McAfee, Inc.
Network Security Platform Sensor
NS-9300 S

Non-Proprietary Security Policy
Version 1.4

April 8, 2016
TABLE OF CONTENTS

1 MODULE OVERVIEW ... 3

2 SECURITY LEVEL ... 5

3 MODES OF OPERATION ... 6
 3.1 FIPS APPROVED MODE OF OPERATION ... 6

4 PORTS AND INTERFACES .. 8

5 IDENTIFICATION AND AUTHENTICATION POLICY ... 11

6 ACCESS CONTROL POLICY .. 12
 6.1 ROLES AND SERVICES ... 12
 6.2 DEFINITION OF CRITICAL SECURITY PARAMETERS (CSPS) .. 13
 6.3 DEFINITION OF PUBLIC KEYS: .. 13
 6.4 DEFINITION OF CSPS MODES OF ACCESS .. 14

7 OPERATIONAL ENVIRONMENT ... 15

8 SECURITY RULES .. 16

9 PHYSICAL SECURITY POLICY ... 18
 9.1 PHYSICAL SECURITY MECHANISMS .. 18
 9.2 OPERATOR REQUIRED ACTIONS ... 18

10 MITIGATION OF OTHER ATTACKS POLICY .. 20
1 Module Overview

The Network Security Platform (NSP) Sensor NS-9300 S (HW P/N NS-9300 S, Versions 1.2 and 1.3; FW Version 8.1.17.16; FIPS Kit P/N IAC-FIPS-KT8) is a multi-chip standalone cryptographic module as defined by FIPS 140-2. HW Version 1.2 was updated to HW Version 1.3 due to replacement of a non-security relevant internal component that was end of life. The component does not affect physical security.

The NSP 9300 is an Intrusion Prevention System (IPS) and Intrusion Detection System (IDS) designed for network protection against zero-day, DoS/DDoS, encrypted and SYN Flood attacks, and real-time prevention of threats like spyware, malware, VoIP vulnerabilities, phishing, botnets, network worms, Trojans, and peer-to-peer applications.

The cryptographic boundary is the outer perimeter of the enclosure, including the removable power supplies and fan trays. (The power supplies and fan trays are excluded from FIPS 140-2 requirements, as they are not security relevant.) Optional network I/O modules are not included in the module boundary.

The McAfee NS-9300 product consists of the NS-9300 P cryptographic module physically connected with the NS-9300 S cryptographic module. This Security Policy describes the NS-9300 S only.

Figure 1 shows the module and its cryptographic boundary.

Figure 1 – Image of the Cryptographic Module
Figure 2 – Image of the Cryptographic Module with NS-9300 P
2 Security Level

The cryptographic module meets the overall requirements applicable to Level 2 security of FIPS 140-2. Table 1 specifies the levels met for specific FIPS 140-2 areas.

Table 1 - Module Security Level Specification

<table>
<thead>
<tr>
<th>Security Requirements Section</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Module Specification</td>
<td>2</td>
</tr>
<tr>
<td>Module Ports and Interfaces</td>
<td>2</td>
</tr>
<tr>
<td>Roles, Services and Authentication</td>
<td>2</td>
</tr>
<tr>
<td>Finite State Model</td>
<td>2</td>
</tr>
<tr>
<td>Physical Security</td>
<td>2</td>
</tr>
<tr>
<td>Operational Environment</td>
<td>N/A</td>
</tr>
<tr>
<td>Cryptographic Key Management</td>
<td>2</td>
</tr>
<tr>
<td>EMI/EMC</td>
<td>2</td>
</tr>
<tr>
<td>Self-Tests</td>
<td>2</td>
</tr>
<tr>
<td>Design Assurance</td>
<td>3</td>
</tr>
<tr>
<td>Mitigation of Other Attacks</td>
<td>N/A</td>
</tr>
</tbody>
</table>
3 Modes of Operation

3.1 FIPS Approved Mode of Operation

The module only supports a FIPS Approved mode of operation. An operator can obtain the FIPS mode indicator by executing the “show” or “status” CLI command, which returns the module’s firmware version, HW version, etc. The firmware and hardware versions must match the FIPS validated versions located on the CMVP website.

Approved Algorithms and Protocols

The module supports the following FIPS Approved algorithms:

- AES CBC and ECB mode with 128 & 256 bits for encryption and decryption (Cert. #3156)
- FIPS 186-4 RSA PSS with 2048 bit keys for key generation, signature generation with SHA-256 and SHA-512, and signature verification with SHA-1, SHA-256, and SHA-512 (Cert. #1600)
- SHA-1, SHA-256, and SHA-512 for hashing (Cert. #2612)
 (Note: SHA-1 validated for use in TLS and verification-purposes only.)
- HMAC SHA-1, SHA-256, and SHA-512 for message authentication (Cert. #1989)
 (Note: The minimum HMAC key size is 20 bytes.)
- Block Cipher (CTR) DRBG using AES 256 (Cert. #649)
- FIPS 186-4 XYSSL RSA PKCS #1 1.5 SigVer with 2048 bit keys using SHA-1 and SHA-256 for image verification (Cert. #1825)
- XYSSL SHA-1 and SHA-256 for hashing and for use with image verification (Cert. #2923)
- TLS v1.0/1.1 KDF for TLS session key derivation (CVL Cert. #409)
- SSH KDF for SSH session key derivation (CVL Cert. #599)

Allowed Algorithms and Protocols

The module supports the following FIPS allowed algorithms and protocols:

- NDRNG for seeding the Block Cipher (CTR) DRBG.
- Diffie-Hellman with 2048-bit keys for key agreement (key establishment methodology provides 112 bits of encryption strength)
- SSH v2 (used during Initialization Process with the NS-9300 P only) with the following algorithm tested cipher suites. The protocol algorithms have been tested by the CAVP (see certificate #s above) but the protocol implementation itself has not been reviewed or tested by the CAVP or CMVP.
 - Key Exchange methods (i.e., key establishment methods): Diffie-hellman-group14-SHAl
 (Note: This is restricted to RSA-2048)
 - Public Key methods (i.e., authentication methods):SSH-RSA
 (Note: This is restricted to RSA-2048)
 - Encryption methods: AES128-CBC, AES256-CBC
 - MAC methods: HMAC-SHA1, HMAC-SHA1-96, HMAC-256, HMAC-512
Non-Approved Algorithms and Protocols with No Security Claimed

The module supports the following non-Approved but allowed algorithms and protocols with no security claimed:

- **MD5** used to identify “fingerprint” of potential malware using Global Threat Information (GTI) database (used internal to the module only; no security claimed)

- The following algorithms are implemented independently from all other cryptographic code in the module and are used to analyze the network stream for malware and malicious network attacks in accordance with the functionality of the product. For the reasoning stated above, this functionality is allowed in the FIPS Approved mode of operation.
 - Decryption - SSLv2
 - Cipher suites:
 - SSL_CK_RC4_128_WITH_MD5
 - SSL_CK_RC4_128_EXPORT40_WITH_MD5
 - SSL_CK_DES_64_CBC_WITH_MD5
 - SSL_CK_DES_192_EDE3_CBC_WITH_MD5
 - Non-Approved algorithms (no security claimed): Triple-DES (non-compliant), HMAC (non-compliant), RC4, MD5, DES
 - Decryption - SSLv3/TLS
 - Cipher suites:
 - SSL/TLS_NULL_WITH_NULL_NULL
 - SSL/TLS_RSA_WITH_NULL_MD5
 - SSL/TLS_RSA_WITH_NULL_SHA
 - SSL/TLS_RSA_WITH_RC4_128_MD5
 - SSL/TLS_RSA_WITH_RC4_128_SHA
 - SSL/TLS_RSA_WITH_DES_CBC_SHA
 - SSL/TLS_RSA_WITH_3DES_EDE_CBC_SHA
 - SSL/TLS_RSA_WITH_AES_128_CBC_SHA
 - SSL/TLS_RSA_WITH_AES_256_CBC_SHA
 - Non-Approved algorithms (no security claimed): AES (non-compliant), Triple-DES (non-compliant), HMAC (non-compliant), RC4, MD5, DES
4 Ports and Interfaces

Table 2 provides the cryptographic module’s ports and interfaces.

<table>
<thead>
<tr>
<th>Fixed Ports</th>
<th>Number of ports</th>
<th>Input/Output Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-Gig QSFP+ Monitoring Ports</td>
<td>2</td>
<td>Data Input/Output</td>
</tr>
<tr>
<td>1-GigE Monitoring Ports</td>
<td>8</td>
<td>Data Input/Output</td>
</tr>
<tr>
<td>Network I/O slots</td>
<td>2</td>
<td>Data Input/Output</td>
</tr>
<tr>
<td>GigE Management Port</td>
<td>1</td>
<td>Control Input, Data Output, Status Output</td>
</tr>
<tr>
<td>GigE Response Port</td>
<td>1</td>
<td>Data Output</td>
</tr>
<tr>
<td>GigE Aux Port</td>
<td>1</td>
<td>Data Output</td>
</tr>
<tr>
<td>RS232 Console</td>
<td>1</td>
<td>Control Input, Status Output</td>
</tr>
<tr>
<td>USB Ports</td>
<td>2</td>
<td>Data Input</td>
</tr>
<tr>
<td>Power Ports</td>
<td>2</td>
<td>Power Input</td>
</tr>
<tr>
<td>LEDs</td>
<td>Many</td>
<td>Status Output</td>
</tr>
</tbody>
</table>

Notes:

1. The Two fixed QSFP+ 40-GigE ports are used to connect to the peer NS-9300 S unit.
2. The GigE Management Port is connected directly to the peer NS-9300 P unit’s GigE Response Port.
3. The Network IO Slots each accept interface modules which provide additional monitoring ports. The interface modules are not included in the cryptographic boundary.

Figure 3 - Front Panels of NS-9300 P (top) and S (bottom)
Table 3 – NS-9300 P & S Front Panel Ports and Connectors

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Console ports on the NS-9300 P and NS-9300 S Sensors (2)</td>
</tr>
<tr>
<td>2</td>
<td>QSFP+ 40 Gigabit Ethernet Interconnect ports (4). G0/1 and G0/2 on NS-9300 P Sensor and G4/1 and G4/2 on NS-9300 S Sensor.</td>
</tr>
<tr>
<td>3</td>
<td>Two slots for Network I/O modules (4 slots between the 2 Cryptographic Modules) The Network I/O modules are outside of the cryptographic boundary. There is no security relevance to using the following Network I/O modules in any combination.</td>
</tr>
<tr>
<td></td>
<td>- QSFP+ 40 Gigabit Ethernet ports (4)</td>
</tr>
<tr>
<td></td>
<td>- QSFP+ 40 Gigabit Ethernet ports (2)</td>
</tr>
<tr>
<td></td>
<td>- SFP/SFP+ 1/10 Gigabit Ethernet Monitoring ports (8)</td>
</tr>
<tr>
<td></td>
<td>- RJ-45 10/100/1000 Mbps Ethernet Monitoring ports (6)</td>
</tr>
<tr>
<td>4</td>
<td>RJ-45 10/100/1000 Mbps Ethernet Monitoring ports (16)</td>
</tr>
</tbody>
</table>

Figure 4 - Front panel with no Network I/O modules or cover plate

![Figure 4 - Front panel with no Network I/O modules or cover plate](image)

Figure 5 - Rear Panels of NS-9300 P (top) and S (bottom)

![Figure 5 - Rear Panels of NS-9300 P (top) and S (bottom)](image)
Table 4 – NS-9300 P & S Rear Panel Ports and Connectors

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>USB ports (2)</td>
</tr>
<tr>
<td>2</td>
<td>Power supply A (Pwr A)</td>
</tr>
<tr>
<td>3</td>
<td>Power supply B (Pwr B)</td>
</tr>
<tr>
<td>4</td>
<td>RJ-45 100/1000/10000 Management port (Mgmt) (1). Mgmt on NS-9300 S Sensor is used as an interconnect port.</td>
</tr>
<tr>
<td>5</td>
<td>RJ-45 100/1000/10000 Response port (R1) (1). R1 on NS-9300 P Sensor is used as an interconnect port.</td>
</tr>
<tr>
<td>6</td>
<td>RJ-45 Auxiliary port (Aux) (1)</td>
</tr>
</tbody>
</table>

Figure 6 - Rear Panel with Power Supplies Removed
5 Identification and Authentication Policy

The cryptographic module shall support two distinct operator roles (Admin and NS-9300 P). The cryptographic module shall enforce the separation of roles using role-based operator authentication. Table 5 lists the supported operator roles along with their required identification and authentication techniques. Table 6 outlines each authentication mechanism and the associated strengths.

Table 5 - Roles and Required Identification and Authentication

<table>
<thead>
<tr>
<th>Role</th>
<th>Type of Authentication</th>
<th>Authentication Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin (User)</td>
<td>Role-based operator authentication</td>
<td>Username and Password</td>
</tr>
<tr>
<td>NS-9300 P (Cryptographic Officer)</td>
<td>Role-based operator authentication</td>
<td>Shared Secret</td>
</tr>
</tbody>
</table>

Table 6 – Strengths of Authentication Mechanisms

<table>
<thead>
<tr>
<th>Authentication Mechanism (Admin)</th>
<th>Strength of Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username and Password</td>
<td>The password is an alphanumeric string of a minimum of fifteen (15) characters chosen from the set of ninety-three (93) printable and human-readable characters. Whitespace and “?” are not allowed. New passwords are required to include 2 uppercase characters, 2 lowercase characters, 2 numeric characters, and 2 special characters. The probability that a random attempt will succeed or a false acceptance will occur is $1/((10^2)(26^4)(31^2)(93^7))$, which is less than 1/1,000,000. After three (3) consecutive failed authentication attempts, the module will enforce a one (1) minute delay prior to allowing retry. Additionally, the module only supports 5 concurrent SSH sessions. Thus, the probability of successfully authenticating to the module within one minute through random attempts is $(35)/((10^2)(26^4)(31^2)*(93^7))$, which is less than 1/100,000.</td>
</tr>
</tbody>
</table>
The Shared Secret is an alphanumeric string of a minimum of six (6) characters chosen from the set of ninety-three (93) printable and human-readable characters. Whitespace and “?” are not allowed.

The probability that a random attempt will succeed or a false acceptance will occur is $1/93^6$ which is less than $1/1,000,000$.

After setting the Shared Secret, the module requires a reboot in order to authenticate. The reboot takes longer than one minute before authentication is achieved, and if authentication fails, the module automatically reboots a second time. The probability of successfully authenticating to the module within one minute through random attempts is $1/93^6$ which is less than $1/100,000$.

<table>
<thead>
<tr>
<th>Authentication Mechanism (NS-9300 P)</th>
<th>Strength of Mechanism</th>
</tr>
</thead>
</table>
| **The Shared Secret** is an alphanumeric string of a minimum of six (6) characters chosen from the set of ninety-three (93) printable and human-readable characters. Whitespace and “?” are not allowed.**
The probability that a random attempt will succeed or a false acceptance will occur is $1/93^6$ which is less than $1/1,000,000$. After setting the Shared Secret, the module requires a reboot in order to authenticate. The reboot takes longer than one minute before authentication is achieved, and if authentication fails, the module automatically reboots a second time. The probability of successfully authenticating to the module within one minute through random attempts is $1/93^6$ which is less than $1/100,000$.** |

6 Access Control Policy

6.1 Roles and Services

Table 7 lists each operator role and the services authorized for each role. Following Table 7, all unauthenticated services are listed.

<table>
<thead>
<tr>
<th>Role</th>
<th>Authorized Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin</td>
<td>NS-9300 P</td>
</tr>
<tr>
<td>X</td>
<td>Show Status: Provides the status of the module, usage statistics, log data, and alerts.</td>
</tr>
<tr>
<td>X</td>
<td>Network Configuration: Establish network settings for the module or set them back to default values.</td>
</tr>
<tr>
<td>X</td>
<td>Administrative Configuration: Other various services provided for admin, private, and support levels.</td>
</tr>
<tr>
<td>X</td>
<td>Firmware Update: Install an external firmware image through SCP or USB.</td>
</tr>
<tr>
<td>X</td>
<td>Change Passwords: Allows the Admin to change their associated passwords and the NS-9300 Password.</td>
</tr>
<tr>
<td>X</td>
<td>Zeroize: Destroys all plaintext secrets contained within the module.</td>
</tr>
<tr>
<td>X</td>
<td>Intrusion Detection/Prevention Management: Management of intrusion detection/prevention policies and configurations.</td>
</tr>
</tbody>
</table>
The cryptographic module supports the following unauthenticated services:

- **Self-Tests**: This service executes the suite of self-tests required by FIPS 140-2.

- **Intrusion Prevention Services**: Offers protection against zero-day, DoS/DDoS, encrypted and SYN Flood attacks, and real-time prevention of threats like spyware, malware, VoIP vulnerabilities, phishing, botnets, network worms, Trojans, and peer-to-peer applications.
 - *Note*: This service utilizes the non-Approved algorithms listed above with no security claims. This includes an MD5 hash to identify the “fingerprint” of malware and decryption of SSL-encrypted streams for the purpose of detecting malware and network attacks. See the list above.

- **Zeroize**: Destroys all plaintext secrets contained within the module. The “NetBoot” or rescue process is used.

6.2 Definition of Critical Security Parameters (CSPs)

The following are CSPs contained in the module:

- **Administrator Passwords**: Password used for authentication of the “admin” role through console. Extended services are given to the “admin” role by using the “support” or “private” passwords.

- **NS-9300 Password**: Password used for authentication of NS-9300 P.

- **SSH Host Private Keys**: RSA 2048-bit key used for authentication of sensor to remote terminal for CLI access.

- **SSH Session Keys**: Set of ephemeral Diffie-Hellman, AES, and HMAC keys created for each SSH session.

- **Seed for RNG**: Seed created by NDRNG and used to seed the Block Cipher (CTR) DRBG.

- **DRBG Internal State**: V and K used by the DRBG to generate pseudo-random numbers

- **Server Private Keys (for SSL network stream analysis)**: Set of up to 64 Private Keys of servers within the environment protected by the IPS Services. Used to decrypt and analyze incoming network traffic.

6.3 Definition of Public Keys:

The following public key is contained in the module:

- **McAfee FW Verification Key**: RSA 2048 bit key used to authenticate firmware images loaded into the module.

- **SSH Host Public Key**: RSA 2048-bit key used to authenticate the sensor to the remote client during SSH.

- **SSH Remote Client Public Key**: RSA 2048-bit key used to authenticate the remote client to the sensor during SSH.
6.4 Definition of CSPs Modes of Access

Table 8 defines the relationship between access to keys/CSPs and the different module services. The types of access used in the table are Read (R), Write (W), and Zeroize (Z). Z* is used to denote that only the plaintext portion of the CSP is zeroized (i.e., the CSP is also stored using an Approved algorithm, but that portion is not zeroized).

Table 8 – Key/CSP Access Rights within Services

<table>
<thead>
<tr>
<th></th>
<th>Administrator Passwords</th>
<th>NS-9300 Password</th>
<th>SSH Host Private Keys</th>
<th>SSH Session Keys</th>
<th>Seed for RNG</th>
<th>DRBG Internal State</th>
<th>Server Private Keys</th>
<th>McAfee FW Verification Key</th>
<th>SSH Host Public Key</th>
<th>SSH Remote Client Public Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show Status</td>
<td></td>
</tr>
<tr>
<td>Network Configuration</td>
<td></td>
</tr>
<tr>
<td>Administrative Configuration</td>
<td></td>
</tr>
<tr>
<td>Firmware Update</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Passwords</td>
<td>R, W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intrusion Detection/Prevention Management</td>
<td></td>
</tr>
<tr>
<td>Self Tests</td>
<td></td>
</tr>
<tr>
<td>Intrusion Prevention Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7 Operational Environment

The FIPS 140-2 Area 6 Operational Environment requirements are not applicable because the device supports a limited operational environment.
8 Security Rules

The cryptographic module’s design corresponds to the module’s security rules. This section documents the security rules enforced by the cryptographic module to implement the security requirements of this FIPS 140-2 Level 2 module.

1. The cryptographic module shall provide two distinct operator roles: Admin and NS-9300 P.
2. The cryptographic module shall provide role-based authentication.
3. When the module has not been placed in a valid role, the operator shall not have access to any cryptographic services.
4. The cryptographic module shall perform the following tests:

 A. Power up Self-Tests:

 1. Firmware Integrity Test: XYSSL RSA 2048 using SHA-1 for hashing
 (Future versions of this Cryptographic Module will validate integrity with a SHA-256 based hash.)

 2. Cryptographic algorithm known answer tests (KATs):
 a. AES ECB 128 Encryption and Decryption KAT
 b. RSA 2048 Key Generation KAT
 c. RSA 2048 Signature Generation KAT
 d. RSA 2048 Signature Verification KAT
 e. SHA-1 KAT
 f. SHA-256 KAT
 g. SHA-512 KAT
 h. Block Cipher (CTR) DRBG KAT
 i. HMAC SHA-1 KAT
 j. HMAC SHA-256 KAT
 k. HMAC SHA-512 KAT
 l. XYSSL RSA 2048 Signature Verification KAT
 (SHA-1 and SHA-256 based signatures)
 m. XYSSL SHA-1 KAT
 n. XYSSL SHA-256 KAT
 o. TLS 1.0/1.1 KDF KAT
 p. SSH KDF KAT

 If any of these tests fail the following message will be displayed:

 !!! CRITICAL FAILURE !!!
 FIPS 140-2 POST and KAT...
 REBOOTING IN 15 SECONDS

 3. Critical Functions Tests: N/A
B. Conditional Self-Tests:

1. Block Cipher (CTR) DRBG Continuous Test
2. SP 800-90A DRBG Section 11.3 Health Checks
3. NDRNG Continuous Test
4. RSA KeyGen/Sign/Verify Pairwise Consistency Test
5. External Firmware Load Test – XYSSL RSA 2048 using SHA-256 for hashing

5. At any time the cryptographic module is in an idle state, the operator shall be capable of commanding the module to perform the power up self-test by power cycling.
6. Data output shall be inhibited during key generation, self-tests, zeroization, and error states.
7. Status information shall not contain CSPs or sensitive data that if misused could lead to a compromise of the module.
8. If a non FIPS validated firmware version is loaded onto the module, then the module is no longer a FIPS validated module.
9. The use of the Aux port shall be restricted to the initialization of the cryptographic module.
9 Physical Security Policy

9.1 Physical Security Mechanisms

The cryptographic module includes the following physical security mechanisms:

- Production-grade components
- Production-grade opaque enclosure with tamper evident seals. Tamper evident seals and further instructions are obtained in the FIPS Kit with the part number: IAC-FIPS-KT8.

9.2 Operator Required Actions

For the module to operate in a FIPS Approved mode, the tamper seals shall be placed by the Admin role as specified below. The Admin must clean the chassis of any dirt before applying the labels. Per FIPS 140-2 Implementation Guidance (IG) 14.4, the Admin role is also responsible for the following:

- Securing and having control at all times of any unused seals
- Direct control and observation of any changes to the module, such as reconfigurations, where the tamper evident seals or security appliances are removed or installed to ensure the security of the module is maintained during such changes and the module is returned to a FIPS Approved state.

The Admin is also required to periodically inspect tamper evident seals. Table 9 outlines the recommendations for inspecting/testing physical security mechanisms of the module. If evidence of tamper is found during the periodic inspection, the operator should zeroize the module and modify Administrator Passwords upon start up. The operator should contact McAfee for new tamper labels, if necessary.

<table>
<thead>
<tr>
<th>Physical Security Mechanisms</th>
<th>Recommended Frequency of Inspection/Test</th>
<th>Inspection/Test Guidance Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamper Evident Seals</td>
<td>As specified per end user policy</td>
<td>Visually inspect the labels for tears, rips, dissolved adhesive, and other signs of malice.</td>
</tr>
<tr>
<td>Opaque Enclosure</td>
<td>As specified per end user policy</td>
<td>Visually inspect the enclosure for broken screws, bent casing, scratches, and other questionable markings.</td>
</tr>
</tbody>
</table>
Figure 7 depicts the tamper label locations on the cryptographic module. There are 9 tamper labels and they are outlined in red.

Figure 7 - Tamper Label Placement for NS-9300 S

Note: The NS-9300 S enclosure is identical to the NS-9200, which is shown here.

Figure 8 - Tamper Label
10 Mitigation of Other Attacks Policy

The module has not been designed to mitigate any specific attacks beyond the scope of FIPS 140-2 requirements.