FIPS 140-2 SECURITY POLICY
Juniper Networks
NetScreen-204 and NetScreen-208

HW P/N NS-204 and NS-200
FW Version ScreenOS 5.4.0r4-5.4.0r19
Document # 530-021312-01
TABLE OF CONTENTS

A. Scope of Document...4
B. Security Level ...4
C. Roles and Services ..5
D. Interfaces ..7
E. Setting FIPS Mode ..8
F. Other Parameters ...11
G. Physical Security Policy ..14
H. Critical Security Parameter (CSP) Definitions...14
I. Public Key Definitions ...16
J. Matrix Creation of Critical Security Parameter (CSP) versus the Services (Roles & Identity)16
K. Definitions List...19
A. Scope of Document

The Juniper Networks NetScreen-204 and NetScreen-208 (hereafter referred to as the “NetScreen-200 series”) are Internet security devices that integrate firewall, virtual private networking (VPN), and traffic shaping functions.

Through the VPN, the NetScreen-200 series provides the following:

- IPSec standard security
- Triple-DES and Advanced Encryption Standard (AES) key management
- Manual and automated IKE
- Use of RSA and DSA certificates

The NetScreen-200 series also provide an interface for an operator to configure or set policies through the Console or Network ports. For initial configuration, the operator must directly connect a VT-100 terminal or a non-networked device that can emulate a VT-100 terminal to the Console port via a serial cable.

The general components of the NetScreen-200 series include firmware and hardware. The main hardware components consist of a main processor, memory, flash, ASIC (GigaScreen version 2), 10/100 Mbps Ethernet interface, console interface, and power supply. The entire case is defined as the cryptographic boundary of the module. The NetScreen-200 series physical configuration is defined as a multi-chip standalone module.

B. Security Level

The NetScreen-200 series meets the overall requirements applicable to Level 2 security of FIPS 140-2.

Table 1: Module Security Level Specification

<table>
<thead>
<tr>
<th>Security Requirements Section</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic Module Specification</td>
<td>3</td>
</tr>
<tr>
<td>Cryptographic Module Ports and Interfaces</td>
<td>2</td>
</tr>
<tr>
<td>Roles, Services, and Authentication</td>
<td>2</td>
</tr>
<tr>
<td>Finite State Model</td>
<td>2</td>
</tr>
<tr>
<td>Physical Security</td>
<td>2</td>
</tr>
<tr>
<td>Operational Environment</td>
<td>N/A</td>
</tr>
<tr>
<td>Cryptographic Key Management</td>
<td>2</td>
</tr>
<tr>
<td>EMI/EMC</td>
<td>3</td>
</tr>
<tr>
<td>Self-Tests</td>
<td>2</td>
</tr>
<tr>
<td>Design Assurance</td>
<td>2</td>
</tr>
<tr>
<td>Mitigation of Other Attacks</td>
<td>N/A</td>
</tr>
</tbody>
</table>
C. Roles and Services

The NetScreen-200 series support three distinct roles:

- **Cryptographic Officer Role (Root):** The module allows one Crypto-Officer. This role is assigned to the first operator who logs on to the module using the default user name and password. Only the Crypto-Officer can create other administrators, and change FIPS mode.

- **User Role (Admin):** This role can configure specific security policies. These policies provide the module with information on how to operate (for example, configure access policies and VPN encryption with Triple-DES). This role does not have the ability to create other administrators.

- **Read-Only User Role (Admin):** This role can only perform a limited set of services to retrieve information or status. This role cannot perform services to configure the box. The module allows concurrent Admin users, either User or Read-Only User roles.

The NetScreen-200 series provide the following services for each role:

<table>
<thead>
<tr>
<th>Service</th>
<th>Cryptographic Officer</th>
<th>User</th>
<th>Read-only User</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear/Delete: Clear dynamic info</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Exec: Exec system</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Exit: Exit command</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Get (Show Status): Get</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Ping: Ping other host</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Reset (Self-Tests): Reset</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Save: Save command</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Set: Configure system parameters</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Trace-route: Trace route</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Unset: Unconfigure system</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

The NetScreen-200 series supports both role-based and identity-based authentication.

- All roles can be authenticated locally (within the NS-200); optionally, the module supports
authentication via a RADIUS server for only the User role. Authentication by use of the
RADIUS server is viewed as role-based authentication; all other methods of
authentication are identity-based.

- All other forms of authentication (local database) are classified as identity-based.
- The module supports identity-based authentication for the Cryptographic Officer Role
 (local database), the User Role (local database), and the Read-Only Role (local
database).
- User names and passwords are case-sensitive. The password consists of at least six
 alphanumeric characters. Since there are 26 uppercase letters, 26 lowercase letters, and
 10 digits, the total number of available characters is 62. The probability of someone
guessing a password is $1/(62^6) = 1/56,800,235,584$, which is far less than a $1/1,000,000$
random success rate. If three login attempts from the console fail consecutively, the
console will be disabled for one minute. If three login attempts from Telnet or the WebUI
(through VPN with AES encryption) fail consecutively, any login attempts from that source
will be dropped for one minute.

- If there are multiple login failure retries within one minute and since the user is locked out
 after three contiguous login failures, the random success rate for multiple retries is
 $1/(62^6) + 1/(62^6) + 1/(62^6) = 3/(62^6)$, which is far less than
 $1/100,000$.
- In order for authentication data to be protected against disclosure, substitution and
 modification, passwords are not echoed during entry.
- The NetScreen device enforces both identity-based and role-based authentication. Based
 on their identity, the operator assumes the correct role.
- Operators must be authenticated using user names and passwords. Authentication will
 occur locally. As an option, the user can be authenticated via a RADIUS server. The
 RADIUS server provides an external database for user role administrators. The
 NetScreen device acts as a RADIUS proxy, forwarding the authentication request to the
 RADIUS server. The RADIUS server replies with either an accept or reject message. See
 the log for authenticated logins. The RADIUS shared secret must be at least six
 characters.
- All logins through a TCP connection disconnect upon three consecutive login failures and
 an alarm is logged.
D. Interfaces

The NetScreen-200 series provides a number of interfaces:

- The NetScreen-208 has eight Ethernet autosensing interfaces (RJ-45), labeled 1, 2, 3, 4, 5, 6, 7, and 8 (Data Input, Data Output, Control, Status). The NetScreen-204 has four Ethernet autosensing interfaces (RJ-45) labeled 1, 2, 3, and 4 (Data Input, Data Output, Control, Status). These interfaces are the network ports. Each port has two LEDs that indicate port status:
 - The right LED indicates the link status: the LED on means the link is up, the LED off means the link is down (Status Output).
 - The left LED indicates Ethernet activity: the LED on and blinking means the port is active (transmitting and receiving data), the LED off means the port is inactive (Status Output).

- Console port – RJ-45 serial port connector (Data Input, Data Output, Status, Control).

- Modem port – RJ-45 serial port connector. Disabled in FIPS mode.

- Compact flash interface for a flash memory card (Data Input).

- Power interface: AC or DC.

- Six general LEDs:
 - One Power status LED: Illuminates solid green when power is supplied to the NetScreen-204/208 (Status Output).
 - One Module status LED: Illuminates solid green when the NetScreen-204/208 is first powered up and the unit performs diagnostics. During startup, the LED blinks orange, after which the LED starts to blink green. If an error is detected, then the LED illuminates red. The LED changes to yellow when the unit writes to flash (Status Output).
 - System Alarm LED: Illuminates red when a critical alarm occurs, such as the failure of a hardware component or software module (such as a cryptographic algorithm); illuminates green when no alarm condition is present; illuminates amber when a major alarm occurs. Major alarms include:
 - low memory (less than 10% remaining)
 - high CPU utilization (more than 90%)
 - session full
 - maximum number of VPN tunnels reached
 - firewall attacks detected
 - HA status changes or a redundant group member is not found
 - HA LED: Illuminates green if the unit is the master, blinking green if the redundant group member cannot be found, and amber if the unit is the slave. There is no illumination if HA is not configured (Status Output).
 - Session LED: Illuminates green if sessions are less than 70% utilized, yellow if sessions are between 70% and 90% utilized, and red if sessions are more than 90% utilized (Status Output).
 - Compact Flash LED: Illuminates green if a flash card is installed in the compact flash slot, blinking green if the compact flash card is active, and red if the compact flash card is more than 90% full or if read/write activity has failed. There is no illumination if the compact flash slot is empty (Status Output).
• Hardware reset button: After the user follows this sequence—press for 5 seconds, release for 5 seconds, press again for 5 seconds, and release again for 5 seconds—the device erases all configurations and restores the default factory settings (Control Input).

E. Setting FIPS Mode

By default, the module is in non-FIPS mode on the first power-up.

Prior to placing the device in FIPS mode, the administrator must load the Juniper firmware authentication DSA public key, imagekey.cer, using the save image-key CLI command. When this public key is present on the device, the integrity and authenticity of the firmware is checked at system start and when firmware is loaded. If the DSA signature appended to the firmware is verified, the device allows it to be loaded.

If the device is not already running a FIPS validated version of the firmware, the administrator should load it using the save software CLI command. Loading a new version of firmware completely replaces any existing firmware.

Enable FIPS mode using the set FIPS-mode enable command. The module is automatically zeroized when toggling between FIPS and non-FIPS modes of operation, which resets the configuration back to factory default values and restarts the module. It is suggested that the module’s configuration be saved prior to switching modes.

To check whether the device is in FIPS mode, enter the get system CLI command:

```bash	ns-> get system
Product Name: NS208
Serial Number: 0099122004000991, Control Number: 00000000, Mode: FIPS
Hardware Version: 0110(0)-(12), FPGA checksum: 00000000, VLAN1 IP (0.0.0.0)
Software Version: 5.4.0r4.0, Type: Firewall+VPN
Base Mac: 0010.db90.f770
File Name: ns200.5.4.0r4.0, Checksum: 48e3d429
```

The current mode appears on the second line of the output.

1. The module can be set to FIPS mode only through the CLI. To set the module to FIPS mode, execute the set FIPS-mode enable command through the CLI.

 The set FIPS-mode enable command performs the following:
 • Disables administration via SSL
 • Disables loading and output of configuration files from the TFTP server
 • Disables the NetScreen-Global PRO reporting agent
 • Disables the SNMP Read-Write community
 • Disables debug service
 • Disables the Modem port
 • Enforces management via Telnet, HTTP (WebUI) and NetScreen Security Manager (NSM) only through a VPN with 256-bit AES encryption
 • Enforces SSHv2 management traffic to use only Triple-DES. (SSHv1 is disabled.)
 • Disables the MD5 and DES algorithms

2. Confirm the save command.
3. Confirm the reset command.

Note the following:
• Configure the HA encryption key before using the HA link.
• Management via Telnet, HTTP (WebUI) and NSM is only allowed through a VPN tunnel with 256-bit AES encryption.

• DSA-signed firmware image cryptographic strength analysis: the firmware is signed by a well-protected 1024 bit modulus DSA private key, which provides 80 bits of security. The generated signature is attached to the firmware. In order for the device to accept an authorized image, the image has to have a correct signature.

• The image download takes at least 23 seconds, so there can be no more than 3 download tries within one minute. Therefore, the random success rate for multiple retries is $1/(2^{320}) + 1/(2^{320}) + 1/(2^{320}) = 3/(2^{320})$, which is far less than 1/100,000.

• The NetScreen-200 series does not employ a maintenance interface or have a maintenance role.

• When in FIPS mode, the WebUI of the NetScreen-200 series only displays options that comply with the requirements of FIPS 140-2.

• The output data path is logically disconnected from the circuitry and processes that perform key generation or key zeroization.

• The NetScreen-200 series provides a Show Status service via the GET service.

• The NetScreen-200 series implements the following power-up self-tests:

 Device Specific Self-Tests:
 – Boot ROM firmware self-test is via DSA signature (Firmware Integrity Test)
 – SDRAM read/write check
 – FLASH test

 Algorithm Self-Tests:
 – Triple-DES, CBC mode, encrypt/decrypt KAT
 – SHA-1 KAT
 – RSA (encryption and signature) KAT
 – DSA Sign/Verify pairwise consistency test
 – AES, CBC mode, encrypt/decrypt KAT
 – HMAC SHA-1 KAT
 – ANSI X9.31 DRNG KAT
 – DH exponentiation test

• The NetScreen-200 series implements the following conditional tests:
 – DRNG continuous test (both approved and non-approved RNG’s)
 – DSA pairwise consistency test
 – RSA pairwise consistency test
 – Bypass test
 – Firmware download DSA signature test (Software Load Test)
 – DH pairwise consistency test

• On failure of any power-up self-test, the module enters and stays in either the Algorithm Error State, or Device specific error state, depending on the self-test failure. The console displays error messages and the status LED flashes red. It is the responsibility of the Crypto-Officer to return the module to Juniper Networks for further analysis.

• On failure of any conditional test, the module enters and stays in a permanent error state, depending on the type of failure: Bypass test failure, DH exponentiation test failure, RNG continuous test, Software load test, DSA pair-wise test failure, or RSA
pair-wise agreement test failure. The console displays error messages and the status LED flashes red. It is the responsibility of the Crypto-Officer to return the module to Juniper Networks for further analysis.

- If the device enters one of the permanent error states as a result of a self-test failure, the module is halted. No traffic is processed after this occurs. The module must have power cycled to return to operation. A self-test error message has the following format: “XXX test failed: error code N”.

- In FIPS mode, the operator is prevented from configuring a VPN whose strength is stronger than the security provided by the management connection:
 - For sessions via a directly connected serial cable, no strength restriction is applied.
 - For remote SSH connections (which are protected by Triple-DES encryption), the strength of the management connection is considered to 112 bits. Therefore, the operator is prevented from configuring a VPN whose encryption algorithm has a strength greater than 112 bits, e.g. 128, 192 or 256 bit AES.
 - For remote telnet, WebUI or NSM connections, no strength restriction is applied, since these connections are already forced to pass through a 256-bit AES VPN.
F. Other Parameters

Note the following:

- Firmware can be loaded through Trivial File Transfer Protocol (TFTP), where a firmware load test is performed via a DSA signature. Firmware may only be loaded in non-FIPS mode, as this service is disabled in FIPS mode.
- Keys are generated using a FIPS approved pseudo random number generator per ANSI X9.31, Appendix C.
- For every usage of the module’s random number generator, a continuous RNG self-test is performed. Note that this is performed on both the FIPS approved RNG and non-FIPS approved RNG.
- A separate session is assigned to each successful administrator login.
 The first time an operator logs on to the module, the operator uses the default user name and password which is netscreen, netscreen. This user is assigned the Crypto-Officer role.
- The Crypto-Officer is provided with the same set of services as the user, with four additional services:
 - `set admin` and `unset admin` allow the Crypto-Officer to create a new user, change a current user’s user name and password, or delete an existing user.
 - `set FIPS enable` and `unset FIPS enable` allow the Crypto-Officer to switch between FIPS mode and the default mode.
- HTTP can only come through VPN with AES encryption. The page time-out is set to 10 minutes by default; this setting can be user configured. The maximum number of HTTP connections, or the maximum number of concurrent WebUI logins, depends on how many TCP sockets are currently available in the system. The maximum number of available TCP sockets is 1024. This number is shared with other TCP connections.
- There are a maximum of three sessions shared between Telnet and SSH.
- Upon a Telnet or console login failure, the next prompt will not come up for an estimated 5 seconds.
- The NetScreen-200 series’ chips are production-grade quality and include standard passivation techniques.
- The NetScreen-200 series is contained within a metal production-grade enclosure.

![Figure 1: Front of the NetScreen-204 device](image)

Figure 1: Front of the NetScreen-204 device
The enclosures are opaque to visible spectrum radiation.

The enclosure includes a removeable cover and is protected by a tamper-evident seal. The tamper evident seal (indicated by arrows in the photograph above) are applied to the power block at the back of the unit and extending on to the removeable cover.

All keys and unprotected security parameters can be individually zeroized through the Unset, Clear, Delete, and Reset commands. Pressing the hardware reset button or issuing the “unset vendor-def” CLI command will cause the zeroization of all CSPs by resetting the device configuration to the factory default values.

Algorithms included in the NetScreen-200 series are:

- **FIPS Approved:**
 - DSA
 - SHA-1
 - Triple-DES (CBC)
 - AES (CBC)
 - HMAC-SHA-1
 - RSA Sign/Verify (PKCS #1)
 - ANSI X9.31 DRNG
- **Non-FIPS Approved:**
 - DH (key agreement, key establishment methodology provides 97 bits of strength)
 - RSA encryption/decryption (key wrapping, provides 80 or 112 bits of encryption strength)

- The NetScreen-200 series conforms to FCC part 15, class B.
- On failure of any power-up self-test, the module enters and stays in either the Algorithm
Error State, or Device specific error state, depending on the self-test failure. The console displays error messages and the status LED flashes red. It is the responsibility of the Crypto-Officer to return the module to Juniper Networks for further analysis.

- On failure of any conditional test, the module enters and stays in a permanent error state, depending on the type of failure: Bypass test failure, DH exponentiation test failure, RNG continuous test, Software load test, DSA pair-wise test failure, or RSA pair-wise agreement test failure. The console displays error messages and the status LED flashes red. It is the responsibility of the Crypto-Officer to return the module to Juniper Networks for further analysis.

- On power down, previous authentications are erased from memory and need to be re-authenticated again on power-up.

- Bypass tests are performed at power-up, and as a conditional test. Bypass state occurs when the administrator configures the module with a non-VPN policy and an incoming packet whose source address, destination address and service matching this policy arrives at the network port. The bypass enabled status can be found by retrieving the entire policy list. Two internal actions must exist in order for bypass to happen: (1) a non-VPN policy is matched for this traffic, and (2) a routing table entry exists for the traffic that matches this non-VPN policy.

- In FIPS mode, SSH is forced to use Triple-DES for encryption.

- The High Availability (HA) feature allows the device to be configured to synchronize itself with a matching device. All data transferred between devices is 256 bit AES encrypted.

- If a VPN is configured to use Triple-DES encryption, Diffie-Hellman Group 5 is required for key agreement. DH groups 1 and 2 are disabled.

- The module is not designed to mitigate against attacks which are outside of the scope of FIPS 140-2.
G. Physical Security Policy

Before carrying out any steps to deploy a Juniper Networks security appliance, the end-user must verify the security of the product with the following observations:

1. Confirm that the product received matches the version that is validated as FIPS 140-2 compliant.

2. The outside packaging does not show damage or evidence that is has been opened. If the cardboard shows damage that would allow the device to be removed or exchanged, this may be evidence of tampering.

3. Each box is packaged with custom tape to indicate that the device was packaged by Juniper Networks or an authorized manufacturer. The tape is unique, with the word NetScreen printed repeatedly along the tape. If the tape is not present, the device may have been tampered with.

4. The internal packaging does not show damage or evidence of tampering. The plastic bag should not have a large hole and the label that seals the plastic bag should not be detached or missing. If the bag or seal are damaged in any way, the device may have been tampered with.

5. The metal enclosure of the device is sealed with tamper-evident tape. If the seal is missing or damaged, the device may have been tampered with.

H. FIPS Certificate Verification

In FIPS mode, if the signing CA certificate cannot be found in the NetScreen-200 series during the loading of the X509 certificate, the following message appears (where x is one of 0, 1,2,3,4,5,6,7,8,9,A,B,C,D,E,F):

Please contact your CA's administrator to verify the following finger print (in HEX) of the CA cert...

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

Do you want to accept this certificate y/[n]?

Based on the result of the CA certificate fingerprint checking, the Crypto-Officer accepts or denies the loaded certificates.

I. Critical Security Parameter (CSP) Definitions

Below is a list of Critical Security Parameter (CSP) definitions:

- **IPSEC HMAC SHA-1 Key**: Used by IPsec for data integrity.
- **IPSEC ESP Key**: Triple-DES, and AES for user traffic encryption.
- **IKE Pre-Shared Key**: Used during the IKE protocol to establish cryptographic keys to be used by IKE.
- **IKE Encryption Key**: Triple-DES, and AES for peer-to-peer IKE message encryption.
- **IKE HMAC SHA-1 Key**: Used by IKE for data integrity.
- **Password**: Crypto-Officer and User passwords.
- **SSH Server/Host DSA Private Key**: Used to create digital signatures.
- **SSH Encryption Key**: Triple-DES encryption key to encrypt telnet commands.
- **SSH HMAC SHA-1 Key**: Used by SSH for data integrity.
- **HA Key**: AES Encryption key for HA data.
- **IKE RSA/DSA Private Key**: DSA/RSA key used in IKE identity authentication.
- **Diffie Hellman Private Key Components**: Used during the DH key agreement protocol.
- **PRNG Algorithm Key**: Used during the ANSI X9.31 generation of pseudo random numbers.
J. Public Key Definitions

Below is a list of the public keys utilized by the module:

- **Firmware Authentication Key**: Used by the device to verify DSA signatures over firmware images.
- **CA DSA/RSA Public Key**: Used by IKE to authenticate a peer’s certificate.
- **Local DSA/RSA Public Key**: Used by the IKE peer to verify digital signatures.
- **SSH Server/Host DSA Public Key**: Used by the SSH client to verify digital signatures.
- **SSH Client DSA Public Key**: Used by the device to verify digital signatures.
- **Diffie Hellman Public Key Components**: Used by the DH Key Agreement protocol.

K. Matrix Creation of Critical Security Parameter (CSP) versus the Services (Roles & Identity)

The following matrices define the set of services to the CSP of the module, providing information on generation, destruction and usage. They also correlate the User roles and the Crypto-Officer roles to the set of services to which they have privileges.

The matrices use the following convention:
- **G**: Generate
- **D**: Delete
- **U**: Usage
- **N/A**: Not Available

Table 3: Crypto-Officer

<table>
<thead>
<tr>
<th>CSP \ Services</th>
<th>Set</th>
<th>Unset</th>
<th>Clear/Delete</th>
<th>Get</th>
<th>Exec</th>
<th>Save</th>
<th>Ping</th>
<th>Reset</th>
<th>Exit</th>
<th>Trace-route</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPSEC HMAC SHA-1 Key</td>
<td>G</td>
<td>D</td>
<td>N/A</td>
<td>U</td>
<td>N/A</td>
<td>U</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IPSEC ESP Key</td>
<td>G</td>
<td>D</td>
<td>N/A</td>
<td>U</td>
<td>N/A</td>
<td>U</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IKE Pre-shared Key</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IKE Encryption Key</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IKE HMAC SHA-1 Key</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Password</td>
<td>G^1</td>
<td>D^2</td>
<td>N/A</td>
<td>U</td>
<td>N/A</td>
<td>U</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SSH Server/Host DSA Private Key</td>
<td>G</td>
<td>D</td>
<td>D</td>
<td>U</td>
<td>G</td>
<td>U</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SSH Encryption Key</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SSH HMAC SHA-1 Key</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>HA Key</td>
<td>G</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>U</td>
<td>U</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IKE RSA/DSA Private Key</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>G,D,</td>
<td>U</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>PRNG Algorithm Key</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>G,U</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Diffie Hellman Private Key</td>
<td>G</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Table 4: User

<table>
<thead>
<tr>
<th>CSP \ Services</th>
<th>Set</th>
<th>Unset</th>
<th>Clear/Delete</th>
<th>Get</th>
<th>Exec</th>
<th>Save</th>
<th>Ping</th>
<th>Reset</th>
<th>Exit</th>
<th>Trace-route</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPSEC HMAC SHA-1 Key</td>
<td>G</td>
<td>D</td>
<td>N/A</td>
<td>U</td>
<td>N/A</td>
<td>U</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IPSEC ESP Key</td>
<td>G</td>
<td>D</td>
<td>N/A</td>
<td>U</td>
<td>N/A</td>
<td>U</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IKE Pre-shared Key</td>
<td>G</td>
<td>D</td>
<td>N/A</td>
<td>U</td>
<td>G</td>
<td>U</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IKE Encryption Key</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IKE HMAC SHA-1 Key</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Password</td>
<td>G[^3]</td>
<td>G,D</td>
<td>N/A</td>
<td>U</td>
<td>N/A</td>
<td>U</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SSH Server/Host DSA Private Key</td>
<td>G</td>
<td>D</td>
<td>D</td>
<td>U</td>
<td>G</td>
<td>U</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SSH Encryption Key</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SSH HMAC SHA-1 Key</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>HA Key</td>
<td>G</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>U</td>
<td>U</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IKE RSA/DSA Private Key</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
<td>G,D, U</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>PRNG Algorithm Key</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>G,U</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Diffie Hellman Private Key Components</td>
<td>G</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>D</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 5: Read-Only User

<table>
<thead>
<tr>
<th>CSP \ Services</th>
<th>Get</th>
<th>Ping</th>
<th>Exit</th>
<th>Trace-route</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPSEC HMAC SHA-1 Key</td>
<td>U</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IPSEC ESP Key</td>
<td>U</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IKE Pre-shared Key</td>
<td>U</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IKE Encryption Key</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IKE HMAC SHA-1 Key</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Password</td>
<td>U</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SSH Server/Host DSA Private Key</td>
<td>U</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SSH Encryption Key</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SSH HMAC SHA-1 Key</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>HA Key</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>IKE RSA/DSA Private Key</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>PRNG Algorithm Key</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Diffie Hellman Private Key Components</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

1. The Crypto-Officer is authorized to change all authorized operators’ user names and passwords, but the user is only allowed to change his/her own user name and password.
2. The Crypto-Officer is authorized to remove all authorized operators.
3. The Crypto-Officer is authorized to change all authorized operators’ user names and passwords, but the user is only allowed to change his/her own user name and password.
Table 6: How Keys Are Generated

<table>
<thead>
<tr>
<th>CSP</th>
<th>Method of Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPSEC HMAC SHA-1 Key</td>
<td>May be either manually entered by the administrator, or generated internally via ANSI X9.31 RNG as a result of IKE protocol exchanges.</td>
</tr>
<tr>
<td>IPSEC ESP Key</td>
<td>“</td>
</tr>
<tr>
<td>IKE Pre-shared Key</td>
<td>Manually entered by administrator</td>
</tr>
<tr>
<td>IKE Encryption Key</td>
<td>Internally via ANSI X9.31 RNG, as a result of IKE protocol exchanges</td>
</tr>
<tr>
<td>IKE HMAC SHA-1 Key</td>
<td>“</td>
</tr>
<tr>
<td>Password</td>
<td>Manually entered by administrator</td>
</tr>
<tr>
<td>SSH Server/Host DSA Private Key</td>
<td>Internally via ANSI X9.31 RNG when DSA key-pair is generated.</td>
</tr>
<tr>
<td>SSH Encryption Key</td>
<td>Internally via ANSI X9.31 RNG, as a result of Diffie-Hellman key exchange during SSH session establishment.</td>
</tr>
<tr>
<td>SSH HMAC SHA-1 Key</td>
<td>“</td>
</tr>
<tr>
<td>HA Key</td>
<td>Manually entered by administrator</td>
</tr>
<tr>
<td>IKE RSA/DSA Private Key</td>
<td>Internally via ANSI X9.31 RNG</td>
</tr>
<tr>
<td>Diffie Hellman Private Key Components</td>
<td>“</td>
</tr>
<tr>
<td>PRNG Algorithm Key</td>
<td>Initial generation via entropy gathered from a variety of internal sources.</td>
</tr>
</tbody>
</table>
L. Definitions List

AES – Advance Encryption Standard
CLI – Command Line Interface
CSP – Critical Security Parameter
DES – Data Encryption Standard
DH – Diffie-Hellman
DRNG – Deterministic RNG
HA – High Availability
IPSec – Internet Protocol Security
IV – Initial Vector
KAT – Known Answer Test
NS – NetScreen
NSM – NetScreen Security Manager
PRNG – Pseudo RNG
RNG – Random Number Generator
ROM – Read Only Memory
RSA – Rivest Shamir Adelman Algorithm
SDRAM – Synchronous Dynamic Random Access Memory
SSH – Secure Shell protocol
TCP – Transmission Control Protocol
TFTP – Trivial File Transfer Protocol
VPN – Virtual Private Networking