP:

- TLS v1.0
- TLS v1.1 [Note: TLS v1.1 is latent functionality and not directly exposed to any service provided by the module]

8. NON-APPROVED ALGORITHMS IN FIPS MODE

The cryptographic module supports the following non-Approved but allowed algorithms in the Approved mode of operation:

- NDRNG
- MD5 (as used in TLS)
• RSA Key unwrapping of KDMs allowed as a commercially available key establishment technique (key wrapping; key establishment methodology provides 112 bit of encryption strength)

9. NON-APPROVED ALGORITHMS

The cryptographic module supports the following non-Approved algorithm in the non-Approved mode of operation:

• TI ECDH – considered as non-security relevant data obfuscation (plaintext) and only used to interoperate with legacy equipment
10. PORTS AND INTERFACES

The following table maps the logical interfaces to the physical ports:

<table>
<thead>
<tr>
<th>Logical Interface</th>
<th>Physical Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Input</td>
<td>Ethernet, Audio, LVDS Video Port (latent – reserved for future use)</td>
</tr>
<tr>
<td>Data Output</td>
<td>Ethernet, Audio, Aurora Video Port</td>
</tr>
<tr>
<td>Control Input</td>
<td>Ethernet, Projector I/O, PCIE, LPC (latent – reserved for future use), Reset, Power Good</td>
</tr>
<tr>
<td>Status Output</td>
<td>Ethernet, Projector I/O, PCIE, LPC (latent – reserved for future use), LEDs</td>
</tr>
<tr>
<td>Power</td>
<td>Power</td>
</tr>
</tbody>
</table>

Table 4 Ports and Interfaces

11. AUTHENTICATION

The Christie F-IMB shall support the following distinct operator roles: Crypto Officer, User and Projector. The Christie F-IMB does not support a Maintenance role. The cryptographic module shall enforce the separation of roles using identity-based operator identification.

<table>
<thead>
<tr>
<th>Role</th>
<th>Type of Authentication</th>
<th>Authentication Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crypto Officer</td>
<td>Identity-based operator authentication</td>
<td>RSA Digital Signature Verification</td>
</tr>
<tr>
<td>User</td>
<td>Identity-based operator authentication</td>
<td>ID and Password</td>
</tr>
<tr>
<td>Projector</td>
<td>Identity-based operator authentication</td>
<td>RSA Digital Signature Verification</td>
</tr>
</tbody>
</table>

Table 5 Roles and Required Identification and Authentication
Authentication Mechanism	Strength of Mechanism
RSA Digital Signature Verification | The authentication is based on RSA 2048 which provides an equivalent encryption strength of 112 bits. The probability that a random attempt will succeed or a false acceptance will occur is $1/2^{112}$ which is less than $1/1,000,000$.
There is a 1 second retry delay after each attempt which limits the number of attempts that can be launched per minute. The probability that a random attempt will successfully authenticate to the module within one minute is $60/2^{112}$ which is less than $1/100,000$.

ID and Password Verification | The module accepts 63 possible characters and a minimum 6 characters for an authentication secret. The probability that a random attempt will succeed or a false acceptance will occur is $1/(63^6)$ which is less than $1/100,000,000$.
There is a 1 second retry delay after each attempt which limits the number of attempts that can be launched per minute. The probability that a random attempt will successfully authenticate to the module within one minute is $60/(63^6)$ which is less than $1/100,000$.

Table 6 Strength of Authentication Mechanism
12. ROLES AND SERVICES

12.1 CRYPTO OFFICER SERVICES

Table 7 summarizes the services that are only available to the Crypto Officer role.

<table>
<thead>
<tr>
<th>Services</th>
<th>Description</th>
<th>CSP(s) and Key(s)</th>
<th>Type(s) of Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upgrade</td>
<td>Update the firmware via RSA signature verification</td>
<td>Christie Root CA Key, Certificate Chain, Christie Firmware Update Key</td>
<td>Read</td>
</tr>
<tr>
<td>Zeroization</td>
<td>Zeroizes all sensitive data including plaintext CSPs</td>
<td>AES Master Key, Device Public Key (SM Key), Device Public Key (Log Key), Content Description Keys, Content Integrity Keys (MIC key), TLS Pre-master secret, TLS Master Secret, TLS PRF Internal State, TLS AES Session Key, TLS HMAC Session Key, DRNG Seed (dt, v) and Seed Key (k), DRNG Internal State (X9.31), DRNG Seed Key (xKey), DRNG Internal State (FIPS 186-2), Marriage Password</td>
<td>Write</td>
</tr>
<tr>
<td>System Management</td>
<td>System Management functions for the module</td>
<td>TLS Pre-master secret, TLS Master Secret, TLS PRF Internal State, TLS AES Session Key, TLS HMAC Session Key, Marriage Password</td>
<td>Write</td>
</tr>
<tr>
<td>Crypto Officer</td>
<td>Authenticate Crypto Officer</td>
<td>TLS Pre-master secret, SMS Public Key</td>
<td>Read, Write</td>
</tr>
</tbody>
</table>

12.2 USER SERVICES

Table 8 summarizes the services that are only available to the User role.

<table>
<thead>
<tr>
<th>Services</th>
<th>Description</th>
<th>CSP(s) and Key(s)</th>
<th>Type(s) of Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suite Management</td>
<td>Initiate, monitor and manage projector suite</td>
<td>Marriage Password</td>
<td>Read, Write</td>
</tr>
</tbody>
</table>

Table 8 User Services
12.3 PROJECTOR SERVICES

Table 9 summarizes the services that are only available to the projector role.

<table>
<thead>
<tr>
<th>Services</th>
<th>Description</th>
<th>CSP(s) and Key(s)</th>
<th>Type(s) of Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marriage Verification</td>
<td>Verify projector marriage</td>
<td>Projector Public Key</td>
<td>Read</td>
</tr>
</tbody>
</table>

Table 9 Projector Services

12.4 UNAUTHENTICATED SERVICES

Table 10 summarizes the unauthenticated services that are available.

<table>
<thead>
<tr>
<th>Services</th>
<th>Description</th>
<th>CSP(s) and Key(s)</th>
<th>Type(s) of Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power On Self-Tests</td>
<td>Self-tests performed at Power On</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Status</td>
<td>Status Output</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 10 Unauthenticated Services

12.5 NON-APPROVED SERVICES

The following services are supported in the non-Approved mode of operation and can be invoked by any operator (unauthenticated):

<table>
<thead>
<tr>
<th>Services</th>
<th>Description</th>
<th>CSP(s) and Key(s)</th>
<th>Type(s) of Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Projector Status</td>
<td>Monitor Projector status</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 11 Non-Approved Services

* Note that the unauthenticated service “Projector Status” is accessible by connecting to the cryptographic module through TI ECDH in the non-Approved mode of operation, the use of which is considered non-security relevant data obfuscation from FIPS 140-2 perspective as related to this cryptographic module; this does not provide any security relevant functions and is not used to protect sensitive unclassified data. The I/O therein is obfuscated to support interoperability with existing legacy equipment and is only used to set and retrieve non-security relevant items. **Note that the Projector Status service is considered to be plaintext with respect to FIPS 140-2, and does not use the Approved security functions, disclose, modify, or substitute CSPs or otherwise affect the security of the module.**
13. CRITICAL SECURITY PARAMETERS & PUBLIC KEYS

13.1 CRITICAL SECURITY PARAMETERS (CSPS)

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AES Master Key</td>
<td>AES 128 bits - used for key management.</td>
</tr>
<tr>
<td>2.</td>
<td>Device Private Key (SM Key)</td>
<td>RSA 2048 – RSA private key that device uses to prove its identity and facilitate secure Transport Layer Security (TLS) communications, and for key transport.</td>
</tr>
<tr>
<td>3.</td>
<td>Device Private Key (Log Key)</td>
<td>RSA 2048 - RSA private key used to sign log data.</td>
</tr>
<tr>
<td>4.</td>
<td>Content Decryption Keys</td>
<td>AES 128 CBC mode - AES keys that protect encrypted content.</td>
</tr>
<tr>
<td>5.</td>
<td>Content Integrity Keys (MIC key)</td>
<td>HMAC-SHA-1 (128-bit key) – content integrity key</td>
</tr>
<tr>
<td>6.</td>
<td>TLS Pre-Master Secret</td>
<td>Session specific TLS secret</td>
</tr>
<tr>
<td>7.</td>
<td>TLS Master Secret</td>
<td>Session specific TLS secret</td>
</tr>
<tr>
<td>8.</td>
<td>TLS PRF Internal State</td>
<td>Session specific TLS secret</td>
</tr>
<tr>
<td>9.</td>
<td>TLS AES Session Key</td>
<td>AES 128 CBC mode - AES encryption/decryption of TLS session data</td>
</tr>
<tr>
<td>10.</td>
<td>TLS HMAC Session Key</td>
<td>HMAC-SHA-1 (160-bit key) - HMAC integrity of TLS session data</td>
</tr>
<tr>
<td>11.</td>
<td>DRNG Seed (dt, v) and Seed Key (k)</td>
<td>X9.31 DRNG - seeding inputs in the Approved DRNG</td>
</tr>
<tr>
<td>12.</td>
<td>DRNG Internal State (ANSI X9.31)</td>
<td>X9.31 DRNG - intermediate state of the DRNG</td>
</tr>
<tr>
<td>13.</td>
<td>DRNG Seed Key (xKey)</td>
<td>FIPS 186-2 DRNG - seeding inputs in the Approved DRNG</td>
</tr>
<tr>
<td>14.</td>
<td>DRNG Internal State (FIPS 186-2)</td>
<td>FIPS 186-2 DRNG - intermediate state of the DRNG</td>
</tr>
<tr>
<td>15.</td>
<td>Marriage Password</td>
<td>User role authentication data; 6-32 characters password</td>
</tr>
</tbody>
</table>

Table 12 Critical Security Parameters
13.2 PUBLIC KEYS

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Christie Root CA Key</td>
<td>RSA 2048 – Christie Root CA key</td>
</tr>
<tr>
<td>2.</td>
<td>Certificate Chain</td>
<td>RSA 2048 – Christie Certificate Chain</td>
</tr>
<tr>
<td>3.</td>
<td>Christie Firmware Update Key</td>
<td>RSA 2048 – Christie firmware verification key</td>
</tr>
<tr>
<td>4.</td>
<td>Device Public Key (SM Key)</td>
<td>RSA 2048 - RSA public key that device uses to prove its identity and facilitate secure Transport Layer Security (TLS) communications, and for key transport.</td>
</tr>
<tr>
<td>5.</td>
<td>Device Public Key (Log Key)</td>
<td>RSA 2048 - RSA public key used to verify log signatures.</td>
</tr>
<tr>
<td>6.</td>
<td>SMS Public Key</td>
<td>RSA 2048 – TLS Client Public Key</td>
</tr>
<tr>
<td>7.</td>
<td>Projector Public Key</td>
<td>RSA 2048 – Identity of the projector</td>
</tr>
</tbody>
</table>

Table 13 Public Keys
14. PHYSICAL SECURITY

The Christie F-IMB is a multi-chip embedded cryptographic module which is composed of production-grade components.

The physical security mechanisms of the module includes a hard, opaque and tamper-evident metal enclosure that is monitored 24/7 by battery backed-up tamper detection and response mechanisms. Any attempt to remove the metal enclosure results in instantaneous active zeroization of all plaintext CSPs. Zeroization also occurs if the battery becomes discharged. The module includes tamper-evident labels covering the screws that secure the metal enclosure to the module; said tamper-evident labels are installed as part of the manufacturing process and shall not be removed (i.e. maintenance role is not supported, maintenance interface is not supported).

The tamper-evident metal enclosure and the tamper-evident labels shall be periodically inspected to ensure the physical security of the module is maintained.

All components which lie outside the metal enclosure are not security relevant and are excluded from the FIPS 140-2 requirements. The excluded components are the non-security relevant data input and data output, passive components (capacitors, resistors, inductors), voltage regulators, traces and signals routed to these components, the PCB lying outside the metal enclosure, connectors and the faceplate.

<table>
<thead>
<tr>
<th>Physical Security Mechanism</th>
<th>Recommended Frequency of Inspection/Test</th>
<th>Inspection/Test Guidance Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal enclosure</td>
<td>Upon receipt of module and as often as feasible.</td>
<td>Visually inspect metal enclosure for scratches, gouges, deformation and other signs of visible signs of tamper.</td>
</tr>
<tr>
<td>Tamper Responsive Switches</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Tamper Evident Seals</td>
<td>Upon receipt of module and as often as feasible.</td>
<td>Visually inspect the tamper evident seals for scratches, gouges, deformation or other physical signs of tampering.</td>
</tr>
</tbody>
</table>

Table 14 Inspection/Testing of Physical Security Mechanisms

If any tampering of the module is observed or suspected, remove the module from service and return it to Christie Digital.

15. OPERATIONAL ENVIRONMENT

The Christie F-IMB operates in a limited operational environment that only allows the loading of trusted and validated firmware binary images through an authenticated service. Firmware binary images are signed by an RSA key which is part of the Christie certificate chain. The RSA signature verification algorithm has been validated (RSA Cert. #1062).
16. SELF-TESTS

The module performs the following self-tests:

- Power Up Self-Tests
 - Cryptographic algorithm tests:
 - ANSI X9.31 DRNG KAT
 - FIPS 186-2 DRNG KAT
 - AES 128 CBC Encrypt/Decrypt KAT
 - SHA-1 KAT
 - SHA-256 KAT
 - HMAC-SHA-1 KAT (using 160 bit HMAC key)
 - RSA 2048 Signature Generation / RSA 2048 Signature Verification KAT
 - SHA-1 KAT (executed for SHA (Cert. #1789))
 - AES128 CBC Decrypt KAT (executed for AES (Cert. #2043))
 - HMAC-SHA-1 KAT (using 160 bit HMAC key) (executed for HMAC (Cert. #1242))
 - SP 800-135 KDF KAT
 - Firmware Integrity Test - EDC that meets requirements of AS09.24
 - Critical Functions Tests:
 - RSA 2048 Encrypt/Decrypt KAT

- Conditional Self-Tests
 - Continuous Random Number Generator (RNG) tests:
 - ANSI X9.31 RNG
 - FIPS 186-2 RNG
 - NDRNG
 - Firmware Load Test (RSA signature verification – RSA 2048 with SHA-256)

17. MITIGATION OF OTHER ATTACKS

The cryptographic module does not mitigate any specific attacks beyond the scope of FIPS 140-2.

<table>
<thead>
<tr>
<th>Other Attacks</th>
<th>Mitigation Mechanism</th>
<th>Specific Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 15 Mitigation of Other Attacks
18. SECURITY RULES

The following specifies the security rules under which the cryptographic module shall operate:

- The module does not support a bypass capability or a maintenance interface.
- The module supports concurrent operators. However, the module does not support more than one operator per role. The operators may not switch roles without re-authenticating.
- The operator must re-authenticate on each power-up event.
- The module inhibits data output during an error state, zeroization, key generation and during the power-up self-tests.
- The module shall enforce identity-based authentication.
- The module does not provide feedback of authentication data.
- An error state may be cleared by power-cycling the module.
- The module provides logical separation between all the data input, control input, data output and status output interfaces.
- The module protects all CSPs from unauthenticated disclosure and unauthorized modification. The module protects all public keys from unauthorized modification and unauthorized substitution.
- The module does not support manual key entry. A manual key entry test is not implemented.
- The module does not support split-knowledge processes.
- The operator may perform on-demand power-on self-test by recycling power to the module.
- The status output does not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
19. ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>Advanced Encryption Standard</td>
</tr>
<tr>
<td>CSP</td>
<td>Critical Security Parameter</td>
</tr>
<tr>
<td>DAS</td>
<td>Direct Attached Storage</td>
</tr>
<tr>
<td>DCI</td>
<td>Digital Cinema Initiatives, LLC</td>
</tr>
<tr>
<td>DCP</td>
<td>Digital Cinema Package</td>
</tr>
<tr>
<td>DRNG</td>
<td>Deterministic Random Number Generator</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic Compatibility</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission</td>
</tr>
<tr>
<td>FIPS</td>
<td>Federal Information Processing Standards</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>HMAC</td>
<td>Hashed Message Authentication Code</td>
</tr>
<tr>
<td>IMB</td>
<td>Image Media Block</td>
</tr>
<tr>
<td>KAT</td>
<td>Known Answer Test</td>
</tr>
<tr>
<td>KDM</td>
<td>Key Delivery Message – as per SMPTE 430-1</td>
</tr>
<tr>
<td>MAC</td>
<td>Media Access Control</td>
</tr>
<tr>
<td>NAS</td>
<td>Network Attached Storage</td>
</tr>
<tr>
<td>RSA</td>
<td>Rivest-Shamir-Adleman</td>
</tr>
<tr>
<td>SHA</td>
<td>Secure Hash Algorithm</td>
</tr>
<tr>
<td>TI</td>
<td>Texas Instruments Incorporated</td>
</tr>
<tr>
<td>TI ECDH</td>
<td>Considered as non-security relevant data obfuscation (plaintext) and only used to interoperate with legacy equipment</td>
</tr>
<tr>
<td>TLS</td>
<td>Transport Layer Security</td>
</tr>
</tbody>
</table>
20. APPENDIX A: CRITICAL SECURITY PARAMETERS

The Module supports the following critical security parameters:

1. AES Master Key
 Description: used for re-encrypting KDM AES keys to be persisted in Flash.
 Type: AES 128
 Generation: Via Approved ANSI X9.31 DRNG; as per SP800-133 Section 7.1, key generation is performed as per the “Direct Generation” of Symmetric Keys which is an Approved key generation method.
 Storage: Security manager hardware; controlled zeroizeable RAM
 Establishment: N/A
 Entry: N/A
 Output: N/A
 Key-to-entity association: Bound to the process of internal key management, stored at a specific memory location, and via CRC-16.
 Zeroization: Built in function on security manager hardware zeroizes all internal memory on power-down and power-on tamper events. Controlled RAM will be zeroized on power-down and powered-on tamper events.

2. Device Private Key (SM Key)
 Description: RSA private key that device uses to prove its identity and facilitate secure Transport Layer Security (TLS) communications, and to decrypt the KDMs.
 Type: RSA 2048
 Generation: N/A - generated outside of the crypto boundary by Christie
 Storage: Stored in Flash, encrypted with AES Master Key.
 Establishment: N/A
 Entry: N/A
 Output: N/A
 Key-to-entity association: via memory location and CRC-16
 Zeroization: Built in function on security manager hardware zeroizes all internal memory on power-down and power-on tamper events.

3. Device Private Key (Log Key)
Description: RSA private key used to sign log data.
Type: RSA 2048
Generation: N/A - generated outside of the crypto boundary by Christie
Storage: Stored in Flash, encrypted with AES Master Key
Establishment: N/A
Entry: N/A
Output: N/A
Key-to-entity association: via memory location and CRC-16
Zeroization: Built in function on security manager hardware zeroizes all internal memory on power-down and power-on tamper events. Controlled RAM will be zeroized on power-down and powered-on tamper events.

4. Content Decryption Keys
Description: Key Delivery Message (KDM) AES keys that protect content.
Type: AES 128 CBC mode (using an IV as specified by SMPTE 429-6)
Generation: N/A
Storage: Stored in Flash, encrypted with AES Master Key.
Establishment: RSA wrapped outside of crypto boundary with Device Public Key and entered into the crypto boundary.
Entry: Entered in RSA wrapped format
Output: N/A
Key-to-entity association: via memory location
Zeroization: Controlled RAM, and Key Buffer in media decryptor on power-down and power-on tamper events.

5. Content Integrity Keys (MIC key)
Description: HMAC-SHA-1 keys that protect the integrity of compressed content (integrity pack check parameters)
Type: HMAC-SHA-1 (128-bit key)
Generation: Via Approved FIPS 186-2 DRNG; as per SP800-133 Section 7.1, key generation is performed as per the “Direct Generation” of Symmetric Keys which is an Approved key generation method.
Storage: N/A
Establishment: N/A
Entry: N/A
Output: N/A
Key-to-entity: via memory location
Zeroization: RAM and key buffer in media decryptor zeroized on power-down and power-on tamper events.

6. TLS Pre-Master Secret
 Description: input to TLS PRF
 Type: Session specific TLS secret
 Generation: N/A
 Storage: Plaintext in RAM
 Establishment: generated outside the cryptoboundary by the TLS client; entered into the crypto boundary
 RSA wrapped with Device Public Key.
 Entry: see Establishment
 Output: N/A
 Key-to-entity: via TLS session identifiers and port number
 Zeroization: Zeroized when TLS session is closed and via tamper.

7. TLS Master Secret
 Description: input to TLS PRF
 Type: Session specific TLS secret
 Generation: N/A
 Storage: RAM
 Establishment: TLS KDF as per SP800-135 Section 4.2.1 and 4.2.2; allowed method as per FIPS 140-2
 IG D.8 Scenario 4
 Entry: N/A
 Output: N/A
 Key-to-entity: via TLS session identifiers and port number
 Zeroization: Zeroized when TLS session is closed and via tamper.
8. TLS PRF Internal State
 Description: intermediate state variables of PRF
 Type: Session specific TLS secret
 Generation: N/A
 Storage: RAM
 Establishment: TLS KDF as per SP800-135 Section 4.2.1 and 4.2.2; allowed method as per FIPS 140-2 IG D.8 Scenario 4
 Entry: N/A
 Output: N/A
 Key-to-entity: via TLS session identifiers and port number
 Zeroization: Zeroized when TLS session is closed and via tamper.

9. TLS AES Session Key
 Description: AES encryption of TLS session data
 Type: AES 128
 Generation: N/A
 Storage: RAM
 Establishment: TLS KDF as per SP800-135 Section 4.2.1 and 4.2.2; allowed method as per FIPS 140-2 IG D.8 Scenario 4
 Entry: N/A
 Output: N/A
 Key-to-entity: via TLS session identifiers and port number
 Zeroization: Zeroized when TLS session is closed and via tamper.

10. TLS HMAC Session Key
 Description: HMAC integrity verification of TLS session data
 Type: HMAC-SHA-1 (160-bit key)
 Generation: N/A
 Storage: RAM
 Establishment: TLS KDF as per SP800-135 Section 4.2.1 and 4.2.2; allowed method as per FIPS 140-2 IG D.8 Scenario 4
Entry: N/A
Output: N/A
Key-to-entity: via TLS session identifiers and port number
Zeroization: Zeroized when TLS session is closed and via tamper.

11. DRNG Seed (dt, v) and Seed Key (k)
Description: seeding inputs in the Approved DRNG (X9.31)
Type: FIPS 186-2 DRNG
Generation: via NDRNG from security manager hardware
Storage: RAM
Establishment: N/A
Entry: N/A
Output: N/A
Key-to-entity: via data structure and pointer in memory
Zeroization: Memory location in RAM and security manager hardware zeroized via zeroize command and via tamper.

12. DRNG Internal State
Description: intermediate state of the DRNG (X9.31)
Type: X9.31 DRNG
Generation: inside crypto boundary via X9.31 DRNG
Storage: RAM
Establishment: N/A
Entry: N/A
Output: N/A
Key-to-entity: via data structure and pointer in memory
Zeroization: Memory location in RAM zeroized via zeroize command and via tamper.

13. DRNG Seed Key (xKey)
Description: seeding input in the Approved DRNG (FIPS 186-2)
Type: FIPS 186-2 DRNG
Generation: When used for MIC key generation, the xKey is created by padding the AES Content Decryption Keys.

Storage: RAM

Establishment: N/A

Entry: Seed Key is wrapped with Content Decryption Key (RSA 2048)

Output: N/A

Key-to-entity: via data structure and pointer in memory

Zeroization: Memory location in RAM zeroized via zeroize command and via tamper.

14. DRNG Internal State

Description: intermediate state of the DRNG (FIPS 186-2)

Type: FIPS 186-2 DRNG

Generation: inside crypto boundary via FIPS 186-2 DRNG

Storage: RAM

Establishment: N/A

Entry: N/A

Output: N/A

Key-to-entity: via data structure and pointer in memory

Zeroization: Memory location in RAM zeroized via zeroize command and via tamper.

15. Marriage Password

Description: User role authentication password.

Type: Authentication data; minimum 6 characters password, maximum 32 character password.

Generation: N/A

Storage: Stored in Flash, hashed with SHA-256; RAM

Establishment: N/A

Entry: Encrypted via TLS

Output: N/A

Key-to-entity: via memory location

Zeroization: RAM memory is zeroized via tamper. Also zeroized via Zeroization service.
21. APPENDIX B: PUBLIC KEYS

The Module supports the following public keys:

1. Christie Root CA Key

 Description: digitally signed and thus authorizes other public keys to be used by the module for a defined purpose
 Type: RSA 2048
 Generation: N/A - Installed into the module within the secure factory during manufacturing
 Storage: Stored in Flash in self-signed certificate; RAM
 Entry: N/A - Installed into the module within the secure factory during manufacturing
 Output: In X.509 certificate upon request
 Establishment: N/A
 Key-to-entity: via memory location and CRC-16

2. Certificate Chain

 Description: digitally verify public keys
 Type: RSA 2048
 Generation: N/A - Installed into the module within the secure factory during manufacturing
 Storage: Stored in Flash in certificate signed by Christie Root CA Key; RAM
 Establishment: N/A
 Entry: N/A - Installed into the module within the secure factory during manufacturing
 Output: In X.509 certificate upon request
 Key-to-entity: via memory location and CRC-16

3. Christie Firmware Update Key

 Description: Used to securely update the firmware via RSA signature verification via the Update service.
 Type: RSA 2048
 Generation: N/A - generated outside of the crypto boundary by Christie
 Storage: RAM
Establishment: N/A
Entry: Entered into the module via a certificate signed by the Certificate Chain
Output: In X.509 certificate upon request
Key-to-entity: via memory location and CRC

4. Device Public Key (SM Key)
Description: RSA public key that device uses to prove its identity
Type: RSA 2048
Generation: N/A - generated outside of the crypto boundary by Christie
Storage: Stored in Flash signed with Christie Certificate Chain; RAM
Establishment: N/A
Entry: N/A - Installed in the secure factory during manufacturing
Output: In X.509 certificate
Key-to-entity: via memory location and CRC-16

5. Device Public Key (Log Key)
Description: RSA public key that device uses to prove its identity
Type: RSA 2048
Generation: N/A - generated outside of the crypto boundary by Christie
Storage: Stored in Flash signed with Christie Certificate Chain; RAM
Establishment: N/A
Entry: N/A - Installed in the factory
Output: In X.509 certificate upon request
Key-to-entity: via memory location and CRC-16

6. SMS Public Key
Description: RSA 2048 - TLS Client Public Key
Type: RSA 2048
Generation: N/A - generated outside of the crypto boundary
7. Projector Public Key

Description: Identity of the projector
Type: RSA 2048
Generation: N/A - generated outside of the crypto boundary
Storage: Stored in Flash; RAM
Establishment: N/A
Entry: Entered into the module in X.509 certificate during marriage handshake with projector
Output: In X.509 certificate
Key-to-entity: via signature verification during marriage handshake