Entrust TruePass Applet
Cryptographic Module v7.0

FIPS 140-2 Validation Security Policy

Author: Alan Myrvold
Document Issue: 1.6
Issue Date: May 17, 2004

Abstract: This document describes the Entrust TruePass Applet Cryptographic Module v7.0 Security Policy submitted for validation, in accordance with the FIPS publication 140-2, level 1.
1 Cryptographic Module Definition

This document describes the Entrust TruePass Applet Cryptographic Module v7.0 Security Policy submitted for validation, in accordance with the FIPS publication 140-2, level 1. It is implemented as a multi-chip standalone cryptographic module.

The module consists of the following generic components:

- A commercially available general-purpose hardware computing platform. A generic high-level block diagram for such a platform is provided in Figure 1.

- A commercially available Operating System (OS) that runs on the above platform. For the purpose of this validation, the module was tested on Windows 2000 SP3.

- A commercially available FIPS validated cryptographic kernel operating within a web browser configured in FIPS mode that runs on the above OS.

For example, using Microsoft Internet Explorer with a validated Cryptographic Provider, such as

Microsoft DSS/Diffie-Hellman Enhanced Cryptographic Provider (Version 5.0.1998.1), validated on Windows NT 4.0 as described in FIPS validation certificate 60,

Microsoft Base Cryptographic Provider, Enhanced Cryptographic Provider, Base DSS Cryptographic Provider, and DSS/Diffie-Hellman Enhanced Cryptographic Provider (Version 5.0.1877.6 and 5.0.1877.7), validated on Windows NT 4.0 as described in FIPS validation certificate 68,

Microsoft Base DSS Cryptographic Provider, Base Cryptographic Provider, DSS/Diffie-Hellman Enhanced Cryptographic Provider, and Enhanced Cryptographic Provider validated on Windows 95 and Windows 98 as described in FIPS validation certificate 75,

Microsoft Base DSS Cryptographic Provider, Base Cryptographic Provider, DSS/Diffie-Hellman Enhanced Cryptographic Provider, and Enhanced Cryptographic Provider validated on Windows 2000 as described in FIPS validation certificate 76,
Microsoft Base DSS Cryptographic Provider, Base Cryptographic Provider, DSS/Diffie-Hellman Enhanced Cryptographic Provider, and Enhanced Cryptographic Provider ((Base DSS: 5.0.2150.1391 [SP1], 5.0.2195.2228 [SP2] and 5.0.2195.3665 [SP3]), (Base: 5.0.2150.1391 [SP1], 5.0.2195.2228 [SP2] and 5.0.2195.3839 [SP3]), (DSS/DH Enh: 5.0.2150.1391 [SP1], 5.0.2195.2228 [SP2] and 5.0.2195.3665 [SP3]), (Enh: 5.0.2150.1391 [SP1], 5.0.2195.2228 [SP2] and 5.0.2195.3839 [SP3])) validated Windows 2000 as described in FIPS validation certificate 103,

Microsoft Enhanced Cryptographic Provider (RSAENH) Version 5.1.2600.1029 also known as Base Cryptographic Provider (Versions 5.1.2518.0 and 5.1.2600.1029) validated on Windows XP as described in FIPS validation certificate 238,

Microsoft DSS/Diffie-Hellman Enhanced Cryptographic Provider for Windows XP (Software Version 5.1.2518.0) validated on Windows XP as described in FIPS validation certificate 240,

Microsoft Windows Server 2003 Enhanced DSS and Diffie-Hellman Cryptographic Provider (DSSENH) (Software Version 5.2.3790.0) validated on Windows 2003 as described in FIPS validation certificate 381,

Microsoft Windows Server 2003 Enhanced Cryptographic Provider (RSAENH) (Software Version 5.2.3790.0) validated on Windows 2003 as described in FIPS validation certificate 382,

or using Netscape browser with the Netscape security module:

Netscape Security Module 1 (ID: fipscm_v1) as described in FIPS validation certificate 7,

Netscape Security Module 1.01 (ID: fipscm_v1.01) as described in FIPS validation certificate 45,

Netscape Security Module 1.01 (ID: fipscm_v1.01) as described in FIPS validation certificate 47.

- A software component, called the TruePass Applet Cryptographic Module, is compiled into an applet that runs on the above platform, OS and web browser. This component is custom designed and written by Entrust Inc. in the Java computer language and is identical, at the source code level, for all supported hardware platforms, operating systems and web browsers.
The cryptographic module was tested on the following hardware computing platform and operating system:

1. A Dell OptiPlex GXa Workstation with:
 - 1 Intel Pentium II 266 MHz processors,
 - 128 MB system RAM (DIMM),
 - 2 serial ports and 1 parallel port,
 - a 4.3 GB hard drive
 - PCI Ethernet card.
2. Windows 2000 SP3
3. Netscape Navigator 7.0 and Microsoft Internet Explorer 6.0 SP1.
4. Browser support for Java: either Microsoft VM for Java 5.0.0.3810 or Sun plug-in version 1.4.1

The TruePass Applet Cryptographic Module has been validated on the above platform to FIPS 140-2 level 1 and is suitable on any general purpose computers from the same or other manufacturers, based on compatible processors with equivalent or greater system resources and equivalent or later operating system versions, provided that:

1. The general purpose computer uses the specified single user operating system/mode specified on the validation certificate, or another compatible single user operating system, and
2. The software of the cryptomodule does not require modification when ported (platform specific modifications are excluded).
3. The Browser contains a FIPS module operating in SSL/TLS and FIPS mode.
Figure 1 Cryptographic module block diagram for software (top) and hardware (bottom)
2 Security Policy

This section describes the security policy for the module, as defined in FIPS PUB 140-2 and the companion Test Requirements document. The FIPS 140-2 cryptographic module is defined to be the module identified earlier in section 1 of this document.

2.1 Identification and Authentication Policy

No Authentication - Neither users nor cryptographic officers need to perform any authentication function in order to use the cryptographic module. This type is only acceptable at security level 1.

The cryptographic module supports two roles: user and crypto-officer. An operator performing a service within any role can read and write security-relevant data items only through the invocation of a service by means of the cryptographic module API.

<table>
<thead>
<tr>
<th>Role</th>
<th>Type of Authentication</th>
<th>Authentication Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>None</td>
<td>N/A</td>
</tr>
<tr>
<td>Cryptographic Officer</td>
<td>None</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 1 Roles and required identification and authentication

Table 2 Strengths of Authentication mechanisms

<table>
<thead>
<tr>
<th>Authentication Mechanism</th>
<th>Strength of Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>N/A</td>
</tr>
</tbody>
</table>

2.2 Access Control Policy

The type of services corresponding to each of the supported roles is described in Table 3.

Table 3 Services authorized for roles
An operator is explicitly in the user or cryptographic officer role based upon the services chosen. If any of the cryptographic officer specific services are called upon then the operator is in the cryptographic officer role otherwise the operator is in the user role.

The following FIPS approved basic services are provided by the cryptographic module. In addition, CAST is implemented as a non-FIPS approved algorithm.

2. Bulk data encryption, decryption using FIPS PUB 46-3 3-DES.
3. Signature generation/verification and key wrapping using PKCS#1 RSA.
4. PKCS#1 RSA key generation using a FIPS 186-2 appendix 3.1 compliant software-based pseudo-random number generation algorithm.

The Entrust cryptographic module also provides the following services:
1. Random number generation using a FIPS 186-2 appendix 3.1 compliant software-based algorithm.

The FIPS 140-2 related Security Relevant Data Items (SRDI) include 3-DES keys, RSA private keys, seeds for random number generator and random numbers generated.

Table 4 FIPS 140-2 Approved Services Authorized for Roles

<table>
<thead>
<tr>
<th>Approved Service</th>
<th>Key, Algorithm or Operation</th>
<th>Certificate Number</th>
<th>Accessible Roles</th>
<th>Types of Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>symmetric encryption/</td>
<td>Triple-DES</td>
<td>69</td>
<td>User</td>
<td>Read/Write</td>
</tr>
<tr>
<td>Service</td>
<td>Key, Algorithm or Operation</td>
<td>Accessible Roles</td>
<td>Types of Access</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>decryption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>asymmetric key wrapping</td>
<td>RSA public</td>
<td>Note 1</td>
<td>User</td>
<td></td>
</tr>
<tr>
<td>asymmetric key unwrapping</td>
<td>RSA private</td>
<td>Note 1</td>
<td>User</td>
<td></td>
</tr>
<tr>
<td>asymmetric signature generation</td>
<td>RSA private</td>
<td>Note 1</td>
<td>User</td>
<td></td>
</tr>
<tr>
<td>hash</td>
<td>SHA-1</td>
<td>60</td>
<td>User</td>
<td></td>
</tr>
<tr>
<td>asymmetric key generation</td>
<td>RSA public+private</td>
<td>Note 1</td>
<td>User</td>
<td></td>
</tr>
<tr>
<td>Random number generation</td>
<td>FIPS 186-2 Appendix 3.1</td>
<td>60 (SHA-1 used)</td>
<td>User</td>
<td></td>
</tr>
<tr>
<td>self-test</td>
<td>None</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Installation and configuration of FIPSMode=1</td>
<td>None</td>
<td></td>
<td>Cryptographic Officer</td>
<td>N/A</td>
</tr>
<tr>
<td>Show status</td>
<td>None</td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Vendor Approved PKCS #1

The other services that are not FIPS approved are detailed in Table 5 below.

Table 5: Non-FIPS approved services authorized for roles

<table>
<thead>
<tr>
<th>Service</th>
<th>Key, Algorithm or Operation</th>
<th>Accessible Roles</th>
<th>Types of Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>symmetric encryption/decryption</td>
<td>CAST</td>
<td>User</td>
<td>Read/Write</td>
</tr>
</tbody>
</table>

2.3 Operational Environment

2.3.1 Level 1 Mode of Operation
2.3.1.1 Assumptions

The following assumptions are made about the operating environment of the cryptographic module in Level 1 mode of operation:

1. Unauthorized reading, writing, or modification of the module’s memory space (code and data) by an intruder (human, program or otherwise) is not feasible.

2. Replacement or modification of the legitimate module code by an intruder (human, program or otherwise) is not feasible.

3. The module is initialized to the FIPS 140-2 mode of operation.

These assumptions are also applicable to the server on which the applet normally resides.

2.3.1.2 Policy

1. The browser must contain a FIPS140 validated module.

2. The browser must be configured to operate in SSL/TLS and FIPS mode.

3. The TruePass applet must be configured to run in FIPS mode, as described in section 4.1.

4. The module is to be used by only one operator at a time and must not be actively shared among operators at any period during its lifetime. Also, there must be only one instance of the cryptographic module loaded in RAM at any given time on a given machine.

5. Virtual memory that exists on the platform where the cryptomodule runs must be configured to reside on a local, not a networked, drive.

6. The above conditions must be upheld at all times in order to ensure continued system security after initial setup of the validated configuration. If the module is removed from the above environment, it is assumed to not be operational in the validated mode until such time as it has been returned to the above environment and re-initialized by the user to the validated condition.

3 Physical Security Policy

The physical security of the cryptographic module is provided by the PC that it is being used on. Physical Security requirements for FIPS 140-2 Level 1 modules
are not applicable. The module provides an integrity check of the software as part of the self-test procedure.
4 Installation and Initialization Guidance

4.1 Installation
The following steps are required during installation to operate the TruePass cryptographic module in FIPS mode.

1. Configure the web server to support SSL/TLS.
2. Install the signed applet on the server, as part of the TruePass install.
3. Ensure the FIPSMode setting is set to 1 in the EntrustTruePassClientConfig.js file.
4. Install a FIPS compliant browser on the client machine. No other software is required on the client machine, since the applet is downloaded during initialization. The browser must be configured to operate in SSL/TLS and FIPS mode to ensure integrity of the applet being downloaded. Refer to browser documentation below for configuration, or consult the browser vendor for applicable instructions.

 • Netscape documentation:

 • Microsoft documentation:
 http://support.microsoft.com/support/kb/articles/Q238/2/68.ASP

4.2 Initialization
No software is needed for a client using TruePass, other than a browser. To initialize the TruePass applet, perform these steps.

1. Configure the web server to support SSL/TLS.
2. Navigate to the web server. The SSL/TLS certificate and applet signature will be verified by the browser. The applet self-test will be performed when the applet initializes, if the FIPSMode is set during installation in step 3 of 4.1.

4.3 Self-Tests
The following self-tests are performed.

1. Power up cryptographic tests. The applet performs known answer tests for SHA1, DES (DES is only used to implement Triple-DES), Triple-DES, and RSA. If any one of these tests fails, the module is put into an error state and no cryptographic operations performed nor sensitive data (as described in section 3.2) output with an exception to indicate this. To exit this error state, the module must be restarted.

2. Conditional tests. There are also conditional tests that are performed as described below:
a. Pair-wise Consistency test (as described in AS11.19 of FIPS140-2) is performed every time asymmetric key pairs are generated. Upon failure of test, the keys are regenerated until such time as the test passes.

b. Continuous Random Number Generator test (as described in section AS11.22 of the FIPS140-2) is performed every time a random number is generated. The number is regenerated until such time as the test passes.

5 Mitigation of other attacks policy

The cryptographic module is not designed to mitigate any specific attacks.

Table 5 Mitigation of other attacks

<table>
<thead>
<tr>
<th>Other Attacks</th>
<th>Mitigation Mechanism</th>
<th>Specific Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
6 References

