
This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows CE, Windows Mobile, Windows Embedded Compact RSAENH Security Policy 1

Microsoft Windows CE and Windows
Mobile Enhanded Cryptographic
Provider 6.00.1937 and Microsoft
Windows Embedded Compact
Enhanced Cryptographic Provider
7.00.1687

FIPS 140-2 Documentation: Security Policy

12/4/2012 5:03:12 PM

Document Version 1.2

Abstract

This document specifies the security policy for the Microsoft Windows CE and Windows Mobile
Enhanced Cryptographic Provider 6.00.1937 (RSAENH) and Microsoft Windows Embedded
Compact Enhanced Cryptographic Provider 7.00.1687 (RSAENH) as described in FIPS PUB 140-
2.

Windows Embedded CE, Windows Mobile, and Windows Embedded Compact Operating Systems

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 2

INTRODUCTION………………………………………………………………..3

SECURITY POLICY……………………………………………………………4

PLATFORM COMPATIBILITY………………………………………………6

PORTS AND INTERFACES………………………..………………………...7

SPECIFICATION OF ROLES………………………………………………..9

SPECIFICATION OF SERVICES…………………………………………..11

CRYPTOGRAPHIC KEY MANAGEMENT……………………………….21

SELF-TESTS……………………………………………………………………..25

MISCELLANEOUS………………………………………………..…………...27

CONTENTS

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 3

Microsoft Windows CE and Windows Mobile Enhanced Cryptographic Provider
(RSAENH) 6.00.1937 and Microsoft Windows Embedded Compact Enhanced
Cryptographic Provider 7.00.1687 (RSAENH) is a general-purpose, software-based,
cryptographic module for Windows CE, Windows Mobile, and Windows Embedded
Compact. Like cryptographic providers that ship with Microsoft Windows Embedded
Compact, RSAENH encapsulates several different cryptographic algorithms in an
easy-to-use cryptographic module accessible via the Microsoft CryptoAPI. It can be
dynamically linked into applications by software developers to permit the use of
general-purpose cryptography. Microsoft Windows CE and Windows Mobile
Enhanced Cryptographic Provider (RSAENH) 6.00.1937 and Windows Embedded
Compact Enhanced Cryptographic Provider 7.00.1687 (RSAENH) meet the Level 1
FIPS 140-2 Validation requirements.

Cryptographic Boundary

The Microsoft Windows CE and Windows Mobile Enhanced Cryptographic Provider
6.00.1937 and Microsoft Windows Embedded Compact Enhanced Cryptographic
Provider 7.00.1687 (RSAENH) consists of a single dynamically-linked library (DLL)
named RSAENH.DLL. The cryptographic boundary for RSAENH is defined as the
enclosure of the computer system on which the cryptographic module is to be
executed. The physical configuration of the module, as defined in FIPS PUB 140-2,
is Multi-Chip Standalone.

INTRODUCTION

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 4

RSAENH operates under several rules that encapsulate its security policy.
• RSAENH is supported on Windows CE, Windows Mobile, and Windows

Embedded Compact.
• Windows CE, Windows Mobile, and Windows Embedded Compact are a single

user operating system, with only one interactive user context.
• All services implemented within RSAENH are available to the User and Crypto-

officer roles.
• RSAENH stores RSA keys in the system registry, but relies on Microsoft

Windows Embedded Compact for the covering of the keys prior to storage. For
FIPS purposes, these keys can be considered to be stored in PlainText, and
are outside the module boundary.

• RSAENH supports the following FIPS 140-2 Approved algorithms

- RSA PKCS #1 (v1.5) / X9.31 sign and verify with private and public key

(Certs. #230 and #1052)

- Triple-DES keypair derivation - Derived keys cannot be used for
encryption. They can be used to support authentication services only.

- Triple-DES keypair generation
- Triple-DES ECB / CBC encrypt/decrypt (Certs. #526 and #1308)

- Triple-DES 112 keypair generation
- Triple-DES 112 ECB / CBC encrypt/decrypt (Certs. #526 and #1308)

- AES 128 / 192 / 256 keypair derivation - Derived keys cannot be used for

encryption. They can be used to support authentication services only.
- AES 128 / 192 / 256 keypair generation
- AES ECB / CBC encrypt/decrypt (Certs. #516 and #2024)

- SHA-1 hash (Certs. #589 and #1774)

- SHA-256, SHA-384, SHA-512 (Certs. #589 and #1774)

- SHA-1 based Keyed-Hash Message Authentication Code (HMAC) (Certs.

#267 and #1227)
- SHA-2 based Keyed-Hash Message Authentication Code (HMAC) i.e.

HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512. (Certs. 267 and
#1227)

- Approved Software Pseudo Random Number Generation (PRNG) (seeded

by non-Approved PRNG) (FIPS 186-2, Appendix 3.1 and 3.3, Regular, X-
Original, SHA-1 G function, Seed-key 64 bytes only) (Certs. #292 and
#1060)

• RSAENH supports the following non-Approved algorithms

SECURITY POLICY

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 5

- DES keypair derivation
- Derived keys cannot be used for encryption. They can be used to support

authentication services only.
- DES keypair generation
- DES ECB / CBC encrypt/decrypt

- RSA keypair generation (key sizes from 384 to 16384) (the RSAENH

module does not implement the Approved X9.31 algorithm for keypair
generation)

- RSA encrypt and decrypt with private and public key

- RC2 keypair derivation (key sizes from 40 to 128)
- RC2 keypair generation (key sizes from 40 to 128)
- RC2 ECB / CBC encrypt/decrypt

- RC4 keypair derivation (key sizes from 40 to 128)
- RC4 keypair generation
- RC4 encrypt/decrypt

- MD2 hash
- MD4 hash
- MD5 hash
- MD5 based Keyed-Hash Message Authentication Code (HMAC)

- non-Approved Software Psuedo Random Number Generator (PRNG)

(seeded by hardware data, and by application-provided data)

- Lan Manager Hash Generation

• RSAENH performs these Power-On Self-Tests
- AES Encrypt / Decrypt Known Answer Test
- DES Encrypt / Decrypt Known Answer Test
- Triple-DES Encrypt / Decrypt Known Answer Test
- SHS (SHA -1, SHA-256, SHA-384, SHA-512) Known Answer Test
- HMAC (SHA-1, SHA-256, SHA-386, SHA-512) Known Answer Test
- RSA Sign / Verify using a Sign / Verify test with a Known Signature with

PKCS#1 v1.5
- RSA Sign / Verify using a Sign / Verify test with a Known Signature with

X9.31
- FIPS 186-2 PRNG Known Answer Test
- Software Integrity Test

• RSAENH performs these Conditional Self-Tests

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 6

- CRNGT test for Approved PRNG
- Pair-wise consistency test for RSA key generation

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 7

RSAENH has been tested/validated in the following configurations

1. Microsoft Windows CE 6.00 (single user mode) w/ x86 processor, Microsoft
Windows CE 6.0 (single user mode) w/ARMv4i processor, Microsoft
Windows CE 6.0 (single user mode) w/MIPS-IV processor, Microsoft
Windows CE 6.00 (single user mode) w/SH4 processor

2. Microsoft Windows CE 6.0 R2 (single user mode) w/x86 processor,
Microsoft Windows CE 6.0 R2 (single user mode) w/ARMv4i processor,
Microsoft Windows CE 6.00 R2 (single user mode) w/MIPS-IV processor,
Microsoft Windows CE 6.0 R2 (single user mode) w/SH4 processor

3. Microsoft Windows Embedded Compact 7 (single user mode) w/ x86
processor, Microsoft Windows Embedded Compact 7 (single user mode) w/
ARMv5 processor, Microsoft Windows Embedded Compact 7 (single user
mode) w/ ARMv6 processor, Microsoft Windows Embedded Compact 7
(single user mode) w/ ARMv7 processor, Microsoft Windows Embedded
Compact 7 (single user mode) w/ MIPS-II processor

RSAENH is also compliant on platforms running Microsoft Windows CE 6.0 R3 and
Windows Mobile, although it has not been validated in those configurations.

PLATFORM
COMPATIBILITY

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 8

Data Input Interface
The Data Input Interface for the Microsoft Windows CE and Windows Mobile
Enhanced Cryptographic Provider 6.00.1937 (RSAENH) and Microsoft Windows
Embedded Compact Enhanced Cryptographic Provider 7.00.1687 (RSAENH) is a
software interface, where applications invoke software functions to perform specific
operations. Data and options are passed to the interface as parameters to the
function. Data Input is kept separate from Control Input by passing Data Input in
separate parameters from Control Input.

Data Output Interface
The Data Output Interface for the Microsoft Windows CE and Windows Mobile
Enhanced Cryptographic Provider 6.00.1937 (RSAENH) and Microsoft Windows
Embedded Compact Enhanced Cryptographic Provider 7.00.1687 (RSAENH) is a
software interface, where applications invoke software functions to perform specific
operations. Data and metadata are returned to the application in some cases as
return values from the function, and in other cases as output parameters from the
function.

Control Input Interface

The Control Input Interface for the Microsoft Windows CE and Windows Mobile
Enhanced Cryptographic Provider 6.00.1937 (RSAENH) and Microsoft Windows
Embedded Compact Enhanced Cryptographic Provider 7.00.1687 (RSAENH) is a
software interface, where applications invoke software functions to perform specific
operations. Options for control operations are passed as parameters to the
function. The specific functions in RSAENH are: CryptAcquireContext,
CryptGetProvParam, CryptSetProvParam, CryptReleaseContext, CryptDeriveKey
(Derived keys cannot be used for encryption. They can be used to support
authentication services only.), CryptDestroyKey, CryptExportKey, CryptGenKey,
CryptGenRandom, CryptGetKeyParam, CryptGetUserKey, CryptImportKey,
CryptSetKeyParam, CryptDecrypt, CryptEncrypt, CryptCreateHash,
CryptDestroyHash, CryptGetHashParam, CryptHashData, CryptHashSessionKey,
CryptSetHashParam, CryptSignHash, CryptVerifySignature, CryptDuplicateHash,
A_SHAInit, A_SHAUpdate, A_SHAFinal, BSafeComputeKeySizes,
BSafeDecPrivate, BSafeEncPublic, BSafeGetPubKeyModulus, BSafeMakeKeyPair,
tripledes3key, tripledes, CBC, DES_ECB_LM, HMACMD5Init, HMACMD5Update,
HMACMD5Final, MD2Update, MD2Final, MD4Init, MD4Update, MD4Final, MD5Init,
MD5Update, MD5Final, MDbegin, MDupdate, RC2Key, RC2KeyEx, RC2, deskey,
des, rc4_key, rc4. These functions are described in more detail below. Data Input
is kept separate from Control Input by passing Data Input in separate parameters
from Control Input.

Status Output Interface
The Status Output Interface for the Microsoft Windows CE and Windows Mobile
Enhanced Cryptographic Provider 6.00.1937 (RSAENH) and Microsoft Windows
Embedded Compact Enhanced Cryptographic Provider 7.00.1687 (RSAENH) is a

PORTS AND
INTERFACES

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 9

software interface, where applications invoke software functions to perform specific
operations. For these functions, status information is returned to the application as
the return value from the function, with a non-zero return value indicating success,
and a zero return value indicating failure, and the GetLastError function return a
specific error code in the case of failure: CryptAcquireContext,
CryptGetProvParam, CryptSetProvParam, CryptReleaseContext, CryptDeriveKey
Derived keys cannot be used for encryption. They can be used to support
authentication services only.), CryptDestroyKey, CryptExportKey, CryptGenKey,
CryptGenRandom, CryptGetKeyParam, CryptGetUserKey, CryptImportKey,
CryptSetKeyParam, CryptDecrypt, CryptEncrypt, CryptCreateHash,
CryptDestroyHash, CryptGetHashParam, CryptHashData, CryptHashSessionKey,
CryptSetHashParam, CryptSignHash, CryptVerifySignature, CryptDuplicateHash.
These function can not fail, and no status code is returned: A_SHAInit,
A_SHAUpdate, A_SHAFinal, BSafeGetPubKeyModulus, tripledes3key, tripledes,
CBC, HMACMD5Init, HMACMD5Update, HMACMD5Final, MD2Update, MD2Final,
MD4Init, MD4Update, MD4Final, MD5Init, MD5Update, MD5Final, MDbegin,
MDupdate, RC2Key, RC2KeyEx, RC2, deskey, des, rc4_key, rc4. These functions
return non-zero on success, and zero on failure, with no specific error code being
available: BSafeComputeKeySizes BSafeDecPrivate BSafeEncPublic
BSafeMakeKeyPair. These functions return zero on success, and non-zero on
failure, with no specific error code being available: DES_ECB_LM.

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 10

RSAENH supports both a User and Cryptographic Officer roles (as defined in FIPS
PUB 140-2). Both users have access to all services implemented in the
cryptographic module.

An application requests the crypto module to generate keys for a user. Keys are
generated, used and deleted as requested by applications. There are not implicit
keys associated with a user.

Maintenance Roles

Maintenance roles are not supported by RSAENH.

Multiple Concurrent Operators

Multiple concurrent operators are not supported.

SPECIFICATION OF
ROLES

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 11

The following list contains all services available to an operator. All services are
accessible by all operators.

Key Storage Functions
For some functions, RSAENH stores keys in the system registry. The task of
covering the keys prior to storage in the system registry is delegated to the Data
Protection API (DPAPI) of Microsoft Windows CE, Windows Mobile, and Windows
Embedded Compact, a separate component of the operating system, and outside
the boundaries of the cryptographic module. For FIPS purposes, these keys can be
considered to be stored in PlainText, and are outside the module boundary.

CryptAcquireContext

The CryptAcquireContext function is used to acquire a handle to a particular key
container via a particular cryptographic service provider (CSP). This returned
handle can then be used to make calls to the selected CSP.

This function performs two operations. It first attempts to find a CSP with the
characteristics described in the dwProvType and pszProvider parameters. If the
CSP is found, the function attempts to find a key container matching the name
specified by the pszContainer parameter.

With the appropriate setting of dwFlags, this function can also create and destroy
key containers.

If dwFlags is set to CRYPT_NEWKEYSET, a new key container is created with the
name specified by pszContainer. If pszContainer is NULL, a key container with the
default name is created.

If dwFlags is set to CRYPT_DELETEKEYSET, The key container specified by
pszContainer is deleted. If pszContainer is NULL, the key container with the default
name is deleted. All key pairs in the key container are also destroyed and memory
is zeroized.

When this flag is set, the value returned in phProv is undefined, and thus, the
CryptReleaseContext function need not be called afterwards.

CryptGetProvParam

The CryptGetProvParam function retrieves data that governs the operations of the
provider. This function may be used to enumerate key containers, enumerate
supported algorithms, and generally determine capabilities of the CSP.

CryptSetProvParam

The CryptSetProvParam function customizes various aspects of a provider’s
operations.

SPECIFICATION OF
SERVICES

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 12

CryptReleaseContext

The CryptReleaseContext function releases the handle referenced by the hProv
parameter. After a provider handle has been released, it becomes invalid and
cannot be used again. In addition, key and hash handles associated with that
provider handle may not be used after CryptReleaseContext has been called.

Key Generation and Exchange Functions

The following functions provide interfaces to the cryptomodule’s key generation and
exchange functions.

CryptDeriveKey

The CryptDeriveKey function generates cryptographic session keys derived from a
hash value. This function guarantees that when the same CSP and algorithms are
used, the keys generated from the same hash value are identical. The hash value is
typically a cryptographic hash (SHA-1, etc.) of a password or similar secret user
data.

This function is the same as CryptGenKey, except that the generated session keys
are derived from the hash value instead of being random and CryptDeriveKey can
only be used to generate session keys. It cannot generate public/private key pairs.
(Derived keys cannot be used for encryption. They can be used to support
authentication services only.)

CryptDestroyKey

The CryptDestroyKey function releases the handle referenced by the hKey
parameter. After a key handle has been released, it becomes invalid and cannot be
used again.

If the handle refers to a session key, or to a public key that has been imported into
the CSP through CryptImportKey, this function zeroizes the key in memory and
frees the memory that the key occupied. If the handle refers to a public/private key
pair, this function destroys only the handle and zeroizes any in-memory copies – if
the public/private key pair resides in the key storage area in the system registry,
then to destroy that copy, the CryptAcquireContext function must be called, passing
the CRYPT_DELETEKEYSET flag.

CryptExportKey

The CryptExportKey function exports cryptographic keys from a cryptographic
service provider (CSP) in a secure manner for key archival purposes.

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 13

A handle to a private RSA key to be exported may be passed to the function, and
the function returns a key blob. This private key blob can be sent over a nonsecure
transport or stored in a nonsecure storage location. The private key blob is useless
until the intended recipient uses the CryptImportKey function on it to import the key
into the recipient's CSP. Key blobs are exported either in plaintext or encrypted
with a symmetric key. If a symmetric key is used to encrypt the blob then a handle
to the private RSA key is passed in to the module and the symmetric key referenced
by the handle is used to encrypt the blob. Any of the supported symmetric
cryptographic algorithm’s may be used to encrypt the private key blob (DES, Triple-
DES, RC4 or RC2).

Public RSA keys are also exported using this function. A handle to the RSA public
key is passed to the function and the public key is exported, always in plaintext as a
blob. This blob may then be imported using the CryptImportKey function.

Symmetric keys may also be exported encrypted with an RSA key using the
CryptExportKey function. A handle to the symmetric key and a handle to the public
RSA key to encrypt with are passed to the function. The function returns a blob
(SIMPLEBLOB) which is the encrypted symmetric key.

Symmetric keys may also be exported by wrapping the keys with another symmetric
key. The wrapped key is then exported as a blob and may be imported using the
CryptImportKey function.

In order for this function to operate in a FIPS Approved manner, the operator must
ensure that keys used to encrypt / protect other keys, should be at least as strong
as the key that they are used to protect.

CryptGenKey

The CryptGenKey function generates a random cryptographic key. A handle to the
key is returned in phKey. This handle can then be used as needed with any
CryptoAPI function requiring a key handle.

The calling application must specify the algorithm when calling this function.
Because this algorithm type is kept bundled with the key, the application does not
need to specify the algorithm later when the actual cryptographic operations are
performed.

This function uses the Approved PRNG implementation to generate the key, for
both symmetric and asymmetric keys.

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 14

CryptGenRandom

The CryptGenRandom function fills a buffer with random bytes, implementing an
Approved Psuedo Random Number Generator (PRNG). The random number
generation algorithm is based on the SHS based RNG from FIPS 186. During the
function initialization, a seed, to which SHA-1 is applied to create the output
random, is created by calling the Windows CE, Windows Mobile, or Windows
Embedded Compact function CeGenRandom that is implemented outside
RSAENH, in the file system. CeGenRandom is pseudo random function that uses
several sources of randomness from the OS and hardware:
• The process ID of the current process requesting random data
• The thread ID of the current thread within the process requesting random data
• A 32bit tick count since the system boot
• The current local date and time
• Platform provided hardware Random Number Seed, if available
• Platform provided unique serial number, if available
• CeGetRandomSeed – a 64-bit number that is updated with the low five bits of

the current millisecond counter whenever there is a thread switch or a system
call.

• The cursor position, as returned by GetMessagePos, on systems with a cursor.
• The amount of free and allocated memory as returned by GlobalMemoryStatus
• The amount of free and allocated space in the object store as returned by

GetStoreInformation.
• Data passed to CeGenRandom by applications, as a random number seed.

CryptGetKeyParam

The CryptGetKeyParam function retrieves data that governs the operations of a
key.

CryptGetUserKey

The CryptGetUserKey function retrieves a handle of one of a user's public/private
key pairs.

CryptImportKey

The CryptImportKey function transfers a cryptographic key from a key blob into a
cryptographic service provider (CSP).

Private keys may be imported as blobs and the function will return a handle to the
imported key.

A symmetric key encrypted with an RSA public key is imported into the
CryptoImportKey function. The function uses the RSA private key exchange key to
decrypt the blob and returns a handle to the symmetric key.

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 15

Symmetric keys wrapped with other symmetric keys may also be imported using
this function. The wrapped key blob is passed in along with a handle to a
symmetric key which the module is supposed to use to unwrap the blob. If the
function is successful then a handle to the unwrapped symmetric key is returned.

The CryptImportKey function recognizes a new flag CRYPT_IPSEC_HMAC_KEY.
The flag allows the caller to supply the HMAC key material of size greater than 16
bytes. Without the CRYPT_IPSEC_HMAC_KEY flag, the CryptImportKey function
would fail with NTE_BAD_DATA if the caller supplies the HMAC key material of size
greater 16 bytes.

CryptSetKeyParam

The CryptSetKeyParam function customizes various aspects of a key's operations.
This function is used to set session-specific values for symmetric keys.

CryptDuplicateKey

The CryptDuplicateKey function is used to duplicate, make a copy of, the state of a
key and returns a handle to this new key. The CryptDestroyKey function must be
used on both the handle to the original key and the newly duplicated key.

Data Encryption and Decryption Functions

The following functions provide interfaces to the cryptomodule’s data encryption and
decryption functions.

CryptDecrypt

The CryptDecrypt function decrypts data previously encrypted using CryptEncrypt
function.

CryptEncrypt

The CryptEncrypt function encrypts data. The algorithm used to encrypt the data is
designated by the key held by the CSP module and is referenced by the hKey
parameter.

Hashing and Digital Signature Functions

The following functions provide interfaces to the cryptomodule’s hashing and digital
signature functions.

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 16

CryptCreateHash

The CryptCreateHash function initiates the hashing of a stream of data. It returns to
the calling application a handle to a CSP hash object. This handle is used in
subsequent calls to CryptHashData and CryptHashSessionKey in order to hash
streams of data and session keys. SHA-1, SHA2 and MD5 are the cryptographic
hashing algorithms supported. In addition, a MAC using a symmetric key is created
with this call and may be used with any of the symmetric block ciphers support by
the module (DES, Triple-DES, RC4 or RC2). For creating a HMAC-FIPS compliant
hash value, the caller specifies the CALG_HMAC flag in the Algid parameter, and
the HMAC key using a hKey handle obtained from calling CryptImportKey.

CryptDestroyHash

The CryptDestroyHash function destroys the hash object referenced by the hHash
parameter. After a hash object has been destroyed, it can no longer be used.

All hash objects should be destroyed with the CryptDestroyHash function when the
application is finished with them.

CryptGetHashParam

The CryptGetHashParam function retrieves data that governs the operations of a
hash object. The actual hash value can also be retrieved by using this function.

CryptHashData

The CryptHashData function adds data to a specified hash object. This function and
CryptHashSessionKey can be called multiple times to compute the hash on long
data streams or discontinuous data streams. Before calling this function, the
CryptCreateHash function must be called to create a handle of a hash object.

CryptHashSessionKey

The CryptHashSessionKey function computes the cryptographic hash of a key
object. This function can be called multiple times with the same hash handle to
compute the hash of multiple keys. Calls to CryptHashSessionKey can be
interspersed with calls to CryptHashData. Before calling this function, the
CryptCreateHash function must be called to create the handle of a hash object.

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 17

CryptSetHashParam

The CryptSetHashParam function customizes the operations of a hash object. For
creating a HMAC-FIPS compliant hash associated with a hash object identified the
hHash handle, the caller uses the CryptSetHashParam function with the
HP_HMAC_INFO flag to specify the necessary SHA-1 algorithm using the
CALG_SHA1 flag in the input HMAC_INFO structure. The CSP is using the inner
and outer string values as documented in the HMAC-FIPS as its default values.
The caller should not specify the pbInnerString and pbOuterString fields in the
HP_HMAC_INFO structure.

CryptSignHash

The CryptSignHash function signs data. Because all signature algorithms are
asymmetric and thus slow, the CryptoAPI does not allow data be signed directly.
Instead, data is first hashed and CryptSignHash is used to sign the hash. The
crypto module supports signing with RSA. The default format is PKCS#1 (v1.5),
while the X9.31 format is supported by passing the CRYPT_X931_FORMAT flag.

CryptVerifySignature

The CryptVerifySignature function verifies the signature of a hash object. Before
calling this function, the CryptCreateHash function must be called to create the
handle of a hash object. CryptHashData or CryptHashSessionKey is then used to
add data or session keys to the hash object. The crypto module supports verifying
RSA signatures. The default format is PKCS#1 (v1.5), while the X9.31 format is
supported by passing the CRYPT_X931_FORMAT flag.

After this function has been completed, only CryptDestroyHash can be called using
the hHash handle.

CryptDuplicateHash

The CryptDuplicateHash function is used to duplicate, make a copy of, the state of a
hash and returns a handle to this new hash. The CryptDestroyHash function must
be used on both the handle to the original hash and the newly duplicated hash.

Additional Low-Level Functions

These low-level functions are also available through RSAENH, and provide a
subset of the functions described above. (The cryptographic functions described
above are implemented on the basis of these lower-level functions.)

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 18

A_SHAInit

A_SHAUpdate

A_SHAFinal

The A_SHAInit function initializes a SHA1 hash object. A_SHAUpdate is used to
hash data, and A_SHAFinal completes the hash operation, leaving the resulting
hash value in the hash object.

BSafeComputeKeySizes

BSafeComputerKeySizes computes the number of bytes required for the public and
private keys, based on a particular key size.

BSafeDecPrivate

BSafeDecPrivate decodes a block of encrypted text, resulting in plaintext. For this
function, the application maintains storage of the key pair.

BSafeEncPublic

BSafeEncPublic encodes a block of plain text, resulting in encrypted text. For this
function, the application maintains storage of the key pair.

BSafeGetPubKeyModulus

BSafeGetPubKeyModulus returns the modulus of a public key.

BSafeMakeKeyPair

BSafeMakeKeyPair generates a public / private key pair of the specified size,
placing the keys in storage maintained by the application.

tripledes3key

tripledes

The tripledes2key and tripledes functions implement Triple-DES key generation,
encryption, and decryption operations.

CBC

CBC performs cipher block chaining.

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 19

DES_ECB_LM

The DES_ECB_LM function implements a Lan Manager hashing function. (This
algorithm is not FIPS 140-2 Approved.)

HMACMD5Init

HMACMD5Update

HMACMD5Final

The HMACMD5Init, HMACMD5Update, and HMACMD5Final functions implement
HMAC MD5 operations. (This algorithm is not FIPS 140- 2 Approved.)

MD2Update

MD2Final

The MD2Update and MD2Final functions implement MD2 hashing operations. (This
algorithm is not FIPS 140-2 Approved.)

MD4Init

MD4Update

MD4Final

The MD4Init, MD4Update and MD4Final functions implement MD4 hashing
operations. (This algorithm is not FIPS 140-2 Approved.)

MD5Init

MD5Update

MD5Final

The MD5Init, MD5Update and MD5Final functions implement MD5 hashing
operations. (This algorithm is not FIPS 140-2 Approved.)

MDbegin

MDupdate

The MDbegin and MDupdate functions implement MD4 hashing operations. (This
algorithm is not FIPS 140-2 Approved.)

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 20

RC2Key

RC2KeyEx

RC2

The RC2Key, RC2KeyEx, and RC2 functions implement RC2 key generation,
encryption, and decryption operations. (This algorithm is not FIPS 140-2
Approved.)

deskey

des

The des and deskey functions implement DES key generation, encryption, and
decryption operations. (This algorithm is not FIPS 140-2 Approved.)

rc4_key

rc4

The rc4_key and rc4 functions implement RC4 key generation, encryption, and
decryption operations. (This algorithm is not FIPS 140-2 Approved.)

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 21

The RSAENH cryptomodule manages keys in the following manner.

Key Material

RSAENH handles the following security-related information (secret and private
cryptographic keys, authentication data, and other protected information):

Type of Key Access Privileges Roles With Access To
RSA Signature Keys Read / Write / Update /

Erase / Zeroize
User, Cryptographic
Operator

RSA Key Exchange Keys Read / Write / Update /
Erase / Zeroize

User, Cryptographic
Operator

AES Keys Read / Write / Update /
Erase / Zeroize

User, Cryptographic
Operator

DES Keys Read / Write / Update /
Erase / Zeroize

User, Cryptographic
Operator

Triple-DES Keys Read / Write / Update /
Erase / Zeroize

User, Cryptographic
Operator

SHA-1 HMAC Keys Read / Write / Update /
Erase / Zeroize

User, Cryptographic
Operator

SHA-2 256 / 384 / 512
HMAC Keys

Read / Write / Update /
Erase / Zeroize

User, Cryptographic
Operator

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI
2.0\CryptoAPI Reference\CryptoAPI Structures\Cryptography Structures for more
information about key formats and structures.

Key Generation

Random keys can be generated by calling the CryptGenKey() function, or through
the BSafeMakeKeyPair, tripledes3key, RC2Key (non-Approved), RC2KeyEx (non-
Approved), deskey (non-Approved), or rc4_key (non-Approved) functions. Keys can
also be derived from known values via the CryptDeriveKey() function (Derived keys
cannot be used for encryption. They can be used to support authentication services
only.)

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI
2.0\CryptoAPI Reference\CryptoAPI Functions\Base Cryptography Functions\Key
Generation and Exchange Functions for more information.

CRYPTOGRAPHIC KEY
MANAGEMENT

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 22

Key Entry and Output

Keys can be both exported and imported out of and into RSAENH via
CryptExportKey() and CryptImportKey(). Exported private keys may be encrypted
with a symmetric key passed into the CryptExportKey function. Any of the
symmetric algorithms supported by the crypto module may be used to encrypt
private keys for export (AES, DES, Triple-DES, RC4 or RC2). When private keys
are generated or imported from archival, they are covered with the Microsoft
Windows CE, Windows Mobile, or Windows Embedded Compact Data Protection
API (DPAPI) and then outputted to system registry in the covered form.

Symmetric key entry and output is done by exchanging keys using the recipient’s
asymmetric public key. Symmetric key entry and output may also be done by
exporting a symmetric key wrapped with another symmetric key.

In addition, specific functions require that the application hold the key material, with
the RSAENH module not holding any copy of the key material between function
invocations. The functions that operate this way are: BSafeDecPrivate,
BSafeEncPublic, BSafeMakeKeyPair, tripledes3key, tripledes, CBC, DES_ECB_LM
(non-Approved), RC2Key (non-Approved), RC2KeyEx (non-Approved), RC2 (non-
Approved), deskey (non-Approved), des (non-Approved), rc4_key (non-Approved),
rc4 (non-Approved).

See MSDN Library\Platform SDK\Windows Base Services\Security\CryptoAPI
2.0\CryptoAPI Reference\CryptoAPI Functions\Base Cryptography Functions\Key
Generation and Exchange Functions for more information.

Key Storage

RSAENH offloads the key storage operations to the Microsoft Windows CE,
Windows Mobile, and Embedded Compact operating system. Keys are not stored in
the cryptographic module, private keys are protected by the Microsoft Data
Protection API (DPAPI) service, and then stored in the registry or file system. For
purposes of FIPS validation, these keys are considered plaintext. Keys are
zeroized from memory after use. Only the key used for power up self-testing is
stored in the cryptographic module.

When an operator requests a keyed cryptographic operation from RSAENH his/her
keys are retrieved from the registry or file system.

RSA private and public keys are stored in named key containers. The key
containers are stored in the following registry locations:
Key containers created with the CRYPT_MACHINE_KEYSET flag:
HKEY_LOCAL_MACHINE\Comm\Security\Crypto\UserKeys\Microsoft Enhanced Cryptographic

Provider v1.0\<KeyContainerName>

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 23

Key containers created without the CRYPT_MACHINE_KEYSET flag:
HKEY_CURRENT_USER\Comm\Security\Crypto\UserKeys\ Microsoft Enhanced Cryptographic

Provider v1.0\<KeyContainerName>

The persisted key container contains the following fields:

• Version
• Name of container
• Signature Public key
• Encrypted Signature Private key
• Signature key Exportability flag
• Key Exchange Public key
• Encrypted Key Exchange Private Key
• Key Exchange exportability flag
• Container random seed

The signature and key exchange fields are only present if the corresponding key
has been generated or imported into the container.

In addition, specific functions require that the application hold the key material, with
the RSAENH module not holding any copy of the key material between function
invocations. The functions that operate this way are: BSafeDecPrivate,
BSafeEncPublic, BSafeMakeKeyPair, tripledes3key, tripledes, CBC, DES_ECB_LM
(non-Approved), RC2Key (non-Approved), RC2KeyEx (non-Approved), RC2 (non-
Approved), deskey (non-Approved), des (non-Approved), rc4_key (non-Approved),
rc4 (non-Approved). For these functions, the application is responsible for
maintaining key storage.

Key Archival

RSAENH does not directly archive cryptographic keys. The operator may choose to
export a cryptographic key labeled as exportable (cf. “Key Input and Output” above),
but management of the secure archival of that key is the responsibility of the user.

In addition, specific functions require that the application hold the key material, with
the RSAENH module not holding any copy of the key material between function
invocations. The functions that operate this way are: BSafeDecPrivate,
BSafeEncPublic, BSafeMakeKeyPair, tripledes3key, tripledes, CBC, DES_ECB_LM
(non-Approved), RC2Key (non-Approved), RC2KeyEx (non-Approved), RC2 (non-
Approved), deskey (non-Approved), des (non-Approved), rc4_key (non-Approved),
rc4 (non-Approved). For these functions, the application is responsible for key
archival.

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 24

Key Destruction

All keys are destroyed and their memory location zeroized when the operator calls
CryptDestroyKey on that key handle. Private keys (which are stored by the
operating system in covered format in the Windows CE, Windows Mobile, and
Windows Embedded Compact DPAPI system portion of the OS) are destroyed
when the operator calls CryptAcquireContext with the CRYPT_DELETE_KEYSET
flag.

In addition, specific functions require that the application hold the key material, with
the RSAENH module not holding any copy of the key material between function
invocations. The functions that operate this way are: BSafeDecPrivate,
BSafeEncPublic, BSafeMakeKeyPair, tripledes3key, tripledes, CBC, DES_ECB_LM
(non-Approved), RC2Key (non-Approved), RC2KeyEx (non-Approved), RC2 (non-
Approved), deskey (non-Approved), des (non-Approved), rc4_key (non-Approved),
rc4 (non-Approved). While each of these functions is operating, a copy of the key
material may be made by the function – this copy will be zeroized before the
function returns the application. For these functions, the application is responsible
for key destruction of the copy of the keys which the application holds.

Security-Related Information Residing in RAM During
Operation

RSAENH does not process passwords or PIN’s, and thus they are not stored in
RAM during operation. Public and private key material is stored in RAM by
RSAENH when an application calls CryptAcquireContext. It is held in the memory
space of the calling process, in plain text, until the calling process destroys the
associated context by calling CryptReleaseContext for that context – when the
context is released, the memory holding any keys is zeroized. For operations
where key material is passed to a function through a parameter, for use during the
function call, the key material may be copied in memory in plain text, with any
copies being zeroized before the function returns.

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 25

• RSAENH performs these Power-On Self-Tests

- AES Encrypt / Decrypt Known Answer Test
- DES Encrypt / Decrypt Known Answer Test
- Triple-DES Encrypt / Decrypt Known Answer Test
- SHS (SHA -1, SHA-256, SHA-384, SHA-512) Known Answer Test
- HMAC (SHA-1, SHA-256, SHA-386, SHA-512) Known Answer Test
- RSA Sign / Verify using a Sign / Verify test with a Known Signature with

PKCS#1 v1.5
- RSA Sign / Verify using a Sign / Verify test with a Known Signature with

X9.31
- FIPS 186-2 PRNG Known Answer Test
- Software Integrity Test – RSA (w/ SHA-1) Digital Signature

• RSAENH performs these Conditional Self-Tests

- CRNGT test for Approved PRNG
- Pair-wise consistency test for RSA key generation

In all cases for any failure of a Power-On Self-Test, the RSAENH module will fail to
load. For the application, this will appear as a failure result code returned from the
CryptAcquireContext function. The only way to recover from the failure of a Power-
On Self-Test is to attempt to invoke CryptAcquireContext again, which will re-run
the Self-Tests, and will only succeed if the Self-Tests pass.

In all cases for any failure of a Conditional Self-Test, a failure result code will be
returned from the particular function that encountered the error. Conditional Self-
Tests will reset when the function call returns the error status to the application, and
future function calls will run any applicable Conditional Self-Tests when the are
called.

SELF-TESTS

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 26

The following items address requirements not addressed above.

Operating System Security

The RSAENH cryptomodule is intended to run on Windows CE, Windows Mobile,
and Windows Embedded Compact in Single User Mode.

When an operating system process loads the Microsoft Windows CE and Windows
Mobile Enhanced Cryptographic Module 6.00.1937 (RSAENH), or Windows
Embedded Compact Enhanced Cryptographic Module 7.00.1687 (RSAENH)
module into memory, RSAENH performs an RSA signature check on the image of
the RSAENH.DLL file as it resides in the system’s filesystem, and if the signature
check fails, the module load is aborted and an error returned.

Each operating system process creates a unique instance of the cryptomodule that
is wholly dedicated to that process. The cryptomodule is not shared between
processes.

Secure Operation
The Microsoft Windows CE and Windows Mobile Enhanced Cryptographic Module
6.00.1937 (RSAENH) and Microsoft Windows Embedded Compact Enhanced
Cryptographic Module 7.00.1687 (RSAENH) is used in FIPS Approved Mode by
application, through the invocation of individual functions in FIPS Approved Mode.
The application is responsible for ensuring that it does not perform non-Approved
functions in ways that make the application non-FIPS Compliant.

The non-Approved functions include:
• Any function using an algorithm which is non-Approved

Mitigation of Other Attacks
The Microsoft Windows CE and Windows Mobile Enhanced Cryptographic Module
6.00.1937 and Microsoft Windows Embedded Compact Enhanced Cryptographic
Module 7.00.1687 (RSAENG) do not provide any mechanisms to mitigate other
attacks.

MISCELLANEOUS

This Security Policy is non-proprietary and may be reproduced only in its original entirety (without revision)

Microsoft Windows Compact RSAENH Security Policy 27

For the latest information on Windows CE, Windows Mobile, or Windows Embedded
Compact check out our World Wide Web site at
http://www.microsoft.com/windows/embedded.

FOR MORE
INFORMATION

CHANGE HISTORY
AUTHOR DATE VERSION COMMENT
 10/30/2007 1.0 Windows CE and Windows Mobile v1.0
Kevin Michelizzi 2/17/2012 1.1 Windows Embedded Compact 7 Version
Kevin Michelizzi 11/26/2012 1.2 Update with comments from CMVP

