

Security Policy

for the
Reflection Security Component

04-RSC-0001 Version 2.7

March 2, 2005

This publication may be reproduced, transmitted, transcribed, or translated into any language, in any form by any
means, only in its entirety.

WRQ, the WRQ logo, and Reflection are either registered trademarks or trademarks of WRQ, Inc., in the USA and
other countries. All other trademarks, trade names, or company names referenced herein are used for identification
only and are the property of their respective owners.

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending.

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

Revision Table

Revision # Date Author Description
1.0 4-Mar-04 E. Raisters Initial Submission
2.0 21-Jun-04 E. Raisters, S. Tinsley Added OpenSSL TLS information and addressed

InfoGuard March 19 concerns.
2.1 30-Jul-04 S. Tinsley, E. Raisters Addressed InfoGard June 28 concerns
2.2 2-Sep-04 S. Tinsley Incorporate changes from 8/30/04.
2.3 30-Sep-04 E. Raisters, S. Tinsley,

Z, Evans
Addressed InfoGard Sept 27 comments

2.4 1-Oct-04 E. Raisters Addressed InfoGard Sept 30 comments
2.5 5-Oct-04 S. Tinsley Remove DH Public Exponent from list of CSPs
2.6 25-Feb-05 S. Tinsley Address comments from NIST.
2.7 2-Mar-05 E. Raisters Address comments from NIST.

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 2

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

Table of Contents

1. Module Overview... 4

Cryptographic boundary... 4
2. Security Level... 6
3. Modes of Operation.. 7

Approved mode of operation.. 7
Non-approved mode of operation... 8

4. Ports and Interfaces .. 9
5. Identification and Authentication Policy .. 15

Assumption of roles.. 15
6. Access Control Policy .. 15

Roles and Services.. 15
Services Not Requiring Authentication: ... 17
Definition of Critical Security Parameters (CSPs) ... 19
Definition of Public Keys:.. 19
Definition of CSPs Modes of Access ... 20

7. Operational Environment ... 23
8. Security Rules... 23
9. Physical Security Policy ... 24
10. Mitigation of Other Attacks Policy... 24
11. References .. 25
12. Definitions and Acronyms.. 25

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 3

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

1. Module Overview
The Reflection cryptographic module is a software module that encompasses specific security functions
utilized by the Reflection products. The module consists of several separate Dynamic Link Libraries
(DLLs) that can only be invoked by the Reflection products The physical boundary for the crypto module
(as shown in figure 1) is defined as the enclosure (the PC case) of the computer system on which the
cryptographic software module is to be executed. The module's software boundary (as shown in figure 2)
includes rfips.dll, the openssh module (openssh.dll), the kerberos crypto modules (rscrypto.dll, bdes56.dll,
desauth.dll) and the openssl module (openssl.dll) and the Microsoft CryptoAPI. The physical configuration
of the module as defined in FIPS PUB 140-2, is Multi-Chip Standalone. The primary purpose for this
software module is to provide secure communication over TCP/IP networks between a host computer and a
PC.

This security policy and the FIPS 140-2 validation applies to version 12.0.3 of the cryptographic modules
in the Reflection products.

Cryptographic boundary
The following two block diagrams illustrate the cryptographic module, its relationships to
other components, and the physical and logical cryptographic boundaries. The cryptographic module
includes one third-party component, the FIPS 140-1 validated CryptoAPI cryptographic library, which is
part of the Microsoft Windows operating system. Table 1 details the acceptable CryptoAPI modules and
their FIPS 140-1 certificate number.

Figure 1 – Image of the Physical Boundary of the Cryptographic Module

Monitor

Mouse

Keyboard

Power
Supply

Network Card

Video Port

Mouse Port

Keyboard Port

LPT Port

Serial Port

Hard Disk with
installed s/w
components

S
y
s
t
e
m

B
u
s

Memory

Microprocessor

Crypto Boundary - Computer case

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 4

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

Figure 2 – Diagram of the Logical Boundary of the Cryptographic Module

Operating System

Windows API

Keyboard Driver

r

Network Interface

KERBEROS
CRYPTO

MODULES

OpenSSH
MODULE

RnWIN.EXE

E
rftpcom.dl

rsftp.exe

sftp.exe

rcom.dll

E

ssh_keygen.exe

rskapps.exe

rskrb5.dll
rsgssk5.dll
rssapi.dll

Microsoft
CryptoAPI

rfips.dll

Crypto Module Boundary
Installed Reflection Product
Stdin/Stdout Other Programmi

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending.
winsock.dll
wrqsock.dll

OpenSSL
MODULE
Video Drive
rntelnx.dll

l

RXSTART.EX
RFTP.EX
s

User Authentication, Module
Integrity and Self Test Interface
ng Interfaces

5

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 6

Table 1 – Acceptable CryptoAPI modules

Module Cert#
Base DSS Cryptographic Provider, Base Cryptographic
Provider, DSS/Diffie-Hellman Enchanced Cryptographic
Provider, and Enhanced Cryptographic Provider
(Version 5.0.2150.1)

76

Base DSS Cryptographic Provider, Base Cryptographic
Provider, DSS/Diffie-Hellman Enhanced Cryptographic
Provider, and Enhanced Cryptographic Provider
((Base DSS: 5.0.2150.1391 [SP1], 5.0.2195.2228 [SP2] and
5.0.2195.3665 [SP3]),
(Base: 5.0.2150.1391 [SP1], 5.0.2195.2228 [SP2] and
5.0.2195.3839 [SP3]),
(DSS/DH Enh: 5.0.2150.1391 [SP1], 5.0.2195.2228 [SP2]
and 5.0.2195.3665 [SP3]),
(Enh: 5.0.2150.1391 [SP1], 5.0.2195.2228 [SP2] and
5.0.2195.3839 [SP3]))

103

Enhanced Cryptographic Provider (RSAENH) Version
5.1.2600.1029 also known as Base Cryptographic Provider
(Versions 5.1.2518.0 and 5.1.2600.1029)

238

DSS/Diffie-Hellman Enhanced Cryptographic Provider for
Windows XP
(Software Version 5.1.2518.0)

240

2. Security Level
The cryptographic module meets the overall requirements applicable to Level 1 security of FIPS 140-2.

Table 2 - Module Security Level Specification

Security Requirements Section Level
Cryptographic Module Specification 3
Module Ports and Interfaces 1
Roles, Services and Authentication 1
Finite State Model 1
Physical Security N/A
Operational Environment 1
Cryptographic Key Management 1
EMI/EMC 3
Self-Tests 1
Design Assurance 1
Mitigation of Other Attacks N/A

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

3. Modes of Operation
The module supports both an Approved and a non-Approved mode of operation. The mode of operation is
selected prior to power-up module (before the module instantiation). The module indicates
whether it is in an Approved mode of operation when the operator invokes the Show
Status service.

Approved mode of operation
In FIPS mode, the cryptographic module only supports FIPS Approved algorithms as follows:

• In the OpenSSH client (SSHv2 only):

o RSA or DSA keys (minimum of 1024 bits) for SHA-1 based digital signature generation
and verification

o AES (128-bit key) for encryption

o Triple-DES (168-bit, three key) for encryption

o HMAC-SHA-1 for MACing

o SHA-1 for hashing

o ANSI X9-31 A.2.4 approved deterministic random number generator

o supports the commercially available Diffie-Hellman protocol for key establishment

• In the OpenSSL client:

o RSA or DSA keys (minimum of 1024 bits) for SHA-1 based digital signature generation
and verification

o AES (128-bit key) for encryption

o Triple-DES (168-bit, three key) for encryption

o SHA-1 for hashing

o HMAC-SHA-1 MACing

o HMAC-MD5 for TLS key establishment only (per TLS protocol standard)

o ANSI X9-31 A.2.4 approved deterministic random number generator

o supports the commercially available Diffie-Helman protocol for key establishment

The supported ciphersuites for TLS are:

168 bit key strength
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

128 bit key strength
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_DSS_WITH_AES_128_CBC_SHA

Note: In FIPS mode, the cryptographic module’s Kerberos client supports the following cryptographic
algorithms in order to provide operator authentication only. Not all of these algorithms are FIPS
approved.

• In the Kerberos client (operator authentication only)

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 7

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

o Triple-DES (168-bit, three key)

o DES (56-bit key)

o HMAC-SHA-1 for MACing

o SHA-1 for hashing

o MD5 for hashing

o MD4 for hashing

o FIPS 186-2 approved deterministic random number generator provided by the operating
system’s crypto module.

The cryptographic module may be configured for FIPS mode via the Microsoft Group Policy Editor,
specifying Allow non-FIPS-mode connections = Disabled. The user can determine if the cryptographic
module is running in FIPS vs. non-FIPS mode via execution of the “Show Status” service.

Non-approved mode of operation
In non-FIPS mode, the cryptographic module provides non-FIPS Approved algorithms as follows:

• In the OpenSSH client (SSHv1 and SSHv2):

o RSA and DSA keys (minimum of 512 bits) for digital signature generation and
verification

o RSA-1 keys for user authentication

o Blowfish (128-bit key) for encryption

o Arcfour (128-bit key) for encryption

o CAST (128-bit key) for encryption

o DES (56-bit key) for encryption

o Ripemd160 for hashing

o MD5 for hashing

• In the SSL/TLS encryption module:

o Arcfour (40-, 56- or 128-bit key) for encryption

o DES (56-bit key) for encryption

o MD5 for hashing

o MD4 for hashing

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 8

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

4. Ports and Interfaces
The cryptographic module’s interfaces are defined by the standard PC enclosure. As tested, the ports used
by the module are the keyboard port, monitor port, mouse port, a network port, serial/parallel/USB ports
and a power port/plug. The operating system and application layer software map these ports to the logical
interfaces described in table 3.

Table 3 - - physical port to logical interface map

Physical Port Logical Interface
Keyboard port, mouse port, network port,
serial/parallel/USB ports

Data input

Monitor port , network port Data output
Keyboard port, mouse port,
network port

Control Input

Monitor port , network port Status output
Power interface Power

RFIPS Interface Inputs/Outputs
fipsInitialize – invokes self test services for all the
individual modules. Performs checksum
verification of the crypto module.

Status Output: success/fail

fipsAuthenticate – validates the authentication
token passed by the user

Data input: plaintext authentication token
Status Output: success/fail

fipsMode – returns true if system is in fipsMode. Status Output: true/false(fipsMode)
fipsSatus – returns the fips state of the crypto
module.

Status Output: fipsError/OK

DestroyFile – uses a Wiper class to overwrite and
remove a file.

Data Input: handle to a Wiper, plaintext filename
(and length of filename)

OpenSSH Interface (SSHv2 only) Inputs/Outputs
fipsSelfTest – runs KAT’s for RSA, DSA, AES,
DES, TDES, SHA-1 crypto routines.

Status Output: success/fail

fipsZeroize – Disconnects any current connections
and zeroizes all keys in RAM.

newSSH – Initializes crypto module, authenticates
user and returns class interface that enables access
to SSH API’s.

Data Input: plaintext authentication token (512 bits)
Control Output: Issh class interface
Status Output: success/fail

newSFTP - – Initializes crypto module,
authenticates user and returns class interface that
enables access to SFTP API’s.

Data Input: plaintext authentication token (512 bits)
Control Output: Isftp class interface
Status Output: success/fail

Connect – starts an SSHv2 connection,
authenticates remote host by receiving server public
key and verifying digital signature and/or using
Kerberos authentication. Establishes a shared secret
via Diffie-Hellman and generates Traffic
Encryption Keys based on the shared secret.
Performs user authentication over an encrypted
tunnel by using a password, public key
cryptography or Kerberos authentication Starts
thread to receive further data input/output.

Data Input: host name, user name, status output
 method, password
Status Output: success/fail

ConnectAsync – same as Connect, but users
separate thread to perform functionality and returns

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 9

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

OpenSSH Interface (SSHv2 only) Inputs/Outputs
immediately.
ConnectAsyncCleanup – cleans up ConnectAsync
resources

sftpmain – performs Connect functionality and then
waits for input from the keyboard or batch file,
process input and issues sftp commands.

Data Input: host name, user name, status output
method, password, commands, plaintext data for
file transfer
Data Output: plaintext data for file transfer

Disconnect – terminates connection and removes all
Traffic Encryption Keys from RAM.

Write – sends plaintext data to remote host through
an encrypted tunnel.

Data Input: plaintext, length
Data Output: ciphertext, length
Status Output: success/fail

Read - receives plaintext data from remote host
through an encrypted tunnel.

Data Input: ciphertext, length
Data Output: plaintext, length
Status Output: success/fail

Setting – Displays dialog allowing configuration for
an ssh session to a remote host. The dialog provides
the ability to generate an RSA or DSA
public/private key pair (minimum of 1024 bits)
which can be used to perform user authentication.

Data Input: filename, number bits
Data Output: RSA or DSA public/private key pair

(at least 1024 bits) – not output from
the physical boundary

InitSFTP – sends commands through the encrypted
tunnel to initialize the sftp subsystem.

Status Output: success/fail

pwd – requests and receives the present working
directory on the remote host

Data Output: servers present working directory

ls - requests and receives the directory listing for a
directory on the remote host

Data Input: specified directory, formatting
specifications
Data Output: directory listing
Status Output: success/fail

cd – requests that the present working directory be
changed

Data Input: specified directory
Status Output: success/fail

get – requests a file be transferred to the local
machine from the remote host

Data Input: filename, ciphertext
Data Output: plaintext
Status Output: success/fail

put – requests a file be transferred from the local
machine to the remote host.

Data Input: filename
Data Output: ciphertext
Status Output: success/fail

mkdir - requests that a directory be created on the
remote host.

Data Input: specified directory name
Status Output: success/fail

rm - requests that a file be deleted from the remote
host

Data Input: specified file
Status Output: success/fail

rmdir - requests that a directory on the remote host
be deleted.

Data Input: specified directory
Status Output: success/fail

rename - requests that the a filename be changed on
the remote host.

Data Input: current filename, new filename
Status Output: success/fail

ssh_keygen_main – creates or edits a public/private
keypair.

Data Input: filename, number bits
Data Output: RSA or DSA public/private key pair

(at least 1024 bits) – not output from
the physical boundary

OpenSSL Interface (TLS only) Inputs/Outputs
GetIOpenSSL – Initializes crypto module,
authenticates user and returns class interface that
enables access to the SSL API.

Data Input: plaintext authentication token (512 bits)
Control Output: IOpenSSL class interface
Status Output: success/fail

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 10

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

OpenSSL Interface (TLS only) Inputs/Outputs
fipsSelfTest – runs KAT’s for RSA, DSA, AES,
DES, TDES, SHA-1 crypto routines.

Status Output: success/fail

fipsZeroize – Disconnects any current connections
and zeroizes all keys in RAM.

setSecLevel – set’s the minimum key length the
module will negotiate for the data encryption
algorithm. Default results in making all approved
combinations available.

Data Input: plaintext socket ID
Control Input: plaintext key length

setTLSTimeout – sets the timeout value for the
handshake process.

Data Input: plaintext socket ID
Control Input: timeout value

setProperty – sets other properties. A socket ID
must be used to associate the property with a
session.

useRwebProxy – true if the cx is routed through
the RWeb Proxy Server.
 RwebProxyToken – an identification token for
authenticating to the Proxy Server.
WRQAsyncSelect – fn to call for socket activity
notifications.

Control Input: socket ID (optional)
Data Input: plaintext property type(below) and
value:

startSecurity – starts the TLS handshake process
based on an active socket connection. The
handshake process negotiates with the server the
key exchange method, the encryption algorithm and
hash algorithm. After the handshake, this process
authenticates the remote host by receiving server
public key and verifying digital signature. A shared
secret is established either with the module sending
an RSA encrypted secret or both sides calculating
the secret via Diffie-Hellman A master secret is
calculated from the shared secret and used to
generate Traffic Encryption Keys. The server can
request a client certificate for Client Authentication
during the handshake process. The module obtains
the appropriate client certificate from the operating
system’s certificate store and sends it to the server
after receiving the request. On successfully
completing the handshake, this service starts a
thread to receive further ciphertext data from the
server.

Data Input: socket ID, host name
Status Output: success/fail

shutdown – sends a TLS Close Notify message to
the server and calls the Winsock shutdown function.

Data Input: plaintext socket ID, plaintext Winsock
shutdown type

closesocket – terminates connection and removes
all Traffic Encryption Keys from RAM.

Data Input: plaintext socket ID

send – sends plaintext data to remote host through
an encrypted tunnel.

Data Input: plaintext, length
Data Output: length
Status Output: success/fail

recv - receives plaintext data (previously decrypted)
from remote host.

Data Output: plaintext, length
Status Output: success/fail

getSecLevel – returns the negotiated strength of
encryption for the session identified by the socket
ID.

Data Input: plaintext, socket ID
Data Output: plaintext, encryption strength

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 11

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

OpenSSL Interface (TLS only) Inputs/Outputs
setTLSTimeout – returns the timeout value for the
handshake process.

Data Input: plaintext socket ID
Data Output: plaintext timeout value

select – overrides the Winsock select function to
provide information on whether decrypted data is
available to the caller, and if the socket is ready to
write.

Data Input: plaintext FDs of sockets to check,
plaintext timeout value

FreeOpenssl – zeroizes any remaining CSPs and
frees the library from memory.

Data Input: plaintext Interface address, plaintext
Handle for the dll module.

Note: The following are interfaces in the kerberos crypto module that provide
operator authentication only.
Kerberos Interface Inputs/Outputs
csSelfTest – runs KAT’s for kerberos crypto
libraries – DES, TDES, MD5, SHA-1.

Status Output: success/fail

csZeroize – zeroizes all keys in RAM as well as any
cache files on disk.

csFipsMode – reports whether or not the module is
in an approved mode.

csInitialize - Initializes crypto module and
authenticates the user.

Data Input: plaintext authentication token (512 bits)
Status Output: success/fail

csEncrypt – encrypts plaintext data according to an
encryption context.

Control Input: encryption context established by
calling csUseType and csProcessKey
Data Input: plaintext, length
Data Output: ciphertext
Status Output: success/fail

csBulkEncrypt – encrypts plaintext data according
to an encryption context.

Control Input: encryption context established by
calling csUseBulkType and csBulkProcessKey
Data Input: plaintext, length
Data Output: ciphertext
Status Output: success/fail

csUseType – creates an encryption context and
establishes the encryption algorithm to use for the
context.

Data Input: encryption type
Control Output: encryption context

csUseBulkType – creates an encryption context and
establishes the encryption algorithm to use for the
context.

Data Input: encryption type
Control Output: encryption context

csProcessKey – sets the encryption key to use for
an encryption context.

Control Input/Output: encryption context
Data Input: key identifier

csBulkProcessKey - sets the encryption key to use
for an encryption context.

Control Input/Output: encryption context
Data Input: key identifier

csFinishKey – frees the resources of an encryption
context

csBulkFinishKey - frees the resources of an
encryption context

csEncryptCredEncPart – encodes a kerberos
message using ASN.1, part of which contains
encrypted data containing an encryption key.

Data Input: structured kerberos data
 (including ID of a key to be encrypted)
keyID (used to encrypt parts of the message)
Data Output: encoded data, part of which is
 ciphertext
Status Output: success/fail

csEncryptAuthenticator – ASN.1 encodes a
kerberos message, part of which contains encrypted
data containing an encryption key.

Data Input: structured kerberos data
 (including ID of a key to be encrypted)
keyID (used to encrypt parts of the message)
Data Output: encoded data, part of which is

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 12

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

Kerberos Interface Inputs/Outputs

 ciphertext
Status Output: success/fail

csDecrypt – decrypts plaintext data according to an
encryption context.

Control Input: encryption context established by
 calling csUseType and csProcessKey
Data Input: ciphertext, length
Data Output: plaintext
Status Output: success/fail

csBulkDecrypt – decrypts plaintext data according
to an encryption context.

Control Input: encryption context established by
 calling csUseBulkType and csBulkProcessKey
Data Input: plaintext, length
Data Output: ciphertext
Status Output: success/fail

csUseType – creates an encryption context and
establishes the encryption algorithm to use for the
context.

Data Input: encryption type
Control Output: encryption context

csUseBulkType – creates an encryption context and
establishes the encryption algorithm to use for the
context.

Data Input: encryption type
Control Output: encryption context

csProcessKey – sets the encryption key to use for
an encryption context.

Control Input/Output: encryption context
Data Input: key identifier

csBulkProcessKey - sets the encryption key to use
for an encryption context.

Control Input/Output: encryption context
Data Input: key identifier

csFinishKey – frees the resources of an encryption
context

csBulkFinishKey - frees the resources of an
encryption context

csDecryptKDCReply – decrypts a kerberos
message and decodes it using ASN.1. Part of this
message contains a new encryption key, which is
stored in RAM and assigned a new ID.

Data Input: ciphertext, keyID
Data Output: structured kerberos data, key ID
Status Output: success/fail

csDecryptAPReply - decrypts a kerberos message
and decodes it using ASN.1. Part of this message
contains a new encryption key, which is stored in
RAM and assigned a new ID.

Data Input: ciphertext, keyID
Data Output: structured kerberos data, key ID
Status Output: success/fail

csCalculateChkSum – computes the checksum of
the given data

Data Input: checksum type, data, length
Data Output: checksum
Status Output: success/fail

csVerifyChkSum - computes the checksum of the
given data

Data Input: checksum type, data, length, checksum
Status Output: success/fail

csStrToKey – derives an encryption key from a
given string

Data Input: encryption type,
 string (typically a user’s password)
Data Output: key ID
Status Output: success/fail

csGenerateRandomKey – generates a new
encryption key

Data Input: seed
Data Output: keyID
Status Output: success/fail

csBulkGenerateRandomKey – generates a new
encryption key

Data Input: seed
Data Output: keyID
Status Output: success/fail

csIsValidEncKey – tests a key to make sure it is
valid and cryptographically strong

Data Input: key ID
Status Output: success/fail

csIsValidBulkEncKey – tests a key to make sure it
is valid and cryptographically strong

Data Input: key ID
Status Output: success/fail

csAddKeyVariant – does an exclusive or on the Data Input: key ID

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 13

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

Kerberos Interface Inputs/Outputs
key data with a known constant
csValidType – determines if the specified
encryption type is supported

Data Input: encryption type
Status Output: success/fail

csValidBulkEncType – determines if the specified
encryption type is supported

Data Input: encryption type
Status Output: success/fail

csRandConfounder – gets a random number,
intended to be used as a unique session identifier or
an IV

Data Input: number of bytes
Data Output: random bytes

csCopyKeyBlockContents – copies the key data of
the specified ID, stores the copy in RAM with a
different ID

Data Input: key ID
Data Output: key ID

csCopyKeyBlock– copies the key data of the
specified ID, stores the copy in RAM with a
different ID

Data Input: key ID
Data Output: key ID

csFreeKeyBlock – zeroizes the key data and frees
its resources

Data Input: key ID

csCleanupKeyBlock – zeroizes the key data and
frees its resources

Data Input: key ID

FileCachePtr – returns an interface pointer to the
file management class

Control Output: interface pointer to file
management cache

MemoryCachePtr– returns an interface pointer to
the memory management class

Control Output: interface pointer to memory
management cache

Open – opens a cache for read/write access Data Input: cache name
Control Output: cache handle
Status Output: success/fail

Close – closes an opened cache. Control Input: cache handle
Destroy – destroys a cache. Data Input: cache name
Seek – advances cache handles current read/write
location.

Control Input: cache handle
Status Output: success/fail

SkipVer – sets the cache handles current read/write
location just after the cache version number.

Control Input: cache handle
Status Output: success/fail

ReadKey – reads in bytes from the cache and store
them in RAM as key data. Assigns an ID to the key
data that is returned to the user

Data Output: key ID
Status Output: success/fail
Control Input: cache handle

Write – writes out data to the cache. Control Input: cache handle
Data Input: data, number bytes
Status Output: success/fail

WriteKey – writes out the specified key data to the
cache in plaintext form.

Control Input: cache handle
Data Input: key ID
Status Output: success/fail

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 14

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

5. Identification and Authentication Policy

Assumption of roles
The Reflection for Windows Cryptographic module has a single Authenticated User (programmatic entity)
which may access all services implemented in the cryptographic module through the proprietary API. In
addition, the module identifies a Crypto Officer role responsible for zeroization services. The module also
provides role based authentication through the Kerberos services.

The module shall not support a maintenance role.

Table 4 - Strength of authentication mechanisms

Authentication Mechanism Strength of Mechanism
Kerberos operator
authentication

The strength of authentication is a minimum of 1 in 2^56
(1 in 72,057,594,037,927,936) for a single guess.

Authentication Bitstring The strength of authentication is a minimum of 1 in 32^16
(1 in 1,208,925,819,614,629,174,706,176) for a single
guess.

6. Access Control Policy
Services are programmatically invoked through a C or C++ based Application Programming Interface.

Roles and Services
Table 5 – Services for Roles

Role Services
Authenticated User:
This role shall
provide all of the
services necessary for
the secure transport of
data over an insecure
TCP/IP network.

OpenSSH (SSHv2)
• Connect

Establishes a network connection with a remote host, authenticates the
server using public key cryptography, uses Diffie-Hellman to establish
a shared secret which is used to establish keys for an encrypted tunnel.
Also passes user authentication data through the encrypted tunnel.

• Disconnect
Terminates connection with remote host.

• Send Data
Sends data through an encrypted tunnel.

• Receive Data
Receives data through an encrypted tunnel.

• Generate RSA/DSA key pair
Creates an RSA or DSA public/private key pair of a specified key
length (at least 1024 bits).

• SFTP commands
Processes a variety of file management commands through an
encrypted tunnel.

OpenSSL (TLS only)
• ConfigureSession

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 15

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

Role Services

Configures the parameters for creating a new TLS session.
• StartSecurity

Establishes a network connection with a remote host, authenticates the
server using public key cryptography, uses RSA or Diffie-Hellman to
exchange/establish a shared secret which is used to establish keys for an
encrypted tunnel.

• Disconnect
Terminates connection with remote host.

• Send Data
Sends data through an encrypted tunnel.

• Receive Data
Receives data through an encrypted tunnel.

• Get Session Data
Obtains the value of the session parameters.

• Free Interface
Frees the interface from memory.

Note: The following are interfaces that only provide operator authentication.
Kerberos
• Encrypt

Encrypts data (DES/TDES).
• Encode and Encrypt

Encodes and encrypts data (DES/TDES).
• Decrypt

Decrypts data (DES/TDES).
• Decrypt and Decode

Decrypts (DES/TDES) and decodes data.
• Calculate CheckSum

Calculates the checksum of the given data.
• Verify CheckSum

Calculates the checksum of the given data and compares it with a given
checksum.

• String To Key
Derives a key (DES/TDES) from a string (typically a users password).

• Generate Key
Uses Microsoft's RNG, CryptGenRandom, to produce a symmetric key
of the specified key type (DES/TDES).

• Is Key Valid
Verifies that a key (DES/TDES) is of the correct form.

• Add Key Variant
Adds variance to a key by xoring a known constant to the key.

• Is Valid Encryption Type
Determines if a specified ID correctly identifies a valid encryption type
supported within the module.

• Random Number
Uses Microsoft's RNG, CryptGenRandom, to produce a specified
number of random bytes.

• Copy Key
Makes a duplicate copy of a key in memory.

• Cleanup Key
Zeroizes and removes a key from memory.

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 16

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

Role Services

• Get File Cache
Returns an interface pointer that enables access to file cache
management routines.

• Get Memory Cache
Returns and interface pointer that enables access to memory cache
management routines.

• Open
Prepares a specified cache for read/write access.

• Close
 Closes a specified cache.
• Destroy
 Zeroizes and deletes a specified cache.
• Exists
 Determines if a specified cache exists.
• Seek

Advances the file descriptor for specified cache.
• Read

Reads in the data from the cache.
• ReadKey

Reads in data from the cache and uses them as a key (DES/TDES).
• Write

Writes out data to the cache.
• WriteKey

Writes out key data to the cache.
CryptoOfficer • Zeroize

This service actively destroys all plaintext critical security parameters.
In addition to calling this service, the Crypto Officer must manually
delete the associated files described in Crypto Officer Guide document.

• Zeroize File
Zeroizes a specified file

Services Not Requiring Authentication:
The cryptographic module supports the following services, which do not require authentication:

• Initialize: Runs the Self-tests and verifies that the module has not been modified.
• Authenticate: Validates the authentication token passed by the user
• Show status: This service provides the current status of the cryptographic module.
• Zeroize: This service actively destroys all plaintext critical security parameters.
• Zeroize File: Zeroizes a given file

Kerberos services not requiring authentication
• ASN1 Encoding: Encodes kerberos data structures
• ASN1 Decoding: Decodes data into kerberos structures
• Memory Allocation
• Memory Deallocation
• Utility Functions

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 17

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

Table 6 - Specification of Service Inputs & Outputs

Service Control Input Data Input Data Output Status Output

RFIPS Services
Initialize success/fail
Authenticate auth token success/fail
Show status error or OK
Zeroize plaintext data
Zeroize file plaintext data

OpenSSH Services
Get SSH interface auth token success/fail
Connect connection

parameters
 success/fail

Disconnect success/fail
Send Data plaintext data ciphertext data error on fail
Receive Data ciphertext data plaintext data error on fail
Generate RSA/DSA
key pair

key type filename
number bits

public key
private key
(not output from
physical boundary)

success/fail

SFTP commands plaintext/ciphertext ciphertext/plaintext success/fail

OpenSSL Services
Get SSL interface auth token error on fail
Configure Session Session parameters success/fail
StartSecurity plaintext data success/fail
Disconnect plaintext data success/fail
Send Data plaintext data ciphertext data error on fail
Receive Data ciphertext data plaintext data error on fail
Get Session Data plaintext data plaintext data success/fail
Free interface plaintext data success/fail

Kerberos Services
Note: The following interfaces provide operator authentication only.

Encrypt plaintext ciphertext success/fail
Encode and Encrypt structured plaintext ciphertext success/fail
Decrypt ciphertext plaintext success/fail
Decrypt and Decode ciphertext structured plaintext success/fail
Calculate
CheckSum

 plaintext/ciphertext checksum success/fail

Verify CheckSum plaintext/ciphertext
, checksum

 success/fail

String To Key key type plaintext success/fail
Generate Key key type,

key ID (seed)
 success/fail

Is Valid Key key ID success/fail
Add Key Variance key ID success/fail
Is Valid Encryption
Type

ID success/fail

Random Number number bytes random bytes success/fail
Copy Key key ID success/fail

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 18

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

Service Control Input Data Input Data Output Status Output

Cleanup Key key ID success/fail
Get File Cache success/fail
Get Memory Cache success/fail
Open cache name success/fail
Close handle success/fail
Destroy cache name success/fail
Exists cache name success/fail
Seek handle,

number bytes
 success/fail

Read handle,
number bytes

plaintext/ciphertext plaintext/ciphertext success/fail

ReadKey handle,
key type

plaintext success/fail

Write handle plaintext/ciphertext plaintext/ciphertext success/fail
WriteKey handle,

key ID
 plaintext success/fail

Definition of Critical Security Parameters (CSPs)
The following are CSPs contained in the module:

• Traffic Encryption Key (TEK): This is a TDES or AES key used to encrypt or digitally sign data.
There are four different TEK’s used in OpenSSH (inbound decryption, outbound encryption,
inbound signature, outbound signature). All of theses TEK’s are separate and different from each
other, but are derived from the same Diffie-Helman shared secret. For OpenSSL, there are the
same four TEK types. These two are separate and different from each other, and are derived from
the TLS master secret computed during the TLS handshake process.

• Kerberos Traffic Encryption Key (KTEK): This is a DES or TDES key used to encrypt a
message.

• User’s Private Key: This is the private part of a user’s DSA or RSA Public/Private key pair. It
may be generated by the module and must be at least 1024 bits. It is used to generate DSA or
RSA signatures.

• Authentication Bitstring: This is 128 bit hexadecimal string used to authenticate a user.

• User’s Password: This is a password that is entered by the user via the keyboard.

• DH Private Exponent : The client’s private exponent that is used to help compute the DH Shared
Secret. This value is obtained by using the modules PRNG.

• DH Shared Secret: This is the secret shared between the client and the server once the Diffie-
Helman key establishment protocol is finished.

• ANSI X9.31 PRNG internal state: This is the set of internal information related to the modules
PRNG.

Definition of Public Keys:
The following are the public and private keys contained or input in the module:

• User’s Public Key: This is the public part of a user’s DSA or RSA Public/Private key pair. It is
generated by the module for use by other entities.

• Server’s Public Key: This the public part of a server’s RSA or DSA Public/Private key pair used
to verify the server’s public key signature.

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 19

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

• Diffie-Helman Public Key: This is the public part of a Diffie-Helman key exchange used for

establishing the shared secret key.

Definition of CSPs Modes of Access
Table 7 defines the relationship between access to CSPs and the different module services. The modes of
access shown in the table are defined as follows:

• Get Authentication Bitstring: This operation reads in the authentication bitstring (Auth token in
table 7) from a plaintext file.

• Receive Server’s Public Key: This operation reads in the server’s public key (RSA or DSA) from
the network and is later used to verify the server’s signature.

• Generate DH Private Exponent : This operation uses the modules DRNG to obtain an appropriate
exponent that can be used in the Diffie-Helman key establishment protocol.

• Establish DH Secret: This operation uses the private exponent and other publicly known
parameters to establish the Diffie-Helman shared secret with a remote server.

• Generate TEK: This operation generates the Traffic Encryption Key’s for data that is to be
transmitted and received through out the session or until a new key is generated. There are four
different TEK’s used in OpenSSH (inbound decryption, outbound encryption, inbound signature,
outbound signature). All of theses TEK’s are separate and different from each other, but are
derived from the same Diffie-Helman shared secret.

• Generate IV: This operation generates the Initialization Vector that will be used to initialize the
encryption algorithm prior to encrypting data.

• Select User’s Private Key: This operation reads in the user’s private key (RSA or DSA) that is to
be used to compute the signature of some data as a means to authenticate the user.

• Get Password: This operation prompts the user for a password, which is entered via the keyboard.

• Encrypt Password: This operation use a TEK to encrypt the users ssh password which is to be sent
to the server.

• Destroy TEK: This operation erases the Traffic Encryption Key that was used to encrypt data
throughout the session. This operation is performed at the end of the session or when a new TEK
has been established.

• Get TEK: This operation accesses the TEK from RAM. It is used to either decrypt or encrypt
data.

• Generate User’s Public/Private Key Pair: This operation generates an RSA or DSA public/private
key pair of at least 1024 bits. The private key is stored on disk and can be used to compute
authentication data.

• Store User’s Public/Private Key Pair: This operation stores a public/private key pair on disk.

• Derive KTEK: This operation uses a password to derive a DES or TDES Kerberos Traffic
Encryption Key, which in turn is used to encrypt the initial kerberos authentication message.

• Generate KTEK: This operation generates a Kerberos Traffic Encryption Key to be used to
encrypt data.

• Add Variance to KTEK: This operation adds key variance to a Kerberos Traffic Encryption Key
by xoring a known constant to the key.

• Wrap KTEK: This operation encrypts a Kerberos Traffic Encryption Key using an previously
established KTEK.

• Unwrap KTEK: This operation decrypts the Wrapped KTEK that was received with the incoming

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 20

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

message. A previously established KTEK is used to do this.

• Get KTEK: This operation gets the KTEK associated with a specified ID and returns the key data.

• Set KTEK: This operation sets the KTEK to be used to encrypt a message.

• Destroy KTEK: This operation deletes the KTEK used to encrypt a message.

• Copy KTEK: This operation makes a duplicate copy of a KTEK.

• Read KTEK: This operation reads in a plaintext KTEK from the disk or shared memory.

• Write KTEK: This operation writes out a plaintext KTEK to disk or shared memory.

• Zeroize TEK : This operation zeroizes all TEKs stored in. In addition to the zeroization API call,
the Crypto Officer must manually delete the associated files described in Crypto Officer Guide
document.

• Zeroize KTEK: This operation zeroizes all KTEKs stored in memory.

• Zeroize Cache: This operation zeroizes all file based KTEKs stored on the computer’s file system.

• Access ANSI X9.31 PRNG : This opertation accesses internal information related to the PRNG
once it has been intialized.

Table 7 - CSP Access Rights within Roles & Services

Service Cryptographic Keys and CSPs Access Operation

RFIPS Services
Zeroize Zeroize TEK

Zeroize KTEK
Zeroize Cache

Zeroize File Zeroize Cache

OpenSSH Services
Get SSH interface Get Auth Token
Connect Receive Servers Public Key

Generate DH Private Exponent
Access ANSI X9.31 PRNG
Establish DH Shared Secret
Generate TEK’s
Access ANSI X9.31 PRNG
Generate IV’s
Access ANSI X9.31 PRNG
Select User’s Private Key
Get Password
Get Kerberos Authentication Data

Disconnect Destroy TEK’s
Send Data Get TEK
Receive Data Get TEK
Generate RSA/DSA key pair Generate User’s Public/Private Key Pair

Access ANSI X9.31 PRNG
Store User’s Public/Private Key Pair

SFTP commands Get TEK

OpenSSL Services

Get SSL interface Get Auth Token
Configure Session

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 21

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

Service Cryptographic Keys and CSPs Access Operation

StartSecurity Receive Servers Public Key
Generate DH Private Exponent
Access ANSI X9.31 PRNG
Establish DH Shared Secret
Generate TEK’s
Access ANSI X9.31 PRNG
Generate IV’s
Access ANSI X9.31 PRNG
Select User’s Private Key

Disconnect Destroy TEK’s
Send Data Get TEK
Receive Data Get TEK
Get Session Data
Free interface Destroy TEK’s

Kerberos Services
Note: The following are interfaces provide operator authentication only.

Encrypt Set KTEK
Destroy KTEK

Encode and Encrypt Set KTEK
Wrap KTEK
Destroy KTEK

Decrypt Set KTEK
Destroy KTEK

Decrypt and Decode Set KTEK
Unwrap KTEK
Destroy KTEK

Calculate CheckSum Set KTEK
Destroy KTEK

Verify CheckSum Set KTEK
Destroy KTEK

String To Key Derive KTEK
Generate Key Generate KTEK
Is Valid Key Get KTEK
Add Key Variance Get KTEK

Add Key Variance to KTEK
Is Valid Encryption type
Random Number
Copy Key Copy KTEK
Cleanup Key Destroy KTEK
Get File Cache
Get Memory Cache
Open
Close
Destroy
Exists
Seek
Read
ReadKey Read KTEK
Write
WriteKey Write KTEK

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 22

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

7. Operational Environment
The cryptographic module is designed to run as DLLs (Dynamic Link Libraries) on Microsoft Windows
NT kernel x86 based systems (Windows 2000 and XP) in Single User Mode. Multiple concurrent
operators are not supported. The module was tested on a Windows 2000 Professional workstation with SP3
and Q326886 Hotfix, configured as specified in EAL-4 Augmented Common Criteria report (CCEVS-VR-
02-0025).

8. Security Rules
The example cryptographic module’s design corresponds to the example cryptographic module’s security
rules. This section documents the security rules enforced by the cryptographic module to implement the
security requirements of this FIPS 140-2 Level 1 module.

1. The cryptographic module shall provide one operator role. This is the Authenticated User role.

2. When the module has not been placed in a valid role, the operator shall not have access to any
cryptographic services.

3. The cryptographic module shall encrypt session communications traffic using either 3DES or AES
algorithms. DES algorithms are included for legacy use only.

4. The cryptographic module shall perform the following tests:

A. Power up Self-Tests:

1. Software Integrity Test (HMAC SHA-1 hash verification)

2. Cryptographic algorithm tests:

Note: OpenSSL and OpenSSH use a separate, but identical copy of OpenSSL’s crypto library.
Kerberos has a unique and separate implementation. Each module performs self-tests for
algorithms it has implemented and uses in approved mode. The following list shows the
algorithms that each module implements as well as the self-test it performs.

 OpenSSH and OpenSSL

1. 3DES Known Answer Test

2. AES Known Answer Test

3. HMAC-SHA-1 Known Answer Test

4. SHA-1 Known Answer Test

5. RSA Known Answer Test

6. DSA Known Answer Test

Kerberos

1. 3DES Known Answer Test

2. DES Known Answer Test

3. HMAC-SHA-1 Known Answer Test

4. SHA-1 Known Answer Test

5. MD5 Known Answer Test

6. MD4 Known Answer Test

7. CRC Known Answer Test

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 23

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

B. Conditional Self-Tests:

 OpenSSH and OpenSSL

1. Continuous Random Number Generator (RNG) test – performed on OpenSSH
and OpenSSL DRNG

2. RSA pairwise consistency test

3. DSA pairwise consistency test

5. At any time the cryptographic module is in an idle state, the operator can command the module to
perform the power-up self-test by calling the SelfTest service available with the rfips.dll.

6. Prior to each use, the internal RNG shall be tested using the conditional test specified in FIPS 140-
2 §4.9.2.

7. Data output shall be inhibited during key generation, self-tests, zeroization, and error states.

9. Status information shall not contain CSPs or sensitive data that, if misused, could lead to a
compromise of the module.

This section documents the security rules imposed by the vendor:

1. The module shall not support the update of the logical serial number (DLL file version).

2. The module shall not send or receive “application data” until the appropriate protocol handshake
has succeeded.

3. The module does not support multiple concurrent operators.

4. The module shall enforce a timed access protection mechanism that supports at most 60
authentication attempts per minute.

5. The Kerberos client only ensures FIPS-approved authentication of the operator and does not
provide FIPS-approved data confidentiality or integrity.

6. Kerberos administrators need to ensure that their password policy is defined with the following
minimum characteristics, in order to ensure that strength of authentication meets FIPS 140-2
requirements:

a. Minimum password length 6

b. Must include at least one each of upper and lower case alpha, numeric and special
characters.

9. Physical Security Policy
The Reflection security component is a cryptographic module that are implemented completely in software,
hence the physical security section of FIPS 140-2 is not applicable. The tested platform is a Dell OptiPlex
GX1 personal computer which meets applicable Federal Communication Commission (FCC)
Electromagnetic Interference (EMI) and Electromagnetic Compatibility (EMC) requirements for Class B
home or business use as defined in Subpart B of FCC Part 15.

10. Mitigation of Other Attacks Policy
This section does not apply. The module was not designed to mitigate attacks outside of the scope of FIPS
140-2.

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 24

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

11. References
DES algorithm – “Data Encryption Standard (DES)”, FIPS Pub 46-3 [October 25, 1999].
AES algorithm – “Advanced Encryption Standard (AES)”, FIPS Pub 197 [November 26, 2001].
SHA algorithm – “Secure Hash Standard”, FIPS Pub 180-2 [August 1, 2002].
DRNG algorithm – “Digital Signature Standard (DSS), FIPS pub 186-2 [January 27, 2000].
OpenSSH – “SSH Protocol Architecture”, IETF SecSH WG Draft #15 [October, 2003].
 “SSH Transport Layer Protocol”, IETF SecSH WG Draft #15 [October, 2003].
 “SSH Authentication Protocol”, IETF SecSH WG Draft #18 [September, 2002].
 “SSH Connection Protocol”, IETF SecSH WG Draft #18 [October, 2003].
 “SSH file Transfer Protocol”, IETF SecSH WG Draft #5 [January, 2004].
 “GSSAPI Authentication and Key Exchange for the Secure Shell Protocol”, IETF SecSH WG

Draft #7 [September 12, 2003].
Kerberos – “The Kerberos Network Authentication Service (V5)”, IETF RFC 1510 [January, 1993].
 “Telnet Authentication – Version 5”, IETF RFC 2942 [September, 2000].
GSSAPI – “The Kerberos Version 5 GSS-API Mechanism”, IETF RFC 1964 [June, 1996]
TLS – “The TLS Protocol, Version 1.0”, IETF RFC 2246 [January, 1999]
 “Advanced Encryption Standard (AES) Ciphersuites for Transport Layer Security”,

IETF RFC 3268 [June 2002]

12. Definitions and Acronyms
3DES (Triple DES) – The particular block cipher which is the U.S. Data Encryption Standard for DES,

with two or three different keys. The 56-bit algorithm is used three times in sequence, usually
encrypting with first 56-bit key, decrypting with the second 56-bit key and encrypting with the either a
last or the first 56-bit key.

AES (Advanced Encryption Standard) – NIST recently selected encryption algorithm to use as the newest
U.S. data encryption standard in FIPS 197. The algorithm selected is the Rijndael algorithm, which is
a variable block and key-length algorithm. The algorithm was selected in a public competition from
five finalists.

Approved Mode – The state of the cryptographic modules with allows only the use of FIPS approved
algorithms and protocols

DES (Data Encryption Standard) – The particular block cipher which is the U.S. Data Encryption Standard
as established by NIST in FIPS 46-1. A 64-bit block cipher with a 56-bit key organized as 16 rounds of
operations. The DES algorithm has been published and extensively scrutinized for potential
weaknesses. It has never been broken, but has been cracked by computerized brute force attack.

Diffie-Hellman key exchange – A method of establishing a shared key over an insecure medium, named
after the inventors. The security of Diffie-Hellman relies on the difficulty of the discrete logarithm
problem (which is believed to be computationally equivalent to factoring large integers). This
algorithm is commonly accepted and commercially available.

DSA (Digital Signature Algorithm) – A digital signature algorithm as established by NIST in FIPS 186-2.
GSSAPI (Generic Security Service Application Programmers Interface) – a library and a set of C-binding

routines that may be used for authentication, integrity checking and encryption as defined in IETF RFC
1964.

HMAC (Keyed-Hashed Message Authentication) – A mechanism for message authentication using
cryptographic hash functions, as defined in IETF RFC 2104.

Kerberos – A DES-based authentication system developed at MIT as part of project Athena and
subsequently incorporated into a growing collection of commercial products (including Microsoft’s
Windows 2000 and XP). Kerberos assumes that the systems themselves can be secured (KDC and
application servers) but the network between them is insecure. It is specified in IETF RFCs 1510 and
2942.

MD-4™ – A proprietary (to RSA Data Security) message digest function that is a three-pass algorithm that
produces a 128-bit digest.

MD-5™ – A proprietary (to RSA Data Security) message digest function that is a four-pass algorithm that
produces a 128-bit digest.

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 25

Security Policy for the Reflection Security Component
04-RSC-0001 Version: 2.6

© 2005 WRQ, Inc. All rights reserved. USA Patents Pending. 26

PKCS #12 (Public-Key Cryptography System) – A document produced and distributed by RSA Data
Security (a Security Dynamics company), proposing techniques for storing and transporting a user’s
private keys, certificates or other secrets in a safe and interoperable manner. Defined in IEEE P1363
and RSA’s PKCS #12 specification.

DRNG (Deterministic Random Number Generator) – A standard computational tool which creates a
sequence of apparently unrelated numbers used in cryptography for secret keys, but whose sequence of
operations is fully determined by its initial state. Each result, and each next state, is directly
determined by the previous state of the mechanism, all the way back to the original seed. Such a
sequence is often called pseudo-random, to distinguish it from a really random sequence somehow
composed of independent unrelated values. A FIPS-approved DRNG is defined In FIPS 186-2.

RC-4™ - Another proprietary (patented by RSA Data Security) secret key stream algorithm that effectively
produces an unbounded length pseudorandom stream from a varying key length. Common key lengths
are 40 and 128-bit. Named after its inventor, Ron Rivest, the acronym stands for Rivest’s Cipher #4.
This algorithm is the most commonly used one for secure web transactions. Arcfour is the claimed
public domain equivalent of the RC-4 algorithm.

RSA™ – The name of an algorithm published by Ron Rivest, Adi Shamir, and Len Adleman (thus,
R.S.A.). The first major public key system. Based on number-theoretic concepts and using huge
numerical values, a RSA key must be perhaps ten times or more as long as a secret key for similar
security. The RSA cryptographic algorithms are trademarked and patented, and so licensing and
royalty fees must be paid to RSA Data Security (a Security Dynamics company) for use. Many of the
US patents expired in the year 2000. Since the RSA algorithm is proprietary and has not been publicly
scrutinized, it is unknown whether it can be broken or cracked, or if it might contain back-door access.

SHA-1 (Secure Hash Algorithm) – A 160-bit message digest function defined by the NIST in FIPS 180-1.
SSL (Secure Sockets Layer) – A secure communications protocol developed by Netscape to provide

authentication via public key, message integrity checking via SHA or MD5 and encryption with RC4
or DES algorithms. Current version is 3.1.

ssh™ (Secure Shell) – A protocol that provides support for secure remote login, secure file transfer, and
secure TCP/IP and X11 forwardings. It can automatically encrypt, authenticate, and compress
transmitted data. SSH is developed by SSH Communications Security Ltd. in Finland and the name
“ssh” is trademarked.

SSHv2, SSH2 – A protocol that is used to secure terminal sessions and arbitrary TCP-connections. SSH2-
protocol is based on SSH1-protocol, developed by Tatu Ylönen. This is an evolving standard protocol
being worked on by the Secure Shell working group of the IETF.

TLS (Transport Layer Security) – The new name for the next generation SSL protocol defined as a public
standard in IETF RFC 2246. The protocol is composed of two layers: the TLS Record Protocol and
the TLS Handshake Protocol. At the lowest level, layered on top of some reliable transport protocol
(e.g., TCP), is the TLS Record Protocol which provides connection security. Above that the TLS
Handshake Protocol, allows the server and client to authenticate each other and to negotiate an
encryption algorithm and cryptographic keys before the application protocol transmits or receives its
first byte of data. Current version is 1.0 and does not, by default, interoperate with SSL 3.x although a
backward compatibility mechanism is incorporated into the standard.

Unapproved Mode – The state of the cryptographic modules with allows the use of non-FIPS approved
algorithms and protocols.

	1. Module Overview
	Cryptographic boundary

	2. Security Level
	3. Modes of Operation
	Approved mode of operation
	Non-approved mode of operation

	4. Ports and Interfaces
	
	
	
	
	
	
	Inputs/Outputs
	Inputs/Outputs
	Inputs/Outputs
	Inputs/Outputs

	5. Identification and Authentication Policy
	Assumption of roles

	6. Access Control Policy
	Roles and Services
	Services Not Requiring Authentication:
	
	
	Kerberos services not requiring authentication
	ASN1 Encoding: Encodes kerberos data structures

	Definition of Critical Security Parameters (CSPs)
	Definition of Public Keys:
	Definition of CSPs Modes of Access
	
	
	
	
	OpenSSL Services
	Kerberos Services

	7. Operational Environment
	8. Security Rules
	9. Physical Security Policy
	10. Mitigation of Other Attacks Policy
	11. References
	12. Definitions and Acronyms

