Juniper Networks
EX4300 Ethernet Switches

Non-Proprietary Security Policy

Document Version: 2.0
Date: December 6, 2016
Table of Contents

Table of Contents ...2
List of Tables ...3
1. Product Overview ..4
2. Module Overview ..5
 Images of the Cryptographic Modules.. 6
3. Security Level ..6
4. Modes of Operation ...7
 Approved Mode of Operation ... 7
 Approved Algorithms ... 7
 Non-Approved but Allowed Cryptographic Functions ... 8
 Protocols Allowed in FIPS Mode ... 8
 Placing the Module in the Approved Mode of Operation ... 8
 Non-FIPS Approved Mode of Operation .. 8
5. Ports and Interfaces ..9
6. Identification and Authentication Policy ...10
 Assumption of Roles .. 10
7. Access Control Policy - Roles and Services ..11
 Crypto-Officer Role .. 11
 User Role .. 11
 Unauthenticated Services .. 12
 Non-FIPS Mode Services .. 12
8. Critical Security Parameters ..12
 Definition of CSP Modes of Access ... 14
9. Operational Environment ...14
10. Security Rules ..15
11. Physical Security Policy ..16
12. Mitigation of Other Attacks Policy ..16
13. Guidance ..16
 Crypto-Officer Guidance .. 16
 Enabling FIPS Approved Mode of Operation .. 16
 Placing the Module in a Non-Approved Mode of Operation .. 17
 Tamper Evident Seal .. 17
User Guidance...18
14. Acronyms..18
About Juniper Networks ..19

List of Tables
Table 1-EX4300 Configurations...5
Table 2- Security Level per FIPS 140-2 Individual Sections ..6
Table 3 FIPS Approved Algorithms ...7
Table 4- FIPS 140-2 Ports/Interfaces.. 10
Table 5 – EX Switches Hardware Guides...10
Table 6- Roles and Required Identification and Authentication ...10
Table 7- Strengths of Authentication Mechanisms...11
Table 8- Services Authorized for Roles in Approved FIPS mode ...11
Table 9 - Definition of Critical Security Parameters (CSPs) ...12
Table 10 - Definition of Public Keys..13
Table 11- CSP Access Rights within Roles & Services ...14
Table 12- Acronyms ..18
1. Product Overview

The Juniper Networks EX4300 Ethernet Switches exhibit five key characteristics that, working together, deliver a true enterprise switching solution: carrier-class reliability, security risk management, network virtualization, application control, and reduced total cost of ownership (TCO). EX Series Ethernet Switches leverage much of the same field-proven Juniper Networks technology—including high-performance application-specific integrated circuits (ASICs), system architecture and Juniper Networks Junos® operating system—that power the world’s largest service provider networks. The Juniper Networks EX Series Ethernet Switches are fully compatible with the Juniper Networks Unified Access Control (UAC), delivering an extra layer of security by first authenticating users and performing virus checks, then enforcing precise, end-to-end security policies that determine who can access what network resources, as well as quality of service (QoS) policies to ensure delivery of business processes.

The Juniper Networks EX4300 Ethernet Switches deliver a full suite of Layer 2 and Layer 3 switching capabilities. The EX4300 switches can be interconnected over multiple 40GbE quad small form factor pluggable plus (QSFP+) transceiver ports to form a 320 gigabit per second (Gbps) backplane. A flexible uplink module that supports both 1GbE and 10GbE options is also available, enabling high-speed connectivity to aggregation- or core-layer switches which connect multiple floors or buildings.
2. Module Overview

This is a non-proprietary Cryptographic Module Security Policy for the Juniper Networks EX4300 Ethernet Switches Cryptographic Module from Juniper Networks. It provides detailed information relating to each of the FIPS 140-2 security requirements relevant to Juniper Networks EX4300 Ethernet Switches Cryptographic Modules along with instructions on how to run the module in a secure FIPS 140-2 mode.

The cryptographic module provides for an encrypted connection, using SSH, between the management console and the switch. All other data input or output from the switch is considered plaintext for this FIPS 140-2 validation.

The EX switches run JUNOS. The validated version of JUNOS is 14.1X53-D30.3; the image for the EX4300 hardware platforms is:

- jinstall-ex-4300-14.1X53-D30.3-domestic-signed.tgz

The Juniper Networks EX4300 Ethernet Switches are cryptographic modules that are defined as multiple-chip standalone modules that execute JUNOS 14.1X53-D30.3 firmware on the EX4300 Ethernet Switches listed in Table 1. The cryptographic boundaries for the EX4300 Ethernet Switches are defined as the outer edge of each switch. The cryptographic modules’ operational environment is a limited operational environment.

Table 1 gives a list of the hardware versions that are part of the module validation and the basic configuration of the hardware. Each hardware version requires use of a tamper seal (P/N 520-052564).

<table>
<thead>
<tr>
<th>Models</th>
<th>Hardware Versions</th>
<th>Processor</th>
<th>RAM</th>
<th>Ethernet Ports</th>
<th>Power Over Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX4300</td>
<td>EX4300-24P</td>
<td>Freescale PowerPC</td>
<td>2GB DDR</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>EX4300-24T</td>
<td></td>
<td></td>
<td>24</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>EX4300-48P</td>
<td></td>
<td></td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>EX4300-48T</td>
<td></td>
<td></td>
<td>48</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>EX4300-32F</td>
<td></td>
<td></td>
<td>32</td>
<td>N/A</td>
</tr>
</tbody>
</table>

P = 10/100/1000BASE-T Power over Ethernet
T = 10/100/1000BASE-T
F = 100/1000BASE-X
Images of the Cryptographic Modules

EX4300-24P/24T

EX4300-48P/48T

EX4300-32F

3. Security Level

The cryptographic modules meet the overall requirements applicable to Level 1 security of FIPS 140-2. The following table lists the level of validation for each area in FIPS 140-2:

Table 2-Security Level per FIPS 140-2 Individual Sections

<table>
<thead>
<tr>
<th>Security Requirements Section</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Module Specification</td>
<td>1</td>
</tr>
<tr>
<td>Module Ports and Interfaces</td>
<td>1</td>
</tr>
<tr>
<td>Roles, Services, and Authentication</td>
<td>3</td>
</tr>
<tr>
<td>Finite State Model</td>
<td>1</td>
</tr>
<tr>
<td>Physical Security</td>
<td>1</td>
</tr>
<tr>
<td>Operational Environment</td>
<td>N/A</td>
</tr>
<tr>
<td>Cryptographic Key Management</td>
<td>1</td>
</tr>
<tr>
<td>EMI/EMC</td>
<td>1</td>
</tr>
<tr>
<td>Self-Tests</td>
<td>1</td>
</tr>
<tr>
<td>Design Assurance</td>
<td>3</td>
</tr>
<tr>
<td>Mitigation of Other Attacks</td>
<td>N/A</td>
</tr>
</tbody>
</table>
4. Modes of Operation

Approved Mode of Operation

The EX4300 switches support a FIPS Approved mode of operation. The cryptographic officer can configure the module to run in a FIPS Approved mode of operation by following the instructions in the crypto-officer guidance.

Approved Algorithms

The FIPS Approved mode of operation supports the following FIPS Approved algorithms:

<table>
<thead>
<tr>
<th>Algorithm Implementation</th>
<th>Reference</th>
<th>Mode</th>
<th>Functions</th>
<th>Strength</th>
<th>Cert</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenSSL AES</td>
<td>FIPS 197, SP 800-38A</td>
<td>CBC, CTR</td>
<td>SSH Enc/Dec</td>
<td>128, 192, 256</td>
<td>3655</td>
</tr>
<tr>
<td>OpenSSL SSH KDF</td>
<td>SP 800-135</td>
<td>SSHv2</td>
<td>SSH Key Derivation</td>
<td>128, 192, 256</td>
<td>668</td>
</tr>
<tr>
<td>OpenSSL DRBG</td>
<td>SP 800-90A</td>
<td>HMAC-SHA-256</td>
<td>Random Bit Generation</td>
<td>256</td>
<td>984</td>
</tr>
<tr>
<td>OpenSSL ECDSA</td>
<td>FIPS 186-4</td>
<td>P-256</td>
<td>SSH SigGen, Package SigVer</td>
<td>128</td>
<td>763</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P-256, P-384, P-521</td>
<td>SSH KeyGen, SSH SigVer</td>
<td>128, 192, 256</td>
<td>763</td>
</tr>
<tr>
<td>MD HMAC</td>
<td>FIPS 198-1</td>
<td>SHA-1, SHA-256</td>
<td>Password HMAC</td>
<td>128, 256</td>
<td>2404</td>
</tr>
<tr>
<td>OpenSSL HMAC</td>
<td>FIPS 198-1</td>
<td>SHA-1, SHA-256, SHA-512</td>
<td>SSH HMAC Gen/Ver</td>
<td>128, 256</td>
<td>2405^3</td>
</tr>
<tr>
<td>MD SHA</td>
<td>FIPS 180-4</td>
<td>SHA-1, SHA-256, SHA-512</td>
<td>Hash for HMAC, Password Hash</td>
<td>128, 256</td>
<td>3072</td>
</tr>
<tr>
<td>OpenSSL SHA</td>
<td>FIPS 180-4</td>
<td>SHA-1, SHA-256, SHA-384, SHA-512</td>
<td>Hash for HMAC, Sig Gen, Sig Ver</td>
<td>128, 256</td>
<td>3073</td>
</tr>
<tr>
<td>OpenSSL Triple-DES</td>
<td>SP 800-20</td>
<td>TCBC</td>
<td>SSH Enc/Dec</td>
<td>112</td>
<td>2045</td>
</tr>
</tbody>
</table>

^1 The user of the module should review the Algorithm Transition Tables, available at the CMVP website (http://csrc.nist.gov/groups/STM/cmvp/) to determine the current status of algorithms and key lengths used in the module.

^2 The strength of the SSH KDF is the minimum of the Key Agreement method and the HMAC used.

^3 HMAC-SHA-384 is not used by any of the module’s services.
Non-Approved but Allowed Cryptographic Functions

The cryptographic modules also support the following non-Approved algorithms, which are allowed for use in FIPS mode:

- non-SP 800-56A Elliptic Curve Diffie-Hellman P-256, P-384, P-521 (key agreement; key establishment methodology provides 128, 192, or 256 bits of encryption strength)
- Non-Deterministic Random Number Generators (NDRNG) used for entropy to seed the Approved HMAC-DRBG

Protocols Allowed in FIPS Mode

The cryptographic module supports the commercially available SSHv2 protocol. The following algorithms are utilized:

- Host Authentication
 - ecdsa-sha2-nistp256: ECDSA P-256 with SHA-256
- (optional) Client Authentication
 - ecdsa-sha2-nistp256: ECDSA P-256 with SHA-256
 - ecdsa-sha2-nistp384: ECDSA P-384 with SHA-384
 - ecdsa-sha2-nistp521: ECDSA P-521 with SHA-512
- Key Agreement
 - ecdh-sha2-nistp256: Elliptic Curve Diffie-Hellman P-256 with SHA-256
 - ecdh-sha2-nistp384: Elliptic Curve Diffie-Hellman P-384 with SHA-384
 - ecdh-sha2-nistp521: Elliptic Curve Diffie-Hellman P-521 with SHA-512
- Key Derivation
 - SSHv2 KDF
- Encryption
 - aes128/128/256-ctr
 - aes128/192/256-cbc
 - 3des-cbc: 3 key Triple-DES
- Message Authentication
 - hmac-sha1
 - hmac-sha2-256
 - hmac-sha2-512

Placing the Module in the Approved Mode of Operation

The cryptographic officer shall place the module in FIPS Approved mode by following the instruction in the Junos OS for EX Series Ethernet Switches, Release 14.1X53 FIPS document.

The operator can verify that the module is in FIPS Approved mode by observing the prompt in cli and config modes which will have the format "<device name>:fips" where the device name is configured in under host-name.

Non-FIPS Approved Mode of Operation

The module has a non-Approved mode of operation. If the module has been in a FIPS Approved mode of operation, the cryptographic officer can configure the module to run in a Non-Approved mode by following the instruction in the Junos OS for EX Series Ethernet Switches, Release 14.1X53 FIPS.
The module supports the following non-Approved and non-Compliant algorithms when it is configured in the non-FIPS Approved mode:

- arcfour
- blowfish
- cast128
- Diffie-Hellman (non-compliant; key agreement; key establishment methodology provides less than 112 bits of encryption strength)
- DSA
- HMAC-MD5
- HMAC-SHA-1-96 (non-compliant)
- MD5
- ripemd160
- RSA
- umac-64
- umac-128

5. Ports and Interfaces

The cryptographic module supports the physical ports and corresponding logical interfaces identified below. The flow of the data, control, and status through the interfaces is controlled by the cryptographic module. The module contains the following physical ports:

- Management Ethernet Port
- Packet Forwarding Engine (PFE) Ethernet Ports
- Console Serial Port
- Menu Buttons
- LEDs
- LCD Display
- Power Input Port
- USB – Disabled
- Virtual Chassis – Disable

The interfaces can be categorized into the following logical interfaces defined by FIPS 140-2:

- Data Input Interface
- Data Out Interface
- Control Input Interface
- Status Output Interface
- Power Interface

The physical ports can be mapped to the logical interfaces. The mapping of the logical interfaces to the physical ports is shown in the following table:
Table 4- FIPS 140-2 Ports/Interfaces

<table>
<thead>
<tr>
<th>FIPS 140-2 Logical Interface</th>
<th>Port/Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Input</td>
<td>Management, PFE, Console</td>
</tr>
<tr>
<td>Data Output</td>
<td>Management, PFE, Console</td>
</tr>
<tr>
<td>Control Input</td>
<td>Management, PFE, Console, Menu Buttons</td>
</tr>
<tr>
<td>Status Output</td>
<td>Management, PFE, Console, LED, LCD</td>
</tr>
<tr>
<td>Power Interface</td>
<td>Power input, PFE (Power over Ethernet)</td>
</tr>
<tr>
<td>N/A – Disabled</td>
<td>USB, Virtual Chassis</td>
</tr>
</tbody>
</table>

The flow of input and output of data, control, and status is managed by the cryptographic module. Details of each model’s hardware are available in the guides listed in Table 5.

Table 5 – EX Switches Hardware Guides

<table>
<thead>
<tr>
<th>Model</th>
<th>Document Title</th>
<th>Download location</th>
</tr>
</thead>
</table>

6. Identification and Authentication Policy

Assumption of Roles
The cryptographic module supports operator roles as follows:

- Cryptographic Officer (CO)
- User

The cryptographic module enforces the separation of roles using identity-based operator authentication.

Table 6- Roles and Required Identification and Authentication

<table>
<thead>
<tr>
<th>Role</th>
<th>Type of Authentication</th>
<th>Authentication Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>Identity-based operator authentication</td>
<td>Via Console: Username and password</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Via SSH-2: Username and password or ECDSA signature verification</td>
</tr>
<tr>
<td>Cryptographic Officer</td>
<td>Identity-based operator authentication</td>
<td>Via Console: Username and password</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Via SSH-2: Username and password or ECDSA signature verification</td>
</tr>
</tbody>
</table>
Table 7- Strengths of Authentication Mechanisms

<table>
<thead>
<tr>
<th>Authentication Mechanism</th>
<th>Strength of Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username and password</td>
<td>The module enforces 10-character passwords (at minimum) chosen from the 96+ human readable ASCII characters. The module enforces a timed access mechanism as follows: For the first two failed attempt (assuming 0 time to process), no timed access is enforced. The module enforces a 5-second delay before the third attempt is exercised. A new getty is spawned, by default, after the third attempt. If the module is configured to allow more attempts before spawning a new getty then the module enforces an additional 5-second delay for each attempt (e.g. 3rd failed attempt = 10-second delay, 4th failed attempt = 15-second delay, 5th failed attempt = 20-second delay, 6th failed attempt = 25-second delay). The best approach for the attacker would be for the module to be configured to allow greater than 3 attempts before spawning a new getty. The attacker should disconnect after 4 failed attempts and wait for a new getty to be spawned. This would allow the attacker to perform roughly 9.6 attempts per minute (576 attempts per hour/60 mins); this would be rounded down to 9 per minute, because there is no such thing as 0.6 attempts. Thus, the probability of a successful random attempt is 1/96^10, which is less than 1/1 million. The probability of a success with multiple consecutive attempts in a one-minute period is 9/(96^10), which is less than 1/100,000.</td>
</tr>
<tr>
<td>ECDSA signature</td>
<td>The module supports ECDSA (P-256, P-384, and P-521), which has a minimum equivalent computational resistance to attack of either 2^{128} depending on the curve. Thus the probability of a successful random attempt is 1/ (2^{128}), which is less than 1/1,000,000. Processing speed (partial establishment of an SSH session) limits the number of failed authentication attempts in a one-minute period to 5.6e7 attempts. The probability of a success with multiple consecutive attempts in a one-minute period is 5.6e7/(2^{128}), which is less than 1/100,000.</td>
</tr>
</tbody>
</table>

7. Access Control Policy - Roles and Services

Crypto-Officer Role
The Crypto-Officer (CO) configures and monitors the module via a console or SSH connection. The CO has permission to view and edit secrets within the module. Descriptions of the services available to the CO role are provided in Table 8.

User Role
The User role accesses the module’s cryptographic services that include configuring and monitoring the module via the console or SSH. The User Role may not change the configuration. Table 8 lists the services available to the User Role.

<table>
<thead>
<tr>
<th>Role</th>
<th>Authorized Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>User: Configures and monitors the switch via the console, SSH.</td>
<td>Status Checks: Allows the user to get the current status of the switch. SSH-2: Provides encrypted login via the SSH-2 protocol. Console Access: Provides direct login access via the console.</td>
</tr>
</tbody>
</table>
Unauthenticated Services
The cryptographic module supports the following unauthenticated services:

- Show Status: Provides the current status of the cryptographic module (LEDs and LCD).

Non-FIPS Mode Services
The cryptographic module supports the following services in a non-FIPS Approved mode of operation in addition to all the services that are listed above as available in the FIPS Approved mode of operation:

- Change Mode: Configure the module to run in a non-Approved mode: Enabled by crypto-officer
- Telnet and Rlogin, FTP, Finger, RSH, TFTP: Enabled by crypto-officer

8. Critical Security Parameters
Table 9 - Definition of Critical Security Parameters (CSPs)

<table>
<thead>
<tr>
<th>CSP</th>
<th>Description</th>
<th>Zeroizaton</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH-2 Private Host Key</td>
<td>The first time SSH-2 is configured, the key is generated. ECDSA P-256. Used to identify the host.</td>
<td>Zeroize command</td>
<td>Used to identify the host.</td>
</tr>
<tr>
<td>SSH-2 Session Key</td>
<td>Session keys used with SSH-2, Triple-DES-CBC (3 key), AES-CBC/CTR 128, 192, 256, HMAC-SHA-512, HMAC-SHA-256, HMAC-SHA-1 key (160)</td>
<td>Session termination, Zeroize</td>
<td>Symmetric key used to encrypt and authenticate data</td>
</tr>
<tr>
<td>CSP</td>
<td>Description</td>
<td>Zeroizaton</td>
<td>Use</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>Key Agreement Keys</td>
<td>ECDH Private Key (P-256, P-384, or P-521)</td>
<td>command, Power Cycle</td>
<td>between host and client</td>
</tr>
<tr>
<td>User Authentication Password</td>
<td>Stored Salted and hashed with SHA-1, SHA-256, or SHA-512</td>
<td>Zeroize command</td>
<td>Used to authenticate user to the module</td>
</tr>
<tr>
<td>CO Authentication Password</td>
<td>Stored Salted and hashed with SHA-1, SHA-256, or SHA-512</td>
<td>Zeroize command</td>
<td>Used to authenticate COs to the module</td>
</tr>
<tr>
<td>HMAC DRBG Seed</td>
<td>Seed for DRBG</td>
<td>Zeroize command, Power Cycle</td>
<td>For seeding DRBG</td>
</tr>
<tr>
<td>HMAC DRBG V value</td>
<td>The value V of outlen bits, which is updated each time another outlen bits of output are produced</td>
<td>Zeroize command, Power Cycle</td>
<td>A critical value of the internal state of DRBG</td>
</tr>
<tr>
<td>HMAC DRBG Key value</td>
<td>The current value of key. The outlen-bit Key, which is updated at least once each time that the DRBG mechanism generates pseudorandom bits</td>
<td>Zeroize command, Power Cycle</td>
<td>A critical value of the internal state of DRBG</td>
</tr>
<tr>
<td>NDRNG entropy pool</td>
<td>Used as entropy input string to the HMAC DRBG</td>
<td>Zeroize, command, Power Cycle</td>
<td>Entropy input to HMAC DRBG</td>
</tr>
</tbody>
</table>

Table 10 - Definition of Public Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Description/Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH-2 Public Host Key</td>
<td>First time SSH-2 is configured, the key is generated. P-256 ECDSA key. Identifies the host.</td>
</tr>
<tr>
<td>User Authentication Public Keys</td>
<td>Used to authenticate users to the module. ECDSA (P-256, P-384, or P-521)</td>
</tr>
<tr>
<td>CO Authentication Public Keys</td>
<td>Used to authenticate CO to the module. ECDSA (P-256, P-384, or P-521)</td>
</tr>
<tr>
<td>JuniperRootCA</td>
<td>ECDSA P-256 w/ SHA-256 X.509 certificate Used to verify the validity of the PackageCA certificate.</td>
</tr>
<tr>
<td>PackageCA</td>
<td>ECDSA P-256 w/ SHA-256 X.509 certificate Used to verify the validity of the Package Production certificate.</td>
</tr>
</tbody>
</table>
Package Production

<table>
<thead>
<tr>
<th>Package Production</th>
<th>ECDSA P-256 w/ SHA-256 X.509 certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Used to verify the validity of the Juniper image during the firmware load and power-up integrity tests.</td>
</tr>
</tbody>
</table>

ECDH Public Keys

<table>
<thead>
<tr>
<th>ECDH Public Keys</th>
<th>ECDH (P-256, P-384, or P-521)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Used within SSH-2 for key establishment.</td>
</tr>
</tbody>
</table>

Definition of CSP Modes of Access

Table 11 defines the relationship between access to CSPs and the different module services. The modes of access shown in the table are defined as follows:

Table 11- CSP Access Rights within Roles & Services

<table>
<thead>
<tr>
<th>Role</th>
<th>Service</th>
<th>Cryptographic Keys and CSP Access Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R=Read, W=Write, D=Delete, G=Generate</td>
</tr>
<tr>
<td>CO</td>
<td>User</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Configuration</td>
<td>All CSPs (R, W, D)</td>
</tr>
<tr>
<td></td>
<td>Management</td>
<td>SSH-2 Private Host Key (W, D, G)</td>
</tr>
<tr>
<td></td>
<td>Configuration</td>
<td>No access to CSPs</td>
</tr>
<tr>
<td></td>
<td>Management</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Switch Control</td>
<td>No access to CSPs</td>
</tr>
<tr>
<td>X</td>
<td>Status Checks</td>
<td>No access to CSPs</td>
</tr>
<tr>
<td>X</td>
<td>Zeroize</td>
<td>All CSPs (D)</td>
</tr>
<tr>
<td>X</td>
<td>Load New Software</td>
<td>No access to CSPs</td>
</tr>
<tr>
<td>X</td>
<td>SSH-2</td>
<td>SSH-2 session key (R, G)</td>
</tr>
<tr>
<td>X</td>
<td>Console Access</td>
<td>CO Authentication Key, User Authentication Key (R)</td>
</tr>
<tr>
<td>X</td>
<td>Account Management</td>
<td>Creates or removes passwords (W, D)</td>
</tr>
<tr>
<td>X</td>
<td>Self-tests</td>
<td>No access to CSPs</td>
</tr>
<tr>
<td>X</td>
<td>Change Mode</td>
<td>All CSPs (D)</td>
</tr>
</tbody>
</table>

9. Operational Environment

The FIPS 140-2 Operational Environment is a limited operational environment. The module’s operating system is JUNOS OS version 14.1X53-D30.3.
10. Security Rules

The cryptographic module design corresponds to the cryptographic module security rules. This section documents the security rules enforced by the cryptographic module to implement the security requirements of a FIPS 140-2 Level 1 module.

In order to prevent any secure data from being released, it is important to test the cryptographic components of a security module to ensure that all components are functioning correctly. This cryptographic module performs the following self-tests:

- **Power Up Self-Tests:**
 - Cryptographic Algorithm Tests
 - Triple-DES Encrypt Known Answer Test (KAT)
 - Triple-DES Decrypt KAT
 - AES-CBC 128 Encrypt KAT
 - AES-CBC 128 Decrypt KAT
 - AES-CBC 192 Encrypt KAT
 - AES-CBC 192 Decrypt KAT
 - AES-CBC 256 Encrypt KAT
 - AES-CBC 256 Decrypt KAT
 - SHA-256 KAT
 - HMAC-SHA-1 KAT
 - HMAC-SHA-256 KAT
 - HMAC-SHA-384 KAT
 - HMAC-SHA-512 KAT
 - FIPS SP 800-90A HMAC DRBG KAT: includes instantiate, reseed, and generate
 - ECDSA P-256 pairwise consistency test (sign/verify)
 - ECDH P-256 KAT
 - KDF SSH KAT
 - MD HMAC-SHA-1 KAT
 - MD HMAC-SHA-256 KAT
 - MD SHA-512 KAT
 - Firmware integrity test:
 - ECDSA digital signature verification (P-256, SHA-256)
 - Critical functions tests
 - Verification of Limited Environment

- **Conditional self-tests:**
 - Pairwise consistency tests upon key generation:
 - ECDSA pairwise consistency test (sign/verify)
 - ECDH pairwise consistency test
 - Firmware load test: ECDSA digital signature verification (P-256, SHA-256)
 - Continuous random number generator test: performed on the Approved DRBG and on the NDRNGs before each use.

If any of the self-tests fail, the module enters the error state and shuts down.
Any time the cryptographic module is in an idle state, the operator is capable of commanding the modules to perform the power-up self-test by power-cycling the module.

Data output is inhibited during key generation, self-tests, zeroization, and error states.

Status information does not contain CSPs or sensitive data that if misused could lead to a compromise of the modules.

The module supports concurrent operators.

The cryptographic officer must maintain control of the module while zeroization is in process (approximately 10 minutes).

The module is validated with JUNOS 14.1X53-D30.3 firmware. The loading of non-validated firmware nullifies the FIPS 140-2 validation.

11. Physical Security Policy
The module’s physical embodiment is that of a multi-chip standalone device that meets the FIPS 140-2 Level 1 physical security requirements. The module is completely enclosed in rectangular, cold rolled steel, plated steel, and brushed aluminum enclosure with a nickel or clear zinc coating.

12. Mitigation of Other Attacks Policy
The module does not implement any mitigations of other attacks as defined by FIPS 140-2.

13. Guidance

Crypto-Officer Guidance

Enabling FIPS Approved Mode of Operation
The crypto-officer is responsible for initializing the module in a FIPS Approved mode of operation. The FIPS-Approved mode of operation is not automatically enabled. The crypto-officer should follow the steps found in the *Junos OS for EX Series Ethernet Switches, Release 14.1X53 FIPS* document Chapter 2. The steps from the aforementioned document are repeated below:

1. Enter configuration mode:

 root@switch> configure
 Entering configuration mode
 [edit]
 root@switch#

2. Enable FIPS mode on the switch by setting the FIPS level to 1, and verify the level:

 [edit]
 root@switch# set system fips level 1
 [edit]
 root@switch# show system fips level
level 1;

3. Commit the configuration:

 root@switch# commit

The crypto-officer must apply the tamper evident label on the module for a FIPS Approved mode of operation.

Placing the Module in a Non-Approved Mode of Operation
As Crypto-Officer, the operator may need to disable FIPS mode of operation on the switch to return it to non-FIPS operation. To disable FIPS mode on the switch, follow the steps found in the Junos OS for EX Series Ethernet Switches, Release 14.1X53 FIPS document Chapter 2 in the section titled Disabling FIPS Mode.

Tamper Evident Seal
The EX4300 Ethernet Switches require a tamper evident seal over the USB port and over the Virtual Chassis ports (EX4300) to operate in a FIPS Approved mode of operation. The tamper evident seal will show evidence if the USB or Virtual Chassis ports are used. The crypto-officer can obtain tamper evident seals from Juniper Networks using the part number 520-052564.

The crypto-officer is responsible for applying and checking the labels on the module periodically to verify the security of the module is maintained.

Tamper Evident Seal Instructions:
Each switch platform requires a tamper-evident seal on its USB port. In addition, the AUX port or Mini-USB port on certain switches requires a seal, and Virtual Chassis ports on the EX3300 require tamper-evident seals (For details, see the specific instructions for your switch.) For all seal applications, follow these general instructions:

1. Handle the seals with care. Do not touch the adhesive side. Do not cut a seal to make it fit.
2. Make sure all surfaces to which the seals are applied are clean and dry and clear of any residue.
3. Apply the seals with firm pressure across the seal to ensure adhesion. Allow at least 1 hour for the adhesive to cure.

EX4300 Tamper-Evident Seal Application – One (1) tamper-evident seal
One (1) tamper-evident seal is applied to cover the USB port and must be applied to secure the EX4300 cryptographic module.
User Guidance
The user should verify that the module is operating in the desired mode of operation (FIPS Approved mode or Non-Approved mode) by observing the command prompt when logged into the switch. If the string ":fips" is present then the switch is operating in a FIPS Approved mode. Otherwise, it is operating in a Non-Approved mode.

login: fips-user1
Password:

--- JUNOS 14.1X53-D30.3 built 2015-10-02 09:51:00 UTC
{master:0}
fips-user1@cst-ex4300:fips>

14. Acronyms

<table>
<thead>
<tr>
<th>ACRONYM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>Advanced Encryption Standard</td>
</tr>
<tr>
<td>CLI</td>
<td>Command Line Interface</td>
</tr>
<tr>
<td>ECDSA</td>
<td>Elliptic Curve Digital Signature Algorithm</td>
</tr>
</tbody>
</table>
About Juniper Networks

Juniper Networks was founded on a simple but incredibly powerful vision for the future of the network: "Connect everything. Empower everyone."

We believe the network is the single greatest vehicle for knowledge, understanding, and human advancement the world has ever known. We are dedicated to uncovering new ideas and creating the innovations that will serve the exponential demands of the networked world. To do this, we’re leading the charge to architecting the new network, built on simplicity, security, openness and scale.

Copyright © 2016 Juniper Networks, Inc.