Authernative, Inc.

Authernative® Cryptographic Module

Software Version: 1.0.0

Passwords Advanced

Authentication
Legacy Passwords T ——————

Enhanced Passwords One-Time Challenge-Response

Multi-Factor
Out-of-Band

Versatile
Authentication
Server

Layered, Scalable, and
Personalized Security

! Account Set-Up
Mutual Authentication

L Credentials Reset
Back-End Encryption
Enhanced Security Self-Service

FIPS 140-2
Security Policy

Level 1 Validation

Document Version 1.1

Prepared for: Prepared by:

authernative® COI‘SE(M |

THE AUTHENTICATION ALTERNATIVE

Authernative, Inc. Corsec Security, Inc.
201 Redwood Shores Parkway, Suite 275 10340 Democracy Lane, Suite 201
Redwood City, CA 94065 Fairfax, VA 22030
Phone: (650) 587-5263 Phone: (703) 267-6050
Fax: (650) 587-5259 Fax: (703) 267-6810
http://www.authernative.com http://www.corsec.com

© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1 May 9, 2008

Revision History

Version Modification Date Modified By Description of Changes

0.1 2007-09-21 Xiaoyu Ruan Initial draft

0.2 2008-01-10 Xiaoyu Ruan Added ECBBIlockCipher.class;
removed DESEngine.class

0.3 2008-01-23 Xiaoyu Ruan Added zeroize method;
Put CAVP numbers

0.4 2008-01-25 Xiaoyu Ruan Addressed Lab comments

0.5 2008-02-05 Xiaoyu Ruan Addressed Lab comments

1.0 2008-05-01 Xiaoyu Ruan Address CMVP comments

1.1 2008-05-09 Xiaoyu Ruan Address CMVP comments

Authernative® Cryptographic Module Page 2 of 25

© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1 May 9, 2008

Table of Contents

N U I L 15 1 L N []\ S 6.
N O o = = =S B...
I e Ry [=5 6
1.3 DOCUMENT ORGANIZATION .. .ettuuuieeettuieesettnteeesssstteessstansaetestanaeeestanaeeeesstaeeesstaaeessrananseesesrsnnaeeenns 6

2 AUTHGUARD AND PASSENABLER. ...ttt e e e e et e eeeeaaaas 7
D R © AV =1 A 7
2.2 CLIENT-SERVERENCRYPTION AND AUTHENTICATIONiituiiiit e it e e ete e et e e e te e e et e e eeaeeeeaeeeataeeeaneesannaeeen 8
2.3 BITVU, BYTEVU, AND BBV Uot et e e et e e e e e et e et eaeeaa e e e e eannns 9

3 AUTHERNATIVE® CRYPTOGRAPHIC MODULEooiiiies e 10
R TR N O 1V = oAV 1Y OSSPSR ORUPPPRR 10
3.2 IMODULE INTERFACES cetteeite ettt ettt et e e e e et e e e et e e e et e et e e et e e eta e e s e e et e e ean e eenneeetnaersnnessnnaaesnns 10
3.3 ROLES AND SERVICES.uiiuiiitieeeit e et e e e et e et e e et e e e ettt e et ee et e e et e et e e et e eean e senneeetnaeeannessnnaaeenns 14
B o o107 YIS =0 U i 19
3.5 OPERATIONAL ENVIRONMENTtiittti e eetett s e et est s e e e esta e e e s seaaaaseesesstan s eesestan s eesestanaeesessnnseeesesnnnnaeseenen 19
3.6 CRYPTOGRAPHICKEY MANAGEMENTuuuitttttteeesettut e eeeettteeesetataeseeeastanaessatanaesestanaeseetanaeeerssnanns 19

36.1 LGS €T 1 = (o) o SRS 20
3.6.2 LGS,V 1] o101 7@ 1011 o | SRS 20
3.6.3 NGRS (o= (o (ST 1ol 0 1= ot 1] o SRS 20
3.64 NS A= o 7 11 o o OSSR 20
T A V.17 Y L RPN 20
IR S T = W ol I = F = PP PPRPP 21
3.9 MITIGATION OF OTHER ATTACKS. ... ittt et e ettt e et e et e e et e e e ea e e e et e e et e eeat e e esaessteeeataessneeennaaaetnns 21

4 SECURE OPERATION ... oottt ettt et e e ettt e e e ettt e e e e e e aataeeeesaa b e eaesesban s eeseebaneeseesaanaeeesssnnaaeeees 22
4.1 OPERATINGSYSTEM CONFIGURATIONuuuiieittieeeestttaeeeeetttesesesssanseeesastanaessstanaesseranaeesesnnaeesrssnnnns 22
4.2 APPROVEDMODE CONFIGURATION ...etttuueetittiteetettinseesestuneessestaaeseesssnnsesssssnnaeeessnnaaesssssnaeesesrnnneens 22
B O3 =74 =1 L0 7 @] SNt 23
4.4 STATUS IMONITORING.cttittunieeittiiieeeeettteeeeeetaaeeeeeaaaaees ettt aesestaneetestanaesestanaeeeeansanseessntnnaeeresnanss 23

LT X O 2 L@ 1 NI 1 T PSR 24

Authernative® Cryptographic Module Page 3 of 25

© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1 May 9, 2008

Table of Figures

FIGURE 1 — COMPONENTS OF THEAUTHGUARD PRODUCT ... ccuiiitiiiiiiies e iee et et ee st s e st s st e s s et s s s st s st s easanesbanes 8
FIGURE 2 —LOGICAL CRYPTOGRAPHICBOUNDARY .. cuuiitiiitiitiiiitietteeitieeteetnesatsesaessasssansstssassasstsenessnesnessnessnees 1.1
FIGURE 3—LOGICAL CRYPTOGRAPHICBOUNDARY AND INTERACTIONS WITHSURROUNDING COMPONENTS............. 12
FIGURE 4 —PHYSICAL BLOCK DIAGRAM OF A STANDARD GPC ..ot s et e e 13
Authernative® Cryptographic Module Page 4 of 25

© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1 May 9, 2008

Table of Tables

TABLE 1 —BINARY FORM OF THEMODULEcuuiitiitiiiee e tee et e et e s s e s e st e s s et s s b s st e st s sa s st e sbeeanssanseen 10
TABLE 2—SECURITY LEVEL PERFIPS140-2SECTION.ituiiiiiitiii it e ettt e et e et e st s sa s estes st e sansesaesanssaneasnesaneesnesrnees 10
TABLE 3— AUTHERNATIVE CLASSES INAUTHCRYPTOAPLJIAR. .. .cuiittittieiteeeete s e eaae et e st s st sesassntssbeesnassnesnessnsanes 11
TABLE 4—LOGICAL, PHYSICAL, AND MODULE INTERFACEMAPPING.ciuuiitiiieiiee et et ee e s s eae s s eanesbaesanns 13
TABLE 5— CRYPTOOFRFICERSERVICES. ... cctuiiittieietteteteeeea e et ee et eeteaeaseaa e et e e et s eaaa s st eeetaaeeensseannsassnaeeranees 15
TABLE B —USERSERVICES.ciituiiittieittetet e eeet e ee et et et eeeea e e eaa et eeeaa et et eeeanreetaeeeanseasnssetaeseansseansesstaeerennees 16
TABLE 7 —LIST OFCRYPTOGRAPHICKEYS, CRYPTOGRAPHICKEY COMPONENTS AND CSP5.....uiiiiiiiiecieveeeeeeee 19
TABLE 8 — ACRONYMS . .cttuieittteitiee et ettt e e e e et e e e et e e eaan e s et e e e aa e s eanesas e eanesaanesassseann e annsstneessnssssnnsestneerennnes 24
Authernative® Cryptographic Module Page 5 of 25

© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1 May 9, 2008

1 Introduction

1.1 Purpose

This document is a non-proprietary CryptographicdMle Security Policy for the Authernative® Cryptaghic
Module from Authernative, Inc. This Security Polidescribes how the Authernative® Cryptographic Medu
meets the security requirements of FIPS 140-2 amdtb run the module in a secure FIPS 140-2 modgpefation.
This policy was prepared as part of the Level 19-1R0-2 validation of the Authernative® Cryptograpkodule.

FIPS 140-2 (Federal Information Processing StarddaRiiblication 140-2 —Security Requirements for
Cryptographic Modules) details the U.S. and Canadian government reqeingsnfor cryptographic modules. More
information about the FIPS 140-2 standard and atibd program is available on the National Inséitaf Standards
and Technology (NIST) Cryptographic Module Validati Program (CMVP) website at:
http://csrc.nist.gov/groups/STM/index.html

In this document, the Authernative® Cryptographioddle is referred to as “the module”. The applmati
represents Authernative’s software products, sschuihGuard, linked with the cryptographic methpdsvided by
the Authernative® Cryptographic Module.

1.2 References

This document deals only with the operations amghbaities of the module in the technical termsadfIPS 140-2
cryptographic module security policy. More inforioatis available on the module from the followirausces:

e The Authernative websiténitp://www.authernative.comtontains information on the full line of products
from Authernative.

» The CMVP websitehttp://csrc.nist.gov/groups/STM/index.hindontains contact information for answers
to technical or sales-related questions for theutend

1.3 Document Organization

The Security Policy document is one document inRSFL40-2 submission package. In addition to tbisudhent,
the Submission Package contains:

* Vendor Evidence
» Finite State Machine
» Other supporting documentation as additional reieze

This Security Policy and the other validation susiin documentation have been produced by Corsawrif§e
Inc. under contract to Authernative. With the exaap of this Non-Proprietary Security Policy, théPE 140-2
Validation Documentation is proprietary to Autheima and is releasable only under appropriate neclasure
agreements. For access to these documents, pla@setcAuthernative.

Authernative® Cryptographic Module Page 6 of 25
© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1 May 9, 2008

2 AuthGuard and PassEnabler

Authernative, Inc. is a software company that deye] markets, and sells enterprise and consumel $ecurity
solutions. Authernative’s granted and pending Wfd International patents in the area of privatd secure
financial transactions, authentication algorithmsotocols, and encryption schemes are the foundéto the
company technology and commercial product offeringgsthernative provides integrated security sohsidor
identity management, strong authentication to acoeswork resources, and efficient authorizati@miaistration
and auditing control.

Authernative approaches security as a complex sybtving scientific, technological, engineering,rkeding, and
social components. The company believes that ortharanonized mixture of these components implemeited
security products and backed with excellent sesva@an bring long-lasting success and customerfaetiisn.

Authernative currently sells two separate and cemgntary products: AuthGuard® and PassEnabler®h Bot
AuthGuard and PassEnabler are applications thathesAuthernative Cryptographic Module. However tGuard
and PassEnabler are not being validated for FIR8pkance because all their security-relevant fundi are
provided by the Authernative Cryptographic Module.

2.1 Overview

AuthGuard is an authentication product. It providesauthentication server that supports and managitiple
authentication options. Those options allow Auth@ua offer multifactor authentication, strong aertkication, or
layered authentication services. PassEnabler allwsinistrators to define what resources authorizsgts have
access to and provides a secure authorization,négtnaition, auditing, and web single-sign-on engiPassEnabler

is integrated with AuthGuard. PassEnabler enablegporate identity and access management using the
authentication capabilities of AuthGuard. AuthGuardl PassEnabler can be used either separatebg@ther as
complementary tools within a tool suite.

The AuthGuard product is implemented using five ponents (as depicted in Figure 1):

* AuthGuard Server

e Administrative Utility
e Configuration Utility
e Licensing

* AuthGuard Client

The central component is the AuthGuard Server, fwhicovides authentication services in a networked
environment. Users attempting to access varioutesigs are redirected to the AuthGuard Server. Thiwiges
them with a Graphical User Interface (GUI) to periocauthentication. The GUI is provided by downloadthe
AuthGuard Client to a browser. The AuthGuard Cliéntl changes depending on what forms of autheimbicatre
being performed, and communicates with the Auth@®a8erver.

Authernative has developed two utilities to mantge AuthGuard product. The first utility is the Adrstrative
Utility, which provides an administrative consoler fnanagement of the AuthGuard Server. The Admmatise

Utility provides a GUI to tweak roughly fifty optis and features of the configuration of the Auth@uBerver,
setting the user permissions and authentication.administrator uses the Administrative Utility taitially

configure the system. The second utility is the figamation Utility, which is a desktop configuratidool that gives
the administrator the ability to perform user agggorovisioning, manage roles, create users, anfdnpe auditing.
The Configuration Utility also allows auditing t@ lperformed on users and administrator activitieshe network
from data in the AuthGuard Server’'s logs. The pobcallows a user to view network resources and efind

resources that are placed under AuthGuard’s autiagioin control.

Authernative® Cryptographic Module Page 7 of 25
© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1 May 9, 2008

Administrative Configuration
Utility Utility
AuthGuard Server < Licensing
— = ¢
Client Client | oo Client

Figure 1 — Components of the AuthGuard Product

2.2 Client-Server Encryption and Authentication

Communications between the AuthGuard Server andAttaGuard Client are encrypted using the Advanced
Encryption Standard (AES) algorithm. The AuthGu&etver is implemented as a Java servlet within pache
Tomcat container, and contains all required secduhctionality. The AuthGuard Client is distribdtes a Java
applet by the AuthGuard Server. The applet is Idad& a user’s browser. The Client then provides domplete
user GUI and performs the encryption operationshkémg secure communications with the AuthGuard Serv
Furthermore, the applet provides interfaces appatgpito the administrator-selected authenticatiethods and
guides the user through authentication to the Audr@® Server and access to resources.

Network users encounter the AuthGuard Server whey bring up a browser and request access to aerigated
resource. These requests are redirected by theroesto the AuthGuard Server if the request hasysbtbeen
authenticated. Optionally, users can point direttlyan AuthGuard Server to begin authenticatiopssténce
contacted, the AuthGuard Server sends back thetGligplet to the user along with a Session Randem (§RK),
which can be either an AES or a triple Data EndoypStandard (DES) key.

The SRKs are used to initialize secure sessiorsaea created by the AuthGuard Server. When thdesdor the
AuthGuard Server is initialized, it starts genergta new store of SRKs destined for future use. SR&s are
placed in an array that is constantly updated bySbrver, and SRKs created by the Server are assatifetime.
After an SRK has expired, it will not be used tawse a new connection. Each SRK is associated amthrray of
Data Random Keys (DRKSs), which is created for di@alar session. The array of DRKs is erased if $fRK is
erased. The Server can be configured to createdfispnumber of SRKs, and will then update themiqatcally.
For an individual session, a single unused SRKelscsed, and then sent to the client in the cleaoded as an
array of bytes in a Java class. The SRK is thed byethe Client to initiate the session betweenGlient and the
Server. The Client first obtains a username froen@wl, and sends this to the server encrypted thghSRK. The
Server receives this and decrypts the username.

After the exchange of a username and SRK, the Beelects a DRK from the array associated withSR&, and

sends it to the Client encrypted with the SRK. Emerypted bits are additionally byte-veiled, or-\m@tled as

described in the next subsection. At this poirg, @ient retrieves the DRK, and displays a GUh® tiser to collect
password information. Meanwhile, the Client hashesDRK, encrypts the hash with the DRK, and sehdgesult

back to the Server to indicate that the DRK wassssfully received and decrypted. The Server chiéaksthis is

correct by computing the same value.

At this point, the Server and Client have excharnge®RK, DRK, and username but have not autheatiogither
side, or exchanged a key not subject to man-imttdglle attacks. Now, the Server selects a second IHRK?2)
from the DRK array. The server then retrieves ther's password information from its database. Tée/& then
encrypts DRK2 with DRK and bit-veils, byte-veils; both into a conversion array using values frolRandom
Number Generator (RNG) seeded with the user’'s pasbwformation. This is transmitted to the Cliewho can
then use the same password information to recandbiK2.

Authernative® Cryptographic Module Page 8 of 25
© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1 May 9, 2008

The Client then hashes DRK2, hides it in a coneersarray using the password information, encrypis t
conversion array with DRK2, and sends it back ® shrver to indicate he has DRK2. This step peo@ient
authentication based on possession of the usessymaid information, and shares DRK2 with both sidd® same
step is then performed by the Server to authertitad Server to the Client using DRK2 and the Sepassword.
The Server sends a hash of DRK2 in a conversi@y arsing the Server password to seed the RNG foobbyte-
veiling, and encrypting the array with DRK2. Theddt already has the Server password and usesitttenticate
the Server. At this point client have performed maliuthentication, and share a session encrygégn

User password information can be a simple passwaradan use Authernative’s passline (a chosen mpattea
grid), pass-step (an out-of-band challenge septrail or phone to be entered), crossline (a chgdleambedded in
a grid), or passfield (image, colors, and a grieBch of these processes allows the user to selesttspassword
information, all or part of which can be providedrésponse to challenges.

The authentication step of exchanging a DRK usiagspord information for the bit- and byte-veilingncbe
iterated as often as desired to provide a DRK3, BRc. Security can be layered to use multipléentication
steps, where different password information formes employed. For example, a user could employ bashmple
password and use passline. The password wouldeukfos DRK2, and then passline would be used foKBRand
that exchange would also depend upon DRK2. At phisit, the DRK are not used by AuthGuard for sedata
encryption, and are simply treated as a byprodfithe authentication. Other products may in theifeituse the
DRKs for secure content exchange, but they aresntlyrused only for authentication.

2.3 BitVU, ByteVU, and BBVU

Authernative has secured three patents on the ggesalescribed above, with claims in the pateatscibver the
use of a conversion array, key generation, andabit-byte-veiling. The process of “Bit-Veil-UnvéBitVU), Byte-
Veil-Unveil (ByteVU), and Byte-Bit-Veil-Unveil (BBW)” mentioned above are the subject of the paterid,are
integral to the authentication process. The BitVil éByteVU processes take an array of random dath an
effectively hide or intersperse message data withan array. The array of random data with the spersed
messages is referred to as a conversion array,namd be further encrypted before transmission witthia
AuthGuard schemes described. The locations of thesage data within the conversion array are detedry a
deterministic RNG seeded with a secret value. Tantigs that share this secret value can both @seaime RNG to
compute the locations of the data within the cosieer array. The process of ByteVU involves genaata
conversion array, and “veiling” individual bytes tife message data by sparsely distributing thewugir the
conversion array. The process of BitVU does theesdmt on a bit-wise basis.

Authernative® Cryptographic Module Page 9 of 25
© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1 May 9, 2008

3 Authernative® Cryptographic Module

3.1 Overview

The module was developed and tested on Microsofidéivs XP (Service Package 2) with Sun Java Runtime
Environment (JRE) 1.5. The module can run on amga Jartual Machine (JVM) regardless of operatingtsyn
(OS) and computer architecture. The minimum versiothe JRE supported by the module is 1.5.

Logically the module is a single Java ARchival (JARuthCryptoApi.jar. Table 1 shows the OS and name of the
binary file.

Table 1 — Binary Form of the Module

When Operating System Binary File Name
Development | Windows XP with Sun JRE 1.5 AuthCryptoApi.jar
Runtime Any JVM with JRE 1.5 or later regardless of AuthCryptoApi.jar

OS and computer architecture

The module is stored on the hard disk and is loadethemory when a client application calls cryptghic
services exported by the module. As of this writitige client application is AuthGuard. However, Bertnative
may develop more applications making use of theuteuh the future.

When operating in the Approved mode of operatibe, Authernative® Cryptographic Module is validatgdFIPS
140-2 section levels shown in Table 1. Note thafable 2, EMI and EMC mean Electromagnetic Intenrfiee and
Electromagnetic Compatibility, respectively, anddNiAdicates “Not Applicable”.

Table 2 — Security Level per FIPS 140-2 Section

Section Section Title Level
1 Cryptographic Module Specification 1
2 Cryptographic Module Ports and Interfaces 1
3 Roles, Services, and Authentication 1
4 Finite State Model 1
5 Physical Security N/A
6 Operational Environment 1
7 Cryptographic Key Management 1
8 EMI/EMC 1
9 Self-Tests 1
10 Design Assurance 1
11 Mitigation of Other Attacks N/A

3.2 Module Interfaces

The module AuthCryptoApi.jar, provides client applications with a set of crygtaphic services in the form of
Application Programming Interface (API) calls. Figl2 shows the logical cryptographic boundary fer tnodule.

The module is a JAR file that consists of 42 jalesges. Out of the 42 classes, 29 are Bouncy Calatises that
implement underlying cryptographic algorithms. BoynCastle is an open-source Java library availadile

Authernative® Cryptographic Module Page 10 of 25
© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1 May 9, 2008

http://www.bouncycastle.org/The Bouncy Castle classes do not have public edsthThe other 13 classes,
developed by Authernative, implement public methoflshe module. The JAR file manifes) ANIFEST.MF,

contains the signature of the JAR (used in the paygdntegrity test).

AuthCryptoApi.jar (Cryptographic Boundary)

Authernative classes

AuthApiException.class
AuthApiStatus.class
AuthCryptoApi.class
Base64.class
ConversionArray.class
CryptoFunctions.class
KeyGen$KeyThread.class
KeyGen.class
LicParams.class
RCConst.class
SecureRNG.class
AuthCipher.class
AuthDigest.class

Bouncy Castle classes

MANIFEST.MF

BlockCipher.class
BufferedBlockCipher.class
CipherParameters.class
CryptoException.class
DataLengthException.class
Digest.class
ExtendedDigest.class
InvalidCipherTextException.class
Mac.class

HMac.class
RuntimeCryptoException.class
GeneralDigest.class
LongDigest.class
MD&Digest.class
SHA1Digest.class

SHA256Digest.class
SHA384Digest.class
SHA512Digest.class
AESEngine.class
DESedeEngine.class
ECBBIlockCipher.class
CBCBlockCipher.class
PaddedBlockCipher.class
BlockCipherPadding.class
PaddedBufferedBlockCipher.class
PKCS7Padding.class
KeyParameter.class
ParametersWithlV.class
ParametersWithRandom.class

Figure 2 — Logical Cryptographic Boundary

The descriptions of the Authernative classes aseri®ed in Table 3 — Authernative Classeg\uthCryptoApi.jar.
A complete list of exported methods is availabléhie module’s API reference manual.

Table 3 — Authernative Classes in

AuthCryptoApi.jar

Class Description

The class implements the exception thrown when and if there is an error state in

AuthApiException.class the AP,

AuthApiStatus.class The class implements methods that report configurations and status of the API.

This is the core API class and contains all the public methods. This class simply
collects the interfaces into a single object. Most of the functions of the module
are implemented by the other classes.

AuthCryptoApi.class

Base64.class The class implements the base64 encoding and decoding methods.

The class implements Authernative’s patented BitVU, ByteVU, and BBVU

ConversionArray.class technology. See Section 2.3 of this document for a description of this technique.

CryptoFunctions.class The class contains all the cryptographic functions realized by the module.

The class is a subclass of the KeyGen class. This class implements the

KeyGen3KeyThread.class mechanism of generating a new key every 60 seconds.

KeyGen.class The class implements key generation methods.

LicParams.class The class stores the licensing information of the module.

The class contains all the return codes for the API errors for use with the

RCConst.class AuthApiException class.

Authernative® Cryptographic Module Page 11 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1 May 9, 2008

Class Description

The class implements the American National Standards Institute (ANSI) X9.31
Appendix A.2.4 RNG.

This is an Authernative wrapper class to enhance usability for all of the Bouncy
Castle cipher functionality.

SecureRNG.class

AuthCipher.class

This is an Authernative wrapper class to enhance usability for all of the Bouncy

AuthDigest.class Castle digest functionality.

The module’s interactions with surrounding compdseincluding Central Processing Unit (CPU), haidkd
memory, client application, and the OS are dematedrin Figure 3.

Harddisk

CPU loads OS, JRE, client
application, and JAR into
Memory when needed

Memory

Module loaded
at run-time

Client Application AuthomEis
(e.g., AuthGard) f------=-ecececene- Cryptographic

JRE translates
intermediate language
into Java bytecode

JRE translates
intermediate language
into Java bytecode

JRE and
underlying OS

CPU runs
machine code

— — — - Cryptographic Boundary

-------------- Encrypted Data

CPU
Unencrypted Data

Figure 3 — Logical Cryptographic Boundary and Inter actions with Surrounding Components

The module is validated for use on the platforrateti in the second column of Table 1. In additmthe binaries,
the physical device consists of the integratedudscof the motherboard, the CPU, Random Access dfgm
(RAM), Read-Only Memory (ROM), computer case, kegfah mouse, video interfaces, expansion cardsptret
hardware components included in the computer sgchaad disk, floppy disk, Compact Disc ROM (CD-ROM)
drive, power supply, and fans. The physical cryppgic boundary of the module is the opaque harthinaad
plastic enclosure of the server running the modililee block diagram for a standard general-purpasepater

Authernative® Cryptographic Module Page 12 of 25
© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1 May 9, 2008

(GPC) is shown in Figure 4. Note that in this figu/O means Input/Output, BIOS stands for BasputfOutput
System, PCI stands for Peripheral Component Intgrect, ISA stands for Instruction Set Architectuaad IDE
represents Integrated Drive Electronics.

-
- Monitor
e —
' Crypto Boundaryi
Integrated .
| Memory Graphics |
| | | I
| Central 5) :
S ystem Clock driverf Graphics MNetworking) -
l Pmc(eéga? Unit Controller Generator (optional) {optional Audio (ptiona) I
|
| | | PCIBu | | — Floppy Drive 4i—lv
| Cache .
|
| CLO-ROM Drive <—|—
l .
|
| PCINSANDE Hard Drive .
. Accelerator (HODY I
' .
|
| Universal Serial |
Bus (USE) !
|
|
| IEEE 1334 :
IS4 Bu (Firewire? lad—m
| "iLink") |
| Keyhoard :
Power Supply In(frar_ed UF) BIOS Super O Mouse I
| optianal Controller ; Mouse Port =——o0
: | 'y |
UART/Data IO I
| (SerialParallel Keyboard Port e———mH
Ports) |
| '

Figure 4 — Physical Block Diagram of a Standard GPC
All of these physical ports are separated intodabinterfaces defined by FIPS 140-2, as describ8able 3.
Table 4 — Logical, Physical, and Module Interface M apping

Logical

Interface Physical Port Mapping Module Mapping

Data Keyboard, mouse, CD-ROM, floppy disk, | Arguments for API calls that contain data to be used
Input and serial/USB/parallel/network ports or processed by the module

Data Hard Disk, floppy disk, monitor, and Arguments for API calls that contain module

Output serial/lUSB/parallel/network ports response data to be used or processed by the caller
Control Keyboard, CD-ROM, floppy disk, mouse, | API calls

Input and serial/USB/parallel/network port

Status Hard disk, floppy disk, monitor, and Arguments for API calls, return value, error message

Output serial/lUSB/parallel/network ports

Authernative® Cryptographic Module Page 13 of 25
© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1 May 9, 2008

3.3 Roles and Services

The operators of the module can assume two rolescasred by FIPS 140-2: a Crypto Officer role andser role.
The operator of the module assumes either of thes eased on the operations performed. The opeimtoot
required to authenticate to the module before aitgservices.

The module provides an API for client applicatioiable 5 — Crypto Officer Services shows the publiethods
that are run by the Crypto Officer role. The metimasine is shown in the first column (“Service”). ftsction is
described in the second column (“Description”). ltanethod exported by the module is an individuaypBy
Officer service. User services (see Table 6 — 3sgvices) are also available to the Crypto Officde.

Table 6 — User Services shows the public methaatsatte run by the User role. Similar to Table 5ryp@® Officer
Services, the method name is shown in the firairoal (“Service”). Its function is described in thecend column
(“Description”). Each method exported by the modslan individual User service. User services #e available
to the Crypto Officer role.

The Critical Security Parameters (CSPs) mentionetié rightmost columns correspond to the onesdigt Table
7 — List of Cryptographic Keys, Cryptographic KegrGponents, and CSPs.

Authernative® Cryptographic Module Page 14 of 25
© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1

Table 5 — Crypto Officer Services

May 9, 2008

Service Description CSP and Type of Access
Installation To install the module Command Status None
Uninstallation To uninstall the module Command Status All CSPs — overwrite
AuthCryptoApi The API's only constructor. | Crypto type, hash | Status None
The instance of the API will |type, crypto
be defined by the mode, key size,
parameters that are passed | padding scheme
in
getinstance This method is provided for | Crypto type, hash | Status, the instance of None
singleton use of the API type, crypto AutghCryptoApi
mode, key size,
padding scheme
printByteArray Prints out a byte array in Text string, byte | Status, the printout None
hexadecimal notation array
printByteArray Prints out a byte array in Byte array Status, the printout None
hexadecimal notation
hexStrToByteArray | Converts a hexadecimal Hexadecimal Status, byte array None
string into a byte array string
checkLicense Checks the license License string Status None
from application,
client information
getStatus Gets information and None Status, API object information | None
configuration about the API and configuration
setSeed Sets the seed, date/time None Status ANSI X9.31 RNG seed for key generation methods —
(DT) value, and Triple DES write, overwrite
key to random numbers ANSI X9.31 RNG DT value for key generation methods —
(generated by the non- write, overwrite
Approved RNG) for the ANSI X9.31 RNG Triple DES key for key generation
ANSI X9.31 RNG methods — write, overwrite
setSeed Sets the Triple DES key to | Triple DES key Status ANSI X9.31 RNG Triple DES key for key generation

specified values for the
ANSI X9.31 RNG

methods — write, overwrite

Authernative® Cryptographic Module

© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Page 15 of 25

Security Policy, version 1.1

May 9, 2008

Service Description Input Output CSP and Type of Access
setSeed Sets the seed, DT value, Seed, Triple DES | Status ANSI X9.31 RNG seed for key generation methods —
and Triple DES key to key, DT value write, overwrite
specified values for the ANSI X9.31 RNG DT value for key generation methods —
ANSI X9.31 RNG write, overwrite
ANSI X9.31 RNG Triple DES key for key generation
methods — write, overwrite
nextint Generates a random None Status, random number ANSI X9.31 RNG seed for key generation methods —
number read
ANSI X9.31 RNG DT value for key generation methods —
read
ANSI X9.31 RNG Triple DES key for key generation
methods — read
nextint Generates a random An integer (range | Status, random number ANSI X9.31 RNG seed for key generation methods —
number between zero and | of the random read
the specified integer number) ANSI X9.31 RNG DT value for key generation methods —
read
ANSI X9.31 RNG Triple DES key for key generation
methods — read
nextBytes Generates a random Pointer to a byte | Status, random number array | ANSI X9.31 RNG seed for key generation methods —
number array array read
ANSI X9.31 RNG DT value for key generation methods —
read
ANSI X9.31 RNG Triple DES key for key generation
methods — read
zeroize Zeroizes CSPs None Status All CSPs in HashMap and filesystem — overwrite

Table 6 — User Services

Service Description CSP and Type of Access
setNumberOfKeys Sets the maximum number of keys | Number of keys Status None
that the key generator will create
before restarting at zero
setPersistence Sets the way the keys will be saved | Mode (save in keys in file | Status None
for the key generator system or memory)
setPath Sets the location that the keys will | Path of the file system Status None
be saved to the file system

Authernative® Cryptographic Module Page 16 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1

Service

Description

Output

May 9, 2008

CSP and Type of Access

getSecretKey Creates and returns a Java secret | None Status, a secret key AES key or Triple DES key for caller use
key (javax.crypto.SecretKey) (javax.crypto.SecretKey) | — write, read

getRawKey Creates and returns a Java secret | None Status, a secret key AES key or Triple DES key for caller use
key (byte array) (byte array) — write, read

startkeyGen Starts a thread that will perform key | None Status Triple DES key for veiling and unveiling
generation and save the keys. methods — write
Keys will be generated every 60
seconds

stopKeyGen Stops the key generation None Status Triple DES key for veiling and unveiling

methods — overwrite

getSecretKeyFromRepos

Gets a key
(javax.crypto.SecretKey) from the
repository that is created by the
startkeyGen method call

Index to the repository

Status, a secret key
(javax.crypto.SecretKey)

Triple DES key for veiling and unveiling
methods — read

encryption

plaintext to be encrypted

getRawKeyFromRepos | Gets a key (byte array) from the Index to the repository Status, a secret key Triple DES key for veiling and unveiling
repository that is created by the (byte array) methods — read
startkeyGen method call
setSecretKey Sets the secret key (byte array) to | Secret key Status AES key or Triple DES key for encryption
be used in crypto operations and decryption methods — write, overwrite
setSecretKey Sets the secret key Secret key Status AES key or Triple DES key for encryption
(javax.crypto.SecretKey) to be and decryption methods — write, overwrite
used in crypto operations
setlV Sets the initialization vector if Initialization vector Status None
crypto uses CBC mode
updateHash Updates the current message for Byte array added to the Status None
hashing message
hashValue Performs the final hashing for Byte array added to the Status, hash value None
message message before the final
hashing is done
updateEncrypted Updates the current plaintext for Byte array added to the Status None

Authernative® Cryptographic Module Page 17 of 25
© 2008 Authernative, Inc.

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1

May 9, 2008

Service Description Input Output CSP and Type of Access
encryptValue Performs the final encryption for Byte array added to the Status, ciphertext AES key or Triple DES key for encryption
the plaintext plaintext before the final and decryption methods — read
encryption is done
decryptValue Decrypts ciphertext Plaintext Status, plaintext AES key or Triple DES key for encryption
and decryption methods — read
encryptValue Encrypts plaintext with specified Plaintext, secret key Status, ciphertext AES key or Triple DES key for encryption
secret key (javax.crypto.SecretKey) | (javax.crypto.SecretKey) and decryption methods — read
decryptValue Decrypts ciphertext with specified | Ciphertext, secret key Status, plaintext AES key or Triple DES key for encryption
secret key (javax.crypto.SecretKey) | (javax.crypto.SecretKey) and decryption methods — read
encryptValue Encrypts plaintext with specified Plaintext, secret key (byte | Status, ciphertext AES key or Triple DES key for encryption
secret key (byte array) array) and decryption methods — read
decryptValue Decrypts ciphertext with specified | Ciphertext, secret key Status, plaintext AES key or Triple DES key for encryption
secret key (byte array) (byte array) and decryption methods — read
encode Performs Base64 encoding on Bytes to be encoded Encoded bytes None
bytes
encode Performs Base64 encoding on Strings to be encoded Encoded string None
strings
decode Performs Base64 decoding on Bytes to be decoded Decoded bytes None
bytes
decode Performs Base64 decoding on Strings to be decoded Decoded string None
strings
veilData Hides bits, bytes, or bits and bytes | Mode (bit, byte, or bit and | Conversion array with Triple DES key for veiling and unveiling
in a larger array byte), byte array to be hidden byte array methods — write, read
hidden, Triple DES key for
the ANSI X9.31 RNG
unveilData Extracts the data from conversion | Mode (bit, byte, or bitand | Original byte array Triple DES key for veiling and unveiling

array

byte), conversion array,
Triple DES key for the
ANSI X9.31 RNG

methods — write, read

Authernative® Cryptographic Module

© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Page 18 of 25

Security Policy, version 1.1 May 9, 2008

3.4 Physical Security

The Authernative® Cryptographic Module is a muhig standalone module. The physical security resgoénts do
not apply to this module, since it is purely a wafte module and does not implement any physicalirggc
mechanisms.

3.5 Operational Environment

The module was tested and validated on generalgarpicrosoft Windows XP with Service Package Zhv8un
JRE 1.5. The module can run on any JVM regardl&€§sSoand computer architecture. The minimum versibtine
JRE supported by the module is 1.5. The module mestonfigured in single user mode as per theuogtns
provided in Section 4.1 of this document. Recomneenconfiguration changes for the supported OS tsm lze
found in Section 4.1.

3.6 Cryptographic Key Management

The module implements the following FIPS-approviggdthms in the Approved mode of operation.

e SHA-1, SHA-256, SHA-384, SHA-512 (certificate #725HA means Secure Hash Algorithm.

» HMAC-SHA-1 (certificate #375). HMAC means Keyed-Hadessage Authentication Code.

» Triple DES: 112 and 168 bits, in ECB and CBC moftestificate #629). ECB and CBC mean Electronic
Codebook and Cipher Block Chaining, respectively.

* AES: 128, 192, and 256 bits, in ECB and CBC modesificate #697)

* ANSI X9.31 Appendix A.2.4 RNG with 2-key Triple DESertificate #408)

In the Approved mode of operation, the module asesn-Approved RNG to seed the ANSI X9.31 RNG. Tius-
Approved RNG is thé&ecureRandom class provided by the JRE and is not implementethé module itself. The
non-Approved RNG is outside the cryptographic baugaf the module and is used by the module onlyséeding
the ANSI X9.31 RNG. In the non-Approved mode of igghen, the module supports MD5.

The module supports the following CSPs in the Apptbmode of operation:

Table 7 — List of Cryptographic Keys, Cryptographic Key Components, and CSPs

Key Key Type | Generation/Input Output Storage Zeroization Use
Triple DES key for | Triple DES | Generated by ANSI | In 1. Plaintext in | Zeroized when Use is at the
caller use symmetric | X9.31 RNG plaintext |volatile the zeroize discretion of
keys memory; method is called |the caller
2. Plaintext in
filesystem
AES key for caller | AES Generated by ANSI | In 1. Plaintext in | Zeroized when Use is at the
use symmetric | X9.31 RNG plaintext |volatile the zeroize discretion of
key memory; method is called |the caller
2. Plaintext in
filesystem
Triple DES key for | Triple DES | Input by caller in Never Plaintext in Zeroized after Encrypt
encryption and symmetric | plaintext volatile encryption or plaintext or
decryption keys memory decryption is done | decrypt
methods ciphertext
AES key for AES Input by caller in Never Plaintext in Zeroized after Encrypt
encryption and symmetric | plaintext volatile encryption or plaintext or
decryption key memory decryption is done | decrypt
methods ciphertext

Authernative® Cryptographic Module

© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Page 19 of 25

Security Policy, version 1.1 May 9, 2008

Key Type | Generation/Input Output Storage Zeroization

Triple DES key for | Triple DES |Input by caller in Never Plaintext in Zeroized after Veil or unveil
veiling and symmetric | plaintext volatile veiling or data
unveiling methods | keys memory unveiling is done
ANSI X9.31 RNG | Date/time 1. Generated Never Plaintext in Zeroized when Generate keys
DT value for key |variable internally by volatile new DT value is
generation retrieving system memory generated
methods date/time value

2. Input by caller in

plaintext
ANSI X9.31 RNG | Triple DES |1. Generated using | Never Plaintext in Zeroized when Generate keys
Triple DES key for | symmetric | the non-Approved volatile new Triple DES
key generation keys RNG memory key is generated
methods 2. Input by caller in

plaintext
ANSI X9.31 RNG | Seed 1. Generated using | Never Plaintext in Zeroized when Generate keys
seed for key the non-Approved volatile new seed is
generation RNG memory generated
methods 2. Input by caller in

plaintext
Software integrity |512-bit Hardcoded Never Plaintext in Zeroized when Used in
test key HMAC- nonvolatile the module is software

SHA-1 key memory uninstalled integrity test

3.6.1 Key Generation

The module uses an ANSI X9.31 RNG with 2-key TripIES to generate cryptographic keys. This RNG R$R5-
Approved RNG as specified in Annex C to FIPS 140-2.

3.6.2 Key Input/Output

Symmetric keys are input to and output from the uedn plaintext. The module does not use asymowsy
cryptography.

3.6.3 Key Storage and Protection

Keys and other CSPs are stored in volatile memorfile system in plaintext. All key data residesimmernally
allocated data structures and can only be outpogubhe module’s defined API. The OS and JRE ptateemory
and process space from unauthorized access.

3.6.4 Key Zeroization

Generally speaking, CSPs resides in internal dat&tares that are cleaned up by JVM’s garbage=ctt. Java
handles memory in unpredictable ways that are pamest to the user. The Crypto Officer may manuahypke the
zeroization of keys stored in HashMap and filegystg calling thezeroize method.

3.7 EMI/EMC

Although the module consists entirely of softwahe FIPS 140-2 platform is a server that has bested for and
meets applicable Federal Communications Commis@i@C) EMI and EMC requirements for business use as
defined in Subpart B of FCC Part 15.

Authernative® Cryptographic Module Page 20 of 25
© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1 May 9, 2008

3.8 Self-Tests

The power-up self-tests are triggered by instaotiadf an object of thé&uthCryptoApi class. The Authernative®
Cryptographic Module performs the following powgr-self-tests:

» Software integrity test using HMAC-SHA-1

» Known Answer Test (KAT) on 2-key Triple DES in EGBode
» KAT on 128-bit AES in ECB mode

* KATs on SHA-1, SHA-256, SHA-384, and SHA-512

« KAT on ANSI X9.31 RNG

The module implements the following conditionalfgekts.

» Continuous test for the ANSI X9.31 RNG
» Continuous test for the non-Approved RNG

If the self-tests fail, an exception will be thrown the failure. The application is then alertedt tthe self-tests
failed, and the module will not load and will enger error state. When in the error state, executfdhe module is
halted and data output from the module is inhibited

3.9 Mitigation of Other Attacks

This section is not applicable. No claim is mads the module mitigates against any attacks beyoadrIPS 140-
2 level 1 requirements for this validation.

Authernative® Cryptographic Module Page 21 of 25
© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1 May 9, 2008

4 Secure Operation

The Authernative® Cryptographic Module meets Letetequirements for FIPS 140-2. The subsectionsvbelo
describe how to place and keep the module in theréyed mode of operation.

4.1 Operating System Configuration

The user of the module is a software applicatidRSF140-2 mandates that a cryptographic modulénhieet! to a
single user at a time. A single instantiation of #huthernative® Cryptographic Module shall only dxessed by
one client application, which is the User of thistantiation of the Authernative® Cryptographic Méa

For enhanced security, it is recommended that tigpt@ Officer configure the OS to disallow rematgih.

To configure Windows XP to disallow remote logine tCrypto Officer should ensure that all remotestjaecounts
are disabled in order to ensure that only one huopemator can log into Windows XP at a time. Thevises that
need to be turned off for Windows XP are

» Fast-user switching (irrelevant if server is a dommaember)
» Terminal services

* Remote registry service

» Secondary logon service

* Telnet service

* Remote desktop and remote assistance service

Once Windows XP has been configured to disable temogin, the Crypto Officer can use the system
“Administrator” account to install software, uniaBitsoftware, and administer the module.

A CMVP public documentErequently Asked Questions for the Cryptographic Module Validation Program', gives
instructions in Section 5.3 for configuring varidueix-based operating systems for single user mode.

4.2 Approved Mode Configuration

The Authernative® Cryptographic Module itself ist@m end-user product. It is provided to the ereksigas part of
the application (e.g., AuthGuard). The module istafied during installation of the application. Timstallation
procedure is described in the installation manaattie application.

In order to access functions of the module, thdiegpon has to execute the constructor of clasthCryptoApi by
instantiating an object of claggithCryptoApi. The constructor of clagsuthCryptoApi is:

public AuthSecurityApi(int crpytoType, int hashType, int codeBook, int keySize, int padding)

If the value passed in to the argumiemthashType is SHA (integer value 1, 2, 3, or 4), then the mieds operating
in the Approved mode of operation. If the valueseakin to the argumemt hashType is MD5 (integer value 0),
then the module is operating in the non-Approvedenaof operation.

The constructor of clas8uthCryptoApi performs all required power-up self-tests. If pdwer-up self-tests are
passed, then an internal flag will be set to tAleother public methods of the module check tmigernal flag and
ensure it is true before performing any other fiom.

! Available athttp://csrc.nist.gov/groups/STM/cmvp/documents/CNRAR.pdf

Authernative® Cryptographic Module Page 22 of 25
© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1 May 9, 2008

Notice that the Approved mode configuration destilabove is transparent to an operator. The cawaflignm is
performed by the client application.

4.3 CSP Zeroization

The Crypto Officer should zeroize CSPs when theyrarlonger needed. See Section 3.6.4 of this dentirfor
details on CSP zeroization.

4.4 Status Monitoring

The module’s cryptographic functionality and seyusiervices are provided via the application. Tredluole is not
meant to be used without an associated applicakod-user instructions and guidance are providethénuser
manual and technical support documents of the egjdn software. Although end-users do not haveilpges to
modify configurations of the module, they shouldkeaure that the Approved mode of operation isresfibin the
application, thereby ensuring that the proper @ggphic protection is provided.

Authernative® Cryptographic Module Page 23 of 25
© 2008 Authernative, Inc.
This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1

5 Acronyms

Acronym Definition

Table 8 — Acronyms

AES Advanced Encryption Standard

ANSI American National Standards Institute
API Application Programming Interface
BBVU Byte-Bit-Veil-Unveil

BIOS Basic Input/Output System

BitvU Bit-Veil-Unveil

ByteVU Byte-Veil-Unveil

CBC Cipher Block Chaining

CD-ROM | Compact Disc Read-Only Memory
CMVP Cryptographic Module Validation Program
CPU Central Processing Unit

CSP Critical Security Parameter

DES Data Encryption Standard

DRK Data Random Key

DT Date/Time

ECB Electronic Codebook

EMC Electromagnetic Compatibility

EMI Electromagnetic Interference

FCC Federal Communications Commission
FIPS Federal Information Processing Standard
GPC General-Purpose Computer

GUI Graphical User Interface

HDD Hard Drive

HMAC Keyed-Hash Message Authentication Code
IDE Integrated Drive Electronics

IEEE Institute of Electrical and Electronics Engineers
110 Input/Output

IR Infrared

ISA Instruction Set Architecture

JAR Java ARchival

JRE Java Runtime Environment

JVM Java Virtual Machine

KAT Known Answer Test

Authernative® Cryptographic Module

© 2008 Authernative, Inc.

May 9, 2008

Page 24 of 25

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Security Policy, version 1.1

Acronym Definition

MAC

Message Authentication Code

N/A

Not Applicable

(O

Operating System

PCI

Peripheral Component Interconnect

RAM

Random Access Memory

RNG

Random Number Generator

ROM

Read Only Memory

SHA

Secure Hash Algorithm

SRK

Session Random Key

UART

Universal Asynchronous Receiver/Transmitter

USB

Universal Serial Bus

Authernative® Cryptographic Module

© 2008 Authernative, Inc.

May 9, 2008

Page 25 of 25

This document may be freely reproduced and distributed whole and intact including this copyright notice.

