

Intel OpenSSL
FIPS Object Module

Version 2.0.5 and 2.0.8

Intel OpenSSL FIPS 140‐2 Security Policy

Version 1.0

May 2, 2016

Copyright Notice

This document may be freely reproduced in whole or part without permission and without
restriction.

Intel OpenSSL FIPS 140-2 Security Policy

Page 2 of 27

Acknowledgments

This document was derived from the Security Policy associated with FIPS 140-2 validation
certificate number 1747.

Intel OpenSSL FIPS 140-2 Security Policy

Page 3 of 27

Modification History

2016-02-03 Initial update for 1B SUB
2016-04-13 Update due to CMVP Comments
2016-04-27 Update due to CMVP Comments
2016-05-02 Update due to CMVP Comments

Intel OpenSSL FIPS 140-2 Security Policy

Page 4 of 27

References
Reference] Full Specification Name

[ANS X9.31] Digital Signatures Using Reversible Public Key Cryptography for the
Financial Services Industry (rDSA)

[FIPS 140-2] Security Requirements for Cryptographic modules, May 25, 2001

[FIPS 180-3] Secure Hash Standard

[FIPS 186-4] Digital Signature Standard

[FIPS 197] Advanced Encryption Standard

[FIPS 198-1] The Keyed-Hash Message Authentication Code (HMAC)

[SP 800-38B] Recommendation for Block Cipher Modes of Operation: The CMAC Mode
for Authentication

[SP 800-38C] Recommendation for Block Cipher Modes of Operation: The CCM Mode for
Authentication and Confidentiality

[SP 800-38D] Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC

[SP 800-56A] Recommendation for Pair-Wise Key Establishment Schemes Using Discrete
Logarithm Cryptography

[SP 800-
67R1]

Recommendation for the Triple Data Encryption Algorithm (TDEA) Block
Cipher

[SP 800-89] Recommendation for Obtaining Assurances for Digital Signature
Applications

[SP 800-90] Recommendation for Random Number Generation Using Deterministic
Random Bit Generators

[SP 800-
131A]

Transitions: Recommendation for Transitioning the Use of Cryptographic
Algorithms and Key Lengths

Intel OpenSSL FIPS 140-2 Security Policy

Page 5 of 27

Table of Contents
1 Introduction .. 6
2 Tested Configurations .. 8
3 Ports and Interfaces .. 8
4 Modes of Operation and Cryptographic Functionality .. 9

4.1 Critical Security Parameters and Public Keys .. 13
5 Roles, Authentication and Services ... 16
6 Self-test .. 18
7 Operational Environment ... 20
8 Mitigation of other Attacks .. 21
Appendix A Installation and Usage Guidance ... 22
Appendix B Controlled Distribution File Fingerprint .. 25
Appendix C Compilers ... 27

Intel OpenSSL FIPS 140-2 Security Policy

Page 6 of 27

1 Introduction
This document is the non-proprietary security policy for the Intel OpenSSL FIPS Object Module,
hereafter referred to as the Module.

The Module is a software library providing a C-language application program interface (API) for
use by other processes that require cryptographic functionality. The Module is classified by FIPS
140-2 as a software module, multi-chip standalone module embodiment. The physical
cryptographic boundary is the general purpose computer on which the module is installed. The
logical cryptographic boundary of the Module is the fipscanister object module, a single object
module file named fipscanister.o (Linux®1) The Module performs no communications other than
with the calling application (the process that invokes the Module services).

The FIPS 140-2 security levels for the Module are as follows:

Security Requirement Security Level
Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 2

Finite State Model 1

Physical Security NA

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 3

Mitigation of Other Attacks NA
Table 1 – Security Level of Security Requirements

The Module’s software version for this validation is 2.0.5 and 2.0.8.

The Dual EC DRBG algorithm shall not be used in the FIPS Approved mode of operation

1 Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Intel OpenSSL FIPS 140-2 Security Policy

Page 7 of 27

Figure 1 – Module Block Diagram

OpenSSL FIPS 140-2 Security Policy

Page 8 of 27

2 Tested Configurations

Operational Environment Processor Optimizations (Target) EC B
1 Linux 3.10 64bit Intel Xeon (x86) None BKP U1

2 Linux 3.10 64bit on
VMware ESXi 6.00

Intel Xeon (x86) None BKP U1

3 Linux 3.10 64bit Intel Xeon (x86) AES-NI BKP U2

4 Linux 3.10 64bit on
VMware ESXi 6.00

Intel Xeon (x86) AES-NI BKP U2

Table 2 – Tested Configurations (B = Build Method; EC = Elliptic Curve Support). The EC column indicates
support for prime curve only (P), or all NIST defined B, K, and P curves (BKP).

See Appendix A for additional information on build method and optimizations. See Appendix C
for a list of the specific compilers used to generate the Module for the respective operational
environments.

3 Ports and Interfaces
The physical ports of the Module are the same as the computer system on which it is executing.
The logical interface is a C-language application program interface (API).

Logical interface type Description
Control input API entry point and corresponding stack parameters

Data input API entry point data input stack parameters

Status output API entry point return values and status stack parameters

Data output API entry point data output stack parameters
Table 3 – Logical interfaces

As a software module, control of the physical ports is outside module scope. However, when the
module is performing self-tests, or is in an error state, all output on the logical data output
interface is inhibited. The module is single-threaded and in error scenarios returns only an error
value (no data output is returned).

Intel OpenSSL FIPS 140-2 Security Policy

Page 9 of 27

4 Modes of Operation and Cryptographic Functionality
The Module supports only a FIPS 140-2 Approved mode. Tables 4a and 4b list the Approved
and Non-approved but Allowed algorithms, respectively.

Function Algorithm Options Cert #
Random
Number
Generation;
Symmetric key
Generation

[SP 800-90] DRBG2
Prediction resistance
supported for all
variations

Hash DRBG
HMAC DRBG, no reseed
CTR DRBG (AES), no derivation function

1092, 1093

Encryption,
Decryption and
CMAC

[SP 800-67]
3-Key TDES TECB, TCBC, TCFB, TOFB;
CMAC generate and verify

2119, 2120

[FIPS 197] AES

128/ 192/256 ECB, CBC, OFB, CFB 1, CFB 8,
CFB 128, CTR, XTS; CCM; GCM; CMAC
generate and verify

3848, 3849
[SP 800-38B] CMAC
[SP 800-38C] CCM
[SP 800-38D] GCM
[SP 800-38E] XTS

Message
Digests

[FIPS 180-3] SHA-1, SHA-2 (224, 256, 384, 512) 3170, 3171

Keyed Hash [FIPS 198] HMAC SHA-1, SHA-2 (224, 256, 384, 512) 2496, 2497

2 For all DRBGs the "supported security strengths" is just the highest supported security strength per [SP800-90]
and [SP800-57].

Intel OpenSSL FIPS 140-2 Security Policy

Page 10 of 27

Digital
Signature and
Asymmetric

Key Generation

[FIPS 186-2] RSA

GenKey9.31 (2048/3072/4096) 1966

SigGen9.31, SigGenPSS (4096 with SHA-256, 384,
512)

1965,
1966

SigGenPKCS1.5 (4096 with SHA-224, 256, 384, 512)

SigVer9.31 (1024/1536/2048/3072/4096 with SHA-1,
256, 384, 512)

SigVerPKCS1.5 (1024/1536/2048/3072,4096 with
SHA-1, 224, 256, 384, 512) note: 1024 on CAVP cert
1965 only

SigVerPSS (1024/1536/2048/3072,4096 with SHA-1,
224, 256, 384, 512)

[FIPS 186-4] RSA

SigGen9.31 (2048/3072 with SHA-256, 384, 512)
1965

SigGenPSS (2048/3072 with SHA-224, 256, 384, 512)

SigGenPKCS1.5 (2048/3072 with SHA-224, 256, 384,
512)

SigGen9.31 (2048/3072 with SHA-1, 256, 384, 512)
note: SHA-1 affirmed for use with protocols only

1966
SigGenPSS (2048/3072 with SHA-1, 224, 256, 384,
512) note: SHA-1 affirmed for use with protocols only

SigGenPKCS1.5 (2048/3072 with SHA-1, 224, 256,
384, 512) note: SHA-1 affirmed for use with protocols
only

[FIPS 186-4] DSA

PQG Gen (2048,224 with SHA-224, 256, 384, 512;
2048,256 with SHA-256, 384, 512*; 3072,256 with
SHA-256, 384, 512*)
*note: SHA-512 on CAVP cert 1052 only

1051,
1052

PQG Ver (1024, 160 with SHA-1, 224, 256, 384, 512;
2048, 224 with SHA-224, 256, 384, 512; 2048, 256
with SHA-256, 384, 512; 3072,256 with SHA-256,
384, 512)

Key Pair Gen (2048,224; 2048,256; 3072,256)

Sig Gen (2048,224 with SHA-1, 224, 256, 384, 512;
2048,256 with SHA-1, 224, 256, 384, 512; 3072,256
with SHA-1, 224, 256, 384, 512) note: SHA-1 affirmed
for use with protocols only

SigVer (1024/2048/3072 with SHA-1, 224, 256, 384,
512)

Intel OpenSSL FIPS 140-2 Security Policy

Page 11 of 27

[FIPS 186-4] ECDSA

PKG: CURVES(P-224 P-256 P-384 P-521 K-233 K-
283 K-409 K-571 B-233 B-283 B-409 B-571
ExtraRandomBits TestingCandidates)

831,
832

PKV: CURVES(ALL-P ALL-K ALL-B)

SigGen: CURVES(P-224: (SHA-1, 224, 256, 384,
512) P-256: (SHA-1, 224, 256, 384, 512) P-384:
(SHA-1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256,
384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-283:
(SHA-1, 224, 256, 384, 512) K-409: (SHA-1, 224,
256, 384, 512) K-571: (SHA-1, 224, 256, 384, 512) B-
233: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1,
224, 256, 384, 512) B-409: (SHA-1, 224, 256, 384,
512) B-571: (SHA-1, 224, 256, 384, 512)) SIG(gen)
with SHA-1 affirmed for use with protocols only.

832

SigVer: CURVES(P-192: (SHA-1, 224, 256, 384,
512) P-224: (SHA-1, 224, 256, 384, 512) P-256:
(SHA-1, 224, 256, 384, 512) P-384: (SHA-1, 224, 256,
384, 512) P-521: (SHA-1, 224, 256, 384, 512) K-163:
(SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224,
256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-
409: (SHA-1, 224, 256, 384, 512) K-571: (SHA-1,
224, 256, 384, 512 B-163: (SHA-1, 224, 256, 384,
512) B-233: (SHA-1, 224, 256, 384, 512) B-283:
(SHA-1, 224, 256, 384, 512) B-409: (SHA-1, 224, 256,
384, 512) B-571: (SHA-1, 224, 256, 384, 512))

832

SigGen: CURVES(P-224: (SHA-224, 256, 384, 512)
P-256: (SHA-224, 256, 384, 512) P-384: (SHA-224,
256, 384, 512) P-521: (SHA-224, 256, 384, 512) K-
233: (SHA-224, 256, 384, 512) K-283: (SHA-224,
256, 384, 512) K-409: (SHA-224, 256, 384, 512) K-
571: (SHA-224, 256, 384, 512) B-233: (SHA-224,
256, 384, 512) B-283: (SHA-224, 256, 384, 512) B-
409: (SHA-224, 256, 384, 512) B-571: (SHA-224,
256, 384, 512))

831

SigVer: CURVES(P-192: (SHA-1, 224, 256, 384,
512) P-224: (SHA-1, 224, 256, 384, 512) P-256:
(SHA-1, 224, 256, 384, 512) P-384: (SHA-1, 224, 256,
384, 512) P-521: (SHA-1, 224, 256, 384, 512) K-163:
(SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224,

831

Intel OpenSSL FIPS 140-2 Security Policy

Page 12 of 27

256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-
409: (SHA-1, 224, 256,384, 512) K-571: (SHA-1, 224,
256, 384, 512 B-163: (SHA-1, 224, 256, 384, 512) B-
233: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1,
224, 256, 384, 512) B-409: (SHA-1, 224, 256, 384,
512) B-571: (SHA-1, 224, 256, 384, 512))

ECC CDH
(KAS)

[SP 800-56A]
(§5.7.1.2)

All NIST defined B, K and P curves except sizes 163
and 192

735,
736

Table 4a – FIPS Approved Cryptographic Functions

The Module supports only NIST defined curves for use with ECDSA and ECC CDH. The
Module supports two operational environment configurations for elliptic curve; NIST prime
curve only (listed in Table 2 with the EC column marked "P") and all NIST defined curves
(listed in Table 2 with the EC column marked "BKP").

Category Algorithm Description

Key Agreement EC DH Non-compliant (untested) DH scheme using elliptic curve, supporting all NIST
defined B, K and P curves. Key agreement is a service provided for calling
process use, but is not used to establish keys into the Module.

Key
Encryption,
Decryption

RSA The RSA algorithm may be used by the calling application for encryption or
decryption of keys. No claim is made for SP 800-56B compliance, and no CSPs
are established into or exported out of the module using these services

Table 4b – Non-FIPS Approved But Allowed Cryptographic Functions

The Module implements the following services which are Non-Approved per the SP 800-131A
transition:

Function Algorithm Options

Random Number
Generation;
Symmetric key
generation

[SP 800-90] DRBG Dual EC DRBG

[ANS X9.31] RNG AES 128/192/256

Digital Signature and
Asymmetric Key
Generation

[FIPS 186-2] RSA GenKey9.31, SigGen9.31, SigGenPKCS1.5,
SigGenPSS (1024/1536 with all SHA sizes,
2048/3072/4096 with SHA-1)

[FIPS 186-2] DSA PQG Gen, Key Pair Gen, Sig Gen (1024 with all
SHA sizes, 2048/3072 with SHA-1)

[FIPS 186-4] DSA PQG Gen, Key Pair Gen, Sig Gen (1024 with all
SHA sizes, 2048/3072 with SHA-1)

[FIPS 186-2]
ECDSA

PKG: CURVES(P-192 K-163 B-163) SIG(gen):
CURVES(P-192 P-224 P-256 P-384 P-521 K-163

Intel OpenSSL FIPS 140-2 Security Policy

Page 13 of 27

K-233 K-283 K-409 K-571 B-163 B-233 B-283 B-
409 B-571)

[FIPS 186-4]
ECDSA

PKG: CURVES(P-192 K-163 B-163) SigGen:
CURVES(P-192: (SHA-1, 224, 256, 384, 512) P-
224:(SHA-1) P-256:(SHA-1) P-384: (SHA-1) P-
521:(SHA-1) K-163: (SHA-1, 224, 256, 384, 512)
K-233:(SHA-1) K-283:(SHA-1) K-409:(SHA-1) K-
571:(SHA-1) B-163: (SHA-1, 224, 256, 384, 512)
B-233:(SHA-1) B-283: (SHA-1) B-409:(SHA-1) B-
571:(SHA-1))

ECC CDH (CVL) [SP 800-56A]
(§5.7.1.2)

All NIST Recommended B, K and P curves sizes
163 and 192

Table 4c – Non-Approved Cryptographic Functions

These algorithms shall not be used when operating in the FIPS Approved mode of operation.

EC DH Key Agreement provides a maximum of 256 bits of security strength. RSA Key
Wrapping provides a maximum of 256 bits of security strength.

The Module requires an initialization sequence (see IG 9.5): the calling application invokes
FIPS_mode_set()3, which returns a “1” for success and “0” for failure. If FIPS_mode_set()
fails then all cryptographic services fail from then on. The application can test to see if FIPS
mode has been successfully performed.

The Module is a cryptographic engine library, which can be used only in conjunction with
additional software. Aside from the use of the NIST defined elliptic curves as trusted third party
domain parameters, all other FIPS 186-3 assurances are outside the scope of the Module, and are
the responsibility of the calling process.

4.1 Critical Security Parameters and Public Keys
All CSPs used by the Module are described in this section. All access to these CSPs by Module
services are described in Section 4. The CSP names are generic, corresponding to API
parameter data structures.

CSP Name Description

RSA SGK RSA (1024 to 16384 bits) signature generation key

RSA KDK RSA (1024 to 16384 bits) key decryption (private key transport) key

DSA SGK [FIPS 186-4] DSA (1024/2048/3072) signature generation key or [FIPS 186-2] DSA
(1024) signature generation key

ECDSA SGK ECDSA (All NIST defined B, K, and P curves) signature generation key

EC DH Private EC DH (All NIST defined B, K, and P curves) private key agreement key.

3 The function call in the Module is FIPS_module_mode_set() which is typically used by an application via the

FIPS_mode_set() wrapper function.

Intel OpenSSL FIPS 140-2 Security Policy

Page 14 of 27

AES EDK AES (128/192/256) encrypt / decrypt key

AES CMAC AES (128/192/256) CMAC generate / verify key

AES GCM AES (128/192/256) encrypt / decrypt / generate / verify key

AES XTS AES (256/512) XTS encrypt / decrypt key

TDES EDK TDES (3-Key) encrypt / decrypt key

TDES CMAC TDES (3-Key) CMAC generate / verify key

HMAC Key Keyed hash key (160/224/256/384/512)

Hash_DRBG CSPs V (440/888 bits) and C (440/888 bits), entropy input (length dependent on security
strength)

HMAC_DRBG CSPs V (160/224/256/384/512 bits) and Key (160/224/256/384/512 bits), entropy input
(length dependent on security strength)

CTR_DRBG CSPs V (128 bits) and Key (AES 128/192/256), entropy input (length dependent on security
strength)

CO-AD-Digest Pre-calculated HMAC-SHA-1 digest used for Crypto Officer role authentication

User-AD-Digest Pre-calculated HMAC-SHA-1 digest used for User role authentication

Table 4.1a – Critical Security Parameters

Authentication data is loaded into the module during the module build process, performed by an
authorized operator (Crypto Officer), and otherwise cannot be accessed.

The module does not output intermediate key generation values.

CSP Name Description

RSA SVK RSA (1024 to 16384 bits) signature verification public key

RSA KEK RSA (1024 to 16384 bits) key encryption (public key transport) key

DSA SVK [FIPS 186-4] DSA (1024/2048/3072) signature verification key or [FIPS 186-2] DSA
(1024) signature verification key

ECDSA SVK ECDSA (All NIST defined B, K and P curves) signature verification key

EC DH Public EC DH (All NIST defined B, K and P curves) public key agreement key.

Table 4.1b – Public Keys

For all CSPs and Public Keys:

Storage: RAM, associated to entities by memory location. The Module stores DRBG state
values for the lifetime of the DRBG instance. The module uses CSPs passed in by the calling
application on the stack. The Module does not store any CSP persistently (beyond the
lifetime of an API call), with the exception of DRBG state values used for the Modules'
default key generation service.

Generation: The Module implements SP 800-90 compliant DRBG services for creation of
symmetric keys, and for generation of DSA, elliptic curve, and RSA keys as shown in Table
4a. The calling application is responsible for storage of generated keys returned by the
module.

Intel OpenSSL FIPS 140-2 Security Policy

Page 15 of 27

Entry: All CSPs enter the Module’s logical boundary in plaintext as API parameters,
associated by memory location. However, none cross the physical boundary.
Output: The Module does not output CSPs, other than as explicit results of key generation
services. However, none cross the physical boundary.

Destruction: Zeroization of sensitive data is performed automatically by API function calls
for temporarily stored CSPs. In addition, the module provides functions to explicitly destroy
CSPs related to random number generation services. The calling application is responsible
for parameters passed in and out of the module.

Private and secret keys as well as seeds and entropy input are provided to the Module by the
calling application, and are destroyed when released by the appropriate API function calls. Keys
residing in internally allocated data structures (during the lifetime of an API call) can only be
accessed using the Module defined API. The operating system protects memory and process
space from unauthorized access. Only the calling application that creates or imports keys can
use or export such keys. All API functions are executed by the invoking calling application in a
nonoverlapping sequence such that no two API functions will execute concurrently. An
authorized application as user (Crypto-Officer and User) has access to all key data generated
during the operation of the Module.

In the event Module power is lost and restored the calling application must ensure that any AES-
GCM keys used for encryption or decryption are re-distributed.

Module users (the calling applications) shall use entropy sources that meet the security strength
required for the random number generation mechanism as shown in [SP 800-90] Table 2
(Hash_DRBG, HMAC_DRBG), Table 3 (CTR_DRBG). This entropy is supplied by means of
callback functions. Those functions must return an error if the minimum entropy strength cannot
be met.

Intel OpenSSL FIPS 140-2 Security Policy

Page 16 of 27

5 Roles, Authentication and Services
The Module implements the required User and Crypto Officer roles and requires authentication
for those roles. Only one role may be active at a time and the Module does not allow concurrent
operators. The User or Crypto Officer role is assumed by passing the appropriate password to
the FIPS_module_mode_set() function. The password values may be specified at build time
and must have a minimum length of 16 characters. Any attempt to authenticate with an invalid
password will result in an immediate and permanent failure condition rendering the Module
unable to enter the FIPS mode of operation, even with subsequent use of a correct password.

Authentication data is loaded into the Module during the Module build process, performed by
the Crypto Officer, and otherwise cannot be accessed.

Since minimum password length is 16 characters, the probability of a random successful
authentication attempt in one try is a maximum of 1/25616, or less than 1/1038. The Module
permanently disables further authentication attempts after a single failure, so this probability is
independent of time.

Both roles have access to all of the services provided by the Module.

• User Role (User): Loading the Module and calling any of the API functions.
• Crypto Officer Role (CO): Installation of the Module on the host computer system and

calling of any API functions.

All services implemented by the Module are listed below, along with a description of service
CSP access.

Service Role Description

Initialize User, CO Module initialization. Does not access CSPs.

Self-test User, CO Perform self tests (FIPS_selftest). Does not access CSPs.

Show status User, CO Functions that provide module status information:

Version (as unsigned long or const char *)

FIPS Mode (Boolean)
Does not access CSPs.

Zeroize User, CO Functions that destroy CSPs:

fips_drbg_uninstantiate: for a given DRBG context, overwrites DRBG CSPs
(Hash_DRBG CSPs, HMAC_DRBG CSPs, CTR_DRBG CSPs.)
All other services automatically overwrite CSPs stored in allocated memory.
Stack cleanup is the responsibility of the calling application.

Random
number
generation

User, CO Used for random number and symmetric key generation.

Seed or reseed a DRBG instance

Determine security strength of a DRBG instance

Obtain random data

Intel OpenSSL FIPS 140-2 Security Policy

Page 17 of 27

Uses and updates Hash_DRBG CSPs, HMAC_DRBG CSPs, CTR_DRBG CSPs.

Asymmetric
key generation

User, CO Used to generate DSA, ECDSA and RSA keys: RSA SGK, RSA SVK; DSA
SGK, DSA SVK; ECDSA SGK, ECDSA SVK
There is one supported entropy strength for each mechanism and algorithm type,
the maximum specified in SP800-90

Symmetric
encrypt/decrypt

User, CO Used to encrypt or decrypt data.
Executes using AES EDK, TDES EDK (passed in by the calling process).

Symmetric
digest

User, CO Used to generate or verify data integrity with CMAC.
Executes using AES CMAC, TDES, CMAC (passed in by the calling process).

Message digest User, CO Used to generate a SHA-1 or SHA-2 message digest.
Does not access CSPs.

Keyed Hash User, CO Used to generate or verify data integrity with HMAC.
Executes using HMAC Key (passed in by the calling process).

Key transport8 User, CO Used to encrypt or decrypt a key value on behalf of the calling process (does not
establish keys into the module).
Executes using RSA KDK, RSA KEK (passed in by the calling process).

Key agreement User, CO Used to perform key agreement primitives on behalf of the calling process (does
not establish keys into the module).
Executes using EC DH Private, EC DH Public (passed in by the calling process).

Digital
signature

User, CO Used to generate or verify RSA, DSA or ECDSA digital signatures.
Executes using RSA SGK, RSA SVK; DSA SGK, DSA SVK; ECDSA SGK,
ECDSA SVK (passed in by the calling process).

Utility User, CO Miscellaneous helper functions. Does not access CSPs.

Table 5 – Services and CSP Access

Intel OpenSSL FIPS 140-2 Security Policy

Page 18 of 27

6 Self-test
The Module performs the self-tests listed below on invocation of Initialize or Self-test.

Algorithm Type Test Attributes

Software
integrity

KAT HMAC-SHA1

HMAC KAT One KAT per SHA1, SHA224, SHA256, SHA384 and SHA512 Per IG 9.3, this testing
covers SHA POST requirements.

AES KAT Separate encrypt and decrypt, ECB mode, 128 bit key length

AES CCM KAT Separate encrypt and decrypt, 192 key length

AES GCM KAT Separate encrypt and decrypt, 256 key length

XTS-AES KAT 128, 256 bit key sizes to support either the 256-bit key size (for XTS-AES-128) or the
512-bit key size (for XTS-AES-256)

AES CMAC KAT Sign and verify CBC mode, 128, 192, 256 key lengths

TDES KAT Separate encrypt and decrypt, ECB mode, 3-Key

TDES CMAC KAT CMAC generate and verify, CBC mode, 3-Key

RSA KAT Sign and verify using 2048 bit key, SHA-256, PKCS#1

DSA PCT Sign and verify using 2048 bit key, SHA-384

DRBG KAT CTR_DRBG: AES, 256 bit with and without derivation function
HASH_DRBG: SHA256
HMAC_DRBG: SHA256

ECDSA PCT Keygen, sign, verify using P-224, K-233 and SHA512. The K-233 self-test is not
performed for operational environments that support prime curve only (see Table 2).

ECC CDH KAT Shared secret calculation per SP 800-56A §5.7.1.2, IG 9.6

Table 6a - Power On Self Tests (KAT = Known answer test; PCT = Pairwise consistency test)

The Module is installed using one of the set of instructions in Appendix A, as appropriate for the
target system. The HMAC-SHA-1 of the Module distribution file as tested by the CMT
Laboratory and listed in Appendix A is verified during installation of the Module file as
described in Appendix A.

The FIPS_mode_set()4 function performs all power-up self-tests listed above with no operator
intervention required, returning a “1” if all power-up self-tests succeed, and a “0” otherwise. If
any component of the power-up self-test fails an internal flag is set to prevent subsequent
invocation of any cryptographic function calls. The module will only enter the FIPS Approved
mode if the module is reloaded and the call to FIPS_mode_set()9 succeeds.
The power-up self-tests may also be performed on-demand by calling FIPS_selftest(), which
returns a “1” for success and “0” for failure. Interpretation of this return code is the
responsibility of the calling application.

4 FIPS_mode_set() calls Module function FIPS_module_mode_set()

Intel OpenSSL FIPS 140-2 Security Policy

Page 19 of 27

The Module also implements the following conditional tests:
Algorithm Test

DRBG Tested as required by [SP800-90] Section 11

DRBG FIPS 140-2 continuous test for stuck fault

DSA Pairwise consistency test on each generation of a key pair

ECDSA Pairwise consistency test on each generation of a key pair

RSA Pairwise consistency test on each generation of a key pair

Table 6b - Conditional Tests

In the event of a DRBG self-test failure the calling application must uninstantiate and
reinstantiate the DRBG per the requirements of [SP 800-90]; this is not something the Module
can do itself.

Pairwise consistency tests are performed for both possible modes of use, e.g. Sign/Verify and
Encrypt/Decrypt.

The Module supports two operational environment configurations for elliptic curve: NIST prime
curves only (listed in Table 2 with the EC column marked "P") and all NIST defined curves
(listed in Table 2 with the EC column marked "BKP").

Intel OpenSSL FIPS 140-2 Security Policy

Page 20 of 27

7 Operational Environment
The tested operating systems segregate user processes into separate process spaces. Each
process space is logically separated from all other processes by the operating system software
and hardware. The Module functions entirely within the process space of the calling application,
and implicitly satisfies the FIPS 140-2 requirement for a single user mode of operation.

Intel OpenSSL FIPS 140-2 Security Policy

Page 21 of 27

8 Mitigation of other Attacks
The module is not designed to mitigate against attacks which are outside of the scope of FIPS
140-2.

Intel OpenSSL FIPS 140-2 Security Policy

Page 22 of 27

Appendix A Installation and Usage Guidance
The test platforms represent different combinations of installation instructions. For each
platform there is a build system, the host providing the build environment in which the
installation instructions are executed, and a target system on which the generated object code is
executed. The build and target systems may be the same type of system or even the same
device, or may be different systems – the Module supports cross-compilation environments.

Each of these command sets are relative to the top of the directory containing the uncompressed
and expanded contents of the distribution files openssl-fips-2.0.8.tar.gz (all NIST defined curves
as listed in Table 2 with the EC column marked "BKP") or openssl-fips-ecp-2.0.8.tar.gz (NIST
prime curves only as listed in Table 2 with the EC column marked "P"). The command sets are:

U1:
./config no-asm
make make
install

U2:
./config
make make
install

Installation instructions

1. Download and copy the distribution file to the build system.

These files can be downloaded from http://www.openssl.org/source / .

2. Verify the HMAC-SHA-1 digest of the distribution file; see Appendix B. An
independently acquired FIPS 140-2 validated implementation of SHA-1 HMAC must be
used for this digest verification. Note that this verification can be performed on any
convenient system and not necessarily on the specific build or target system.
Alternatively, a copy of the distribution on physical media can be obtained from OSF5.

3. Unpack the distribution
gunzip -c openssl-fips-2.0.8.tar.gz | tar xf

cd openssl-fips-2.0.8 or

5 For some prospective users the acquisition, installation, and configuration of a suitable FIPS 140-2 validated

product may not be convenient. OSF will on request mail a CD containing the source code distribution, via
USPS or international post. A distribution file received by that means need not be verified by a FIPS 140-2
validated implementation of HMAC-SHA-1. For instructions on requesting this CD see
http://opensslfoundation.com/fips/verify.html.

Intel OpenSSL FIPS 140-2 Security Policy

Page 23 of 27

gunzip -c openssl-fips-ecp-2.0.8.tar.gz | tar xf cd
openssl-fips-ecp-2.0.8

4. Execute one of the installation command sets U1, W1, U2, W2 as shown above. No
other command sets shall be used.

5. The resulting fipscanister.o or fipscanister.lib file is now available for use.

6. The calling application enables FIPS mode by calling the FIPS_mode_set()6 function.

Note that failure to use one of the specified commands sets exactly as shown will result in a
module that cannot be considered compliant with FIPS 140-2.

Linking the Runtime Executable Application

Note that applications interfacing with the FIPS Object Module are outside of the cryptographic
boundary. When linking the application with the FIPS Object Module two steps are necessary:

1. The HMAC-SHA-1 digest of the FIPS Object Module file must be calculated and verified
against the installed digest to ensure the integrity of the FIPS object module.

2. A HMAC-SHA1 digest of the FIPS Object Module must be generated and embedded in the
FIPS Object Module for use by the FIPS_mode_set()11 function at runtime initialization.

The fips_standalone_sha1 command can be used to perform the verification of the FIPS
Object Module and to generate the new HMAC-SHA-1 digest for the runtime executable
application. Failure to embed the digest in the executable object will prevent initialization of
FIPS mode.

At runtime the FIPS_mode_set()11 function compares the embedded HMAC-SHA-1 digest with
a digest generated from the FIPS Object Module object code. This digest is the final link in the
chain of validation from the original source to the runtime executable application file.
Optimization

The “asm” designation means that assembler language optimizations were enabled when the
binary code was built, “no-asm” means that only C language code was compiled.

For this module there are two possible optimization levels:

1. No optimization (plain C)

2. AES-NI+PCLMULQDQ+SSSE3 optimization

For more information, see:

6 FIPS_mode_set() calls the Module function FIPS_module_mode_set()

Intel OpenSSL FIPS 140-2 Security Policy

Page 24 of 27

• http://www.intel.com/support/processors/sb/CS-030123.htm?wapkw=sse2
• http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-

aes-ni/?wapkw=aes-ni

Intel OpenSSL FIPS 140-2 Security Policy

Page 25 of 27

Appendix B Controlled Distribution File Fingerprint
The Intel OpenSSL FIPS Object Module v2.0.8 consists of the Intel FIPS Object Module (the
fipscanister.o or fipscanister.lib contiguous unit of binary object code) generated from the
specific source files.

For all NIST defined curves (listed in Table 2 with the EC column marked "BKP") the source
files are in the specific special OpenSSL distribution openssl-fips-2.0.8.tar.gz with HMAC-
SHA-1 digest of

7f486fbb598f3247ab9db10c1308f1c19f384671

located at http://www.openssl.org/source/openssl-fips-2.0.8.tar.gz.

The openssl command from a version of OpenSSL that incorporates a previously validated
version of the module may be used:

openssl sha1 -hmac etaonrishdlcupfm openssl-fips-2.0.8.tar.gz

For NIST prime curves only (listed in Table 2 with the EC column marked "P") the source files
are in the specific special OpenSSL distribution openssl-fips-ecp-2.0.8.tar.gz with
HMAC-SHA-1 digest of

7a5f40ef8cebe959372d16e26391fcf23689209b

located at http://www.openssl.org/source/openssl-fips-ecp-2.0.8.tar.gz. Note this is from the
previous revision of the FIPS Object Module as no modifications relevant to NIST prime curves
only were introduced in revision 2.0.8.

The set of files specified in this tar file constitutes the complete set of source files of this module.
There shall be no additions, deletions, or alterations of this set as used during module build. The
OpenSSL distribution tar file (and patch file if used) shall be verified using the above
HMACSHA-1 digest(s).

The arbitrary 16 byte key of:

65 74 61 6f 6e 72 69 73 68 64 6c 63 75 70 66 6d

(equivalent to the ASCII string "etaonrishdlcupfm") is used to generate the HMAC-SHA-1
value for the FIPS Object Module integrity check.

The functionality of all earlier revisions of the FIPS Object Module are subsumed by this latest
revision, so there is no reason to use older revisions for any new deployments. However, older
revisions remain valid. The source distribution files and corresponding HMAC-SHA-1 digests
are listed below:

openssl-fips-2.0.5.tar.gz

Intel OpenSSL FIPS 140-2 Security Policy

Page 26 of 27

 URL: http://www.openssl.org/source/openssl-fips-2.0.5.tar.gz Digest:
8b44f2a43d098f6858eb1ebe77b73f8f027a9c29

openssl-fips-ecp-2.0.5.tar.gz
 URL: http://www.openssl.org/source/openssl-fips-ecp-2.0.5.tar.gz
Digest: 148e4e127ffef1df80c0ed61bae35b07ec7b7b36

Page 27 of 27

Appendix C Compilers
This appendix lists the specific compilers used to generate the Module for the respective
Operational Environments. Note this list does not imply that use of the Module is restricted to
only the listed compiler versions, only that the use of other versions has not been confirmed to
produce a correct result.

Operational Environment Compiler

1 Linux 3.10 64bit gcc 4.8.3

2 Linux 3.10 64bit on VMware ESXi 6.00 gcc 4.8.3

3 Linux 3.10 64bit gcc 4.8.3

4 Linux 3.10 64bit on VMware ESXi 6.00 gcc 4.8.3

