
Windows XP SP3 FIPS.SYS Security Policy 1

Kernel Mode Cryptographic Module
Version 5.1.2600.5512

FIPS 140-2 Documentation: Security Policy

April 24, 2008

Document Version 1.1

Abstract

This document specifies the security policy for the Kernel Mode Cryptographic Module (FIPS.SYS)

as described in FIPS PUB 140-2.

Operating System

Windows XP FIPS.SYS Security Policy 2

This is a preliminary document and may be changed substantially prior to final
commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft
Corporation on the issues discussed as of the date of publication. Because Microsoft
must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy
of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. This
work is licensed under the Creative Commons Attribution-NoDerivs-NonCommercial
License (which allows redistribution of the work). To view a copy of this license, visit
http://creativecommons.org/licenses/by-nd-nc/1.0/ or send a letter to Creative
Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.Microsoft may
have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly
provided in any written license agreement from Microsoft, the furnishing of this
document does not give you any license to these patents, trademarks, copyrights, or
other intellectual property.

The example companies, organizations, products, people and events depicted
herein are fictitious. No association with any real company, organization, product,
person or event is intended or should be inferred.

© 2007 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, Visual Basic, Visual Studio, Windows, the Windows logo,
Windows NT, and Windows Server are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

 Windows XP FIPS.SYS Security Policy 3

INTRODUCTION ...4

SECURITY POLICY...5

SPECIFICATION OF ROLES..6

SPECIFICATION OF SERVICES ..7

CRYPTOGRAPHIC KEY MANAGEMENT15

SELF-TESTS ...17

MISCELLANEOUS...18

FOR MORE INFORMATION...19

CONTENTS

Windows XP FIPS.SYS Security Policy 4

Microsoft Corporation’s Windows XP Kernel Mode Cryptographic Module (FIPS.SYS) (Software

version 5.1.2600.5512) is a FIPS 140-2 Level 1 compliant, general-purpose, software-based,

cryptographic module residing at the Kernel Mode level of the Windows Operating System. It runs as a

kernel mode export driver (a kernel-mode DLL) and encapsulates several different cryptographic

algorithms in an easy-to-use cryptographic module accessible by other kernel mode drivers. It can be

linked into other kernel mode services to permit the use of FIPS 140-2 Level 1 compliant cryptography.

Cryptographic Boundary

The Kernel Mode Cryptographic Module (FIPS.SYS) consists of a single kernel mode export driver

(SYS), which comprises the modules logical boundary. The cryptographic boundary for FIPS.SYS is

defined as the software module itself and its physical perimeter is the enclosure of the computer

system on which the cryptographic module is to be executed. The physical configuration of the module,

as defined in FIPS PUB 140-2, is Multi-Chip Standalone. The module was tested on a platform

running with an x86 processor.

INTRODUCTION

Windows XP FIPS.SYS Security Policy 5

FIPS.SYS operates under several rules that encapsulate its security policy.

• FIPS.SYS is supported on Windows XP Service Pack 3.

• FIPS.SYS provides no user authentication; however, it relies on Microsoft Windows XP for the

authentication of users.
• All cryptographic services provided by FIPS.SYS are available to kernel mode system services,

which are a part of Windows operating system trusted computer base (TCB1).
• In order to invoke the approved mode of operation, the user must call FIPS approved functions.
• Windows XP operating system requires each user to be successfully authenticated before any

system services may act on behalf of that user.

• All services implemented within FIPS.SYS are available to both the User and Crypto-officer roles.

• When operating this module under Windows XP Service Pack 3 the following algorithms are

Approved Security functions and can be used in FIPS mode:

• FIPS-approved algorithms: Triple-DES (Cert. #677), SHA-1 (Cert. #785), HMAC SHA1 (Cert.

#429) and FIPS186-2 Change Notice General Purpose random generator (Cert. #449). In

addition, the module supports the vendor-affirm Triple-DES MAC used only for the software

integrity test.

• FIPS.SYS also supports non-FIPS Approved algorithms: DES, MD5 and HMAC MD5.

• FIPS.SYS performs the following self-tests upon power up:

− DES ECB encrypt/decrypt

− DES CBC encrypt/decrypt

− Triple-DES (2 key and 3 key) ECB encrypt/decrypt

− Triple-DES (2 key and 3 key) CBC encrypt/decrypt

− SHA-1 hash

− Keyed-Hash MAC (HMAC SHA-1)

− FIPS186-2 General Purpose random generator

− Software Integrity Test (Triple-DES MAC)

1 The TCB is the part of the operating system that is designed to meet the security functional requirements of the Controlled Access
Protection Profile, which can be found at <http://www.radium.ncsc.mil/tpep/library/protection_profiles/index.html>. At this time,

Windows XP has not been evaluated.

SECURITY POLICY

Windows XP FIPS.SYS Security Policy 6

FIPS.SYS module supports both a User and Cryptographic Officer roles (as defined in FIPS PUB 140-

2). Both roles may access all services implemented in the cryptographic module. Windows XP

operating system requires each user to be successfully authenticated before any system services may

act on behalf of that user.

To use a DES, Triple-DES or HMAC function, a kernel mode system service needs to provide a DES,

Triple-DES or HMAC key respectively to the crypto module. Keys are zeroized after FIPS.SYS

completes a DES, Triple-DES or HMAC function with the keys.

Maintenance Roles

Maintenance roles are not supported by FIPS.SYS.

Multiple Concurrent Operators

This version of FIPS.SYS is intended to run on Windows XP SP3 in Single User Mode. When run in

this configuration, multiple concurrent operators are not supported.

SPECIFICATION OF

ROLES

Windows XP FIPS.SYS Security Policy 7

The following list contains all services available to an operator. All services are accessible by all

Operators, the one and only role supported by FIPS.SYS.

Key Storage Services

FIPS.SYS does not store keys. DES, Triple-DES, and HMAC keys are zeroized after used.

Cryptographic Module Power Up and Power Down

DriverEntry

Each Windows XP driver must have a standard initialization routine DriverEntry in order to be loaded.

The Windows XP Loader is responsible to call the DriverEntry routine. The DriverEntry routine must

have the following prototype.
NTSTATUS
(*PDRIVER_INITIALIZE) (

IN PDRIVER_OBJECT DriverObject,
IN PUNICODE_STRING RegistryPath
);

The input DriverObject represents the driver within the Windows XP system. Its pointer allows the

DriverEntry routine to set an appropriate entry point for its DriverUnload routine in the driver object.

The RegistryPath input to the DriverEntry routine points to a counted Unicode string that specifies a

path to the driver's registry key \Registry\Machine\System\CurrentControlSet\Services\FIPS.

DriverUnload

It is the entry point for the driver's unload routine. The pointer to the routine is set by the DriverEntry

routine in the DriverUnload field of the DriverObject when the driver initializes. An Unload routine is

declared as follows:
VOID
(*PDRIVER_UNLOAD) (

IN PDRIVER_OBJECT DriverObject
);

When the driver is no longer needed, the Windows XP Kernel is responsible to call the DriverUnload

routine of the associated DriverObject.

Key Formatting

The following functions provide interfaces to the crypto module’s key formatting functions.

FipsDesKey

VOID
FipsDesKey(

DESTable * pDesTable,
UCHAR * pbKey

SPECIFICATION OF

SERVICES

Windows XP FIPS.SYS Security Policy 8

)

The FipsDesKey function formats a DES cryptographic session key into the form of a DESTable struct.

It fills in the DESTable struct with the decrypt and encrypt key expansions. Its second parameter points

to the DES key of DES_BLOCKLEN (8) bytes. FipsDesKey zeroises its copy of the key before

returning to the caller.

Fips3DES3Key

VOID
Fips3DES3Key(

DES3TABLE * pDES3Table,
UCHAR * pbKey
)

The Fips3DES3Key function formats a Triple-DES cryptographic session key into the form of a

DES3Table struct. It fills in the DES3Table struct with the decrypt and encrypt key expansions. Its

second parameter points to the Triple-DES key of 3 * DES_BLOCKLEN (24) bytes. FipsTriple-

DES3Key zeroises its copy of the key before returning to the caller.

Random Number Generation

FipsGenRandom

BOOL
FIPSGenRandom(

In OUT UCHAR * pb,
IN ULONG cb
);

The FipsGenRandom function fills the buffer pb with cb random bytes produced using a FIPS 140-2

compliant pseudo random number generation algorithm. The algorithm is the SHS based RNG from

FIPS 186. Internally, the function compares each 160 bits of the buffer with the next 160 bits. If they

are the same, the function returns FALSE. The caller may optionally specify the initial 160 bits in the

pb buffer for the initiation of the comparison. This initial 160 bit sequence is used only for the

comparison algorithm and it is not intended as caller supplied random seed.

During the function initialization, a seed, to which SHA-1 is applied to create the output random, is

created based on the collection of all the following data.

• The process ID of the current process requesting random data

• The thread ID of the current thread within the process requesting random data

• A 32bit tick count since the system boot

• The current local date and time

• The current system time of day information consisting of the boot time, current time, time zone

bias, time zone ID, boot time bias, and sleep time bias

• The current hardware-platform-dependent high-resolution performance-counter value

• The information about the system's current usage of both physical and virtual memory, and page

file

• The local disk information including the numbers of sectors per cluster, bytes per sector, free

clusters, and clusters that are available to the user associated with the calling thread

• A hash of the environment block for the current process

• Some hardware CPU-specific cycle counters

Windows XP FIPS.SYS Security Policy 9

• The system processor performance information consisting of Idle Process Time, Io Read Transfer

Count, Io Write Transfer Count, Io Other Transfer Count, Io Read Operation Count, Io Write

Operation Count, Io Other Operation Count, Available Pages, Committed Pages, Commit Limit,

Peak Commitment, Page Fault Count, Copy On Write Count, Transition Count, Cache Transition

Count, Demand Zero Count, Page Read Count, Page Read Io Count, Cache Read Count, Cache

Io Count, Dirty Pages Write Count, Dirty Write Io Count, Mapped Pages Write Count, Mapped

Write Io Count, Paged Pool Pages, Non Paged Pool Pages, Paged Pool Allocated space, Paged

Pool Free space, Non Paged Pool Allocated space, Non Paged Pool Free space, Free System

page table entry, Resident System Code Page, Total System Driver Pages, Total System Code

Pages, Non Paged Pool Look aside Hits, Paged Pool Lookaside Hits, Available Paged Pool

Pages, Resident System Cache Page, Resident Paged Pool Page, Resident System Driver Page,

Cache manager Fast Read with No Wait, Cache manager Fast Read with Wait, Cache manager

Fast Read Resource Missed, Cache manager Fast Read Not Possible, Cache manager Fast

Memory Descriptor List Read with No Wait, Cache manager Fast Memory Descriptor List Read

with Wait, Cache manager Fast Memory Descriptor List Read Resource Missed, Cache manager

Fast Memory Descriptor List Read Not Possible, Cache manager Map Data with No Wait, Cache

manager Map Data with Wait, Cache manager Map Data with No Wait Miss, Cache manager Map

Data Wait Miss, Cache manager Pin-Mapped Data Count, Cache manager Pin-Read with No

Wait, Cache manager Pin Read with Wait, Cache manager Pin-Read with No Wait Miss, Cache

manager Pin-Read Wait Miss, Cache manager Copy-Read with No Wait, Cache manager Copy-

Read with Wait, Cache manager Copy-Read with No Wait Miss, Cache manager Copy-Read with

Wait Miss, Cache manager Memory Descriptor List Read with No Wait, Cache manager Memory

Descriptor List Read with Wait, Cache manager Memory Descriptor List Read with No Wait Miss,

Cache manager Memory Descriptor List Read with Wait Miss, Cache manager Read Ahead IOs,

Cache manager Lazy-Write IOs, Cache manager Lazy-Write Pages, Cache manager Data

Flushes, Cache manager Data Pages, Context Switches, First Level Translation buffer Fills,

Second Level Translation buffer Fills, and System Calls

• The system exception information consisting of Alignment Fix up Count, Exception Dispatch

Count, Floating Emulation Count, and Byte Word Emulation Count

• The system lookaside information consisting of Current Depth, Maximum Depth, Total Allocates,

Allocate Misses, Total Frees, Free Misses, Type, Tag, and Size

• The system interrupt information consisting of context switches, deferred procedure call count,

deferred procedure call rate, time increment, deferred procedure call bypass count, and

asynchronous procedure call bypass count

• The system process information consisting of Next Entry Offset, Number Of Threads, Create Time,

User Time, Kernel Time, Image Name, Base Priority, Unique Process ID, Inherited from Unique

Process ID, Handle Count, Session ID, Page Directory Base, Peak Virtual Size, Virtual Size, Page

Fault Count, Peak Working Set Size, Working Set Size, Quota Peak Paged Pool Usage, Quota

Paged Pool Usage, Quota Peak Non Paged Pool Usage, Quota Non Paged Pool Usage, Page file

Usage, Peak Page file Usage, Private Page Count, Read Operation Count, Write Operation Count,

Other Operation Count, Read Transfer Count, Write Transfer Count, and Other Transfer Count

Windows XP FIPS.SYS Security Policy 10

Data Encryption and Decryption

The following functions provide interfaces to the crypto module’s data encryption and decryption

functions.

FipsDes

VOID
FipsDes(

UCHAR * pbOut,
UCHAR * pbIn,
void * pKey,
int iOp
);

The FipsDes function encrypts or decrypts the input buffer pbIn using DES, putting the result into the

output buffer pbOut. The operation (encryption or decryption) is specified with the iOp parameter. The

pKey is a DESTable struct pointer returned by the FipsDesKey function. FipsDes zeroises its copy of

the DESTable struct before returning to the caller.

Fips3DES

VOID
Fips3DES(

UCHAR * pbIn,
UCHAR * pbOut,
void * pKey,
int op)

The Fips3DES function encrypts or decrypts the input buffer pbIn using Triple-DES, putting the result

into the output buffer pbOut. The operation (encryption or decryption) is specified with the op

parameter. The pkey is a DES3Table struct returned by the Fips3DES3Key function. Fips3DES

zeroises its copy of the DES3Table struct before returning to the caller.

FipsCBC

BOOL FipsCBC(
ULONG EncryptionType,
BYTE * output,
BYTE * input,
void * keyTable,
int op,
BYTE * feedback

)

The FipsCBC function encrypts or decrypts the input buffer input using CBC mode, putting the result

into the output buffer output. The encryption algorithm (DES or Triple-DES) to be used is specified

with the EncryptionType parameter. The operation (encryption or decryption) is specified with the op

parameter.

If the EncryptionType parameter specifies Triple-DES, the keyTable is a DES3Table struct returned by

the Fips3DES3Key function. If the EncryptionType parameter specifies DES, the keyTable is a

DESTable struct returned by the FipsDesKey function.

Windows XP FIPS.SYS Security Policy 11

This function encrypts just one block at a time and assumes that the caller knows the algorithm block

length and the buffers are of the correct length. Every time when the function is called, it zeroises its

copy of the DES3Table or DESTable struct before returning to the caller.

FipsBlockCBC

BOOL FipsBlockCBC(
ULONG EncryptionType,
BYTE * output,
BYTE * input,
ULONG length,
void * keyTable,
int op,
BYTE * feedback

)

Same as FipsCBC, the FipsBlockCBC function encrypts or decrypts the input buffer input using CBC

mode, putting the result into the output buffer output. The encryption algorithm (DES or Triple-DES) to

be used is specified with the EncryptionType parameter. The operation (encryption or decryption) is

specified with the op parameter.

If the EncryptionType parameter specifies Triple-DES, the keyTable is a DES3Table struct returned by

the Fips3DES3Key function. If the EncryptionType parameter specifies DES, the keyTable is a

DESTable struct returned by the FipsDesKey function.

This function can encrypt/decrypt more than one block at a time. The caller specifies the length in

bytes of the input buffer in the “length” parameter. So the input/output buffer length is the arithmetic

product of the number of blocks in the input/output buffer and the block length (8 bytes). When the

length is 8 (i.e. one block of input buffer), FipsBlockCBC is the same as FipsCBC.

Every time when the function is called, it zeroises its copy of the DES3Table or DESTable struct before

returning to the caller.

Hashing

The following functions provide interfaces to the crypto module’s hashing functions.

FipsSHAInit

void
FipsSHAInit(

A_SHA_CTX * hash_context
)

The FipsSHAInit function initiates the hashing of a stream of data. The output hash_context is used in

subsequent hash functions.

FipsSHAUpdate

void FipsSHAUpdate(
A_SHA_CTX * hash_context,
UCHAR * pb,
unsigned int cb
)

Windows XP FIPS.SYS Security Policy 12

The FipsSHAUpdate function adds data pb of size cb to a specified hash object associated with the

context hash_context. This function can be called multiple times to compute the hash on long data

streams or discontinuous data streams. The FipsSHAFinal function must be called before retrieving the

hash value.

FipsSHAFinal

void FipsSHAFinal (
A_SHA_CTX * hash_context,
unsigned char [A_SHA_DIGEST_LEN] hash)

The FipsSHAFinal function computes the final hash of the data entered by the FipsSHAUpdate

function. The hash is an array char of size A_SHA_DIGEST_LEN (20 bytes).

FipsHmacSHAInit

void
FipsSHAInit(

A_SHA_CTX * pShaCtx
UCHAR * pKey,
unsigned int cbKey
)

The FipsHmacSHAInit function initiates the HMAC hashing of a stream of data, with an input key

provided via the pKey parameter. The size of the input key is specified in the cbKey parameter. If the

key size is greater than 64 bytes, the key is hashed to a new key of size 20 bytes using SHA-1. The

input key is EOR’ed with the ipad as required in the HMAC FIPS. The output pShaCtx is used in

subsequent HMAC hashing functions. Every time when the function is called, it zeroizes its copy of the

pKey before returning to the caller.

FipsHmacSHAUpdate

void FipsSHAUpdate(
A_SHA_CTX * pShaCtx,
UCHAR * pb,
unsigned int cb
)

The FipsHmacSHAUpdate function adds data pb of size cb to a specified HMAC hashing object

associated with the context pShaCtx. This function can be called multiple times to compute the HMAC

hash on long data streams or discontinuous data streams. The FipsHmacSHAFinal function must be

called before retrieving the final HMAC hash value.

FipsHmacSHAFinal

void FipsHmacSHAFinal (
A_SHA_CTX * pShaCtx,
UCHAR * pKey,
unsigned int cbKey,
UCHAR * hash)

Windows XP FIPS.SYS Security Policy 13

The FipsHmacSHAFinal function computes the final HMAC hash of the data entered by the

FipsHmacSHAUpdate function, with an input key provided via the pKey parameter. The size of the

input key is specified in the cbKey parameter. If the key size is greater than 64 bytes, the key is

hashed to a new key of size 20 bytes using SHA-1. The input key is EOR’ed with the opad as required

in the HMAC FIPS. It is the caller’s responsibility to make sure that the input key used in

FipsHmacSHAFinal is the same as the input key used in FipsHmacSHAInit. The final HMAC hash is

an array char of size A_SHA_DIGEST_LEN (20 bytes). Every time when the function is called, it

zeroises its copy of the pKey before returning to the caller.

HmacMD5Init HmacMD5Init HmacMD5Init HmacMD5Init

void HmacMD5Init(
MD5_CTX * pMD5Ctx,
UCHAR * pKey,
unsigned int cbKey)

The HmacMD5Init function initiates the HMAC hashing of a stream of data, with an input key provided

via the pKey parameter. The size of the input key is specified in the cbKey parameter. If the key size

is greater than 64 bytes, the key is hashed to a new key of size 16 bytes using MD5 as required in the

HMAC FIPS. The input key is EOR’ed with the ipad. The output pMD5Ctx is used in subsequent

HMAC hashing functions. Every time when the function is called, it zeroizes its copy of the pKey

before returning to the caller.

HmacMD5Update

void HmacMD5Update(
MD5_CTX * pMD5Ctx,
UCHAR * pb,
unsigned int cb)

The HmacMD5Update function adds data pb of size cb to a specified HMAC hashing object associated

with the context pMD5Ctx. This function can be called multiple times to compute the HMAC hash on

long data streams or discontinuous data streams. The HmacMD5Update function must be called

before retrieving the final HMAC hash value.

HmacMD5Final

void HmacMD5Final(
MD5_CTX *pMD5Ctx,
UCHAR *pKey,
unsigned int cbKey,
UCHAR *pHash)

The HmacMD5Final function computes the final HMAC hash of the data entered by the

HmacMD5Update function, with an input key provided via the pKey parameter. The size of the input

key is specified in the cbKey parameter. If the key size is greater than 64 bytes, the key is hashed to a

new key of size 16 bytes using MD5. The input key is EOR’ed with the opad as required in the HMAC

FIPS. It is the caller’s responsibility to make sure that the input key used in HmacMD5Final is the

same as the input key used in HmacMD5Init. The final HMAC hash is an array char of size A_

MD5DIGESTLEN (16 bytes). Every time when the function is called, it zeroises its copy of the pKey

before returning to the caller.

Windows XP FIPS.SYS Security Policy 14

Acquiring a Table of Pointers to FipsXXX Functions

A kernel mode user of the FIPS.SYS driver must be able to reference the FipsXXX functions before

using them. The user needs to acquire the table of pointers to the FipsXXX functions from the

FIPS.SYS driver. The user accomplishes the table acquisition by building a Fips function table request

irp (I/O request packet) and then sending the irp to the FIPS.SYS diver via the IoCallDriver function.

Further information on irp and IoCallDriver can be found on Microsoft Windows XP Driver Development

Kit.

Windows XP FIPS.SYS Security Policy 15

The FIPS.SYS crypto module manages keys in the following manner.

Cryptographic Keys, CSPs, and SRDIs

The FIPS.sys crypto module contains the following security relevant data items:

Security Relevant Data Item SRDI Description

Software Integrity Key Triple-DES MAC Key for verifying the module’s integrity

Symmetric encrypt/decrypt keys Keys used for TDES encryption/decryption.

HMAC keys Keys used for HMAC-SHA1

Access Control Policy

The FIPS.sys crypto module allows controlled access to the SRDIs contained within it. The following

table defines the access that a service has to each. The permissions are categorized as a set of four

separate permissions: read (r), write (w), execute (x), delete (d). If no permission is listed, the service

has no access to the SRDI.

FIPS.sys crypto module

SRDI/Service Access Policy

S
ec

ur
ity

 R
el

ev
an

t
D

at
a

Ite
m

S
of

tw
ar

e
In

te
gr

ity
 K

ey

S
ym

m
et

ric
 e

nc
ry

pt
/d

ec
ry

pt
 k

ey
s

H
M

A
C

 k
ey

s

Service

Software Integrity Test r/x

Key Storage Services r/x r/x

Key Formatting/Random Number Generation r/w/d r/w/d

Data Encryption and Decryption Services x

Hashing Services x

Key Material

FIPS.SYS use keys provided by the caller for the following algorithms: DES, Triple-DES and HMAC.

CRYPTOGRAPHIC KEY

MANAGEMENT

Windows XP FIPS.SYS Security Policy 16

Key Generation

Random keys can be generated by calling the FipsGenRandom() function. Key are generated

following the techniques in FIPS PUB 186-2, Appendix 3, Random Number Generation and in FIPS

140-2 RNGVS requirements

Key Entry and Output

DES keys can be imported into FIPS.SYS via FipsDesKey(). DESTable struct can be exported out of

FIPS.SYS via FipsDesKey(). DESTable struct can be imported into FIPS.SYS via FipsDes() or

FipsCBC().

Triple-DES keys can be imported into FIPS.SYS via Fips3DES3Key(). DES3Table struct can be

exported out of FIPS.SYS via Fips3DES3Key(). DES3Table struct can be imported into FIPS.SYS via

Fips3DES() or FipsCBC().

HMAC keys can be imported into FIPS.SYS via FipsHmacSHAInit and FipsHmacSHAFinal.

Key Storage

FIPS.SYS only stores the Triple-DES MAC key used for the self-integrity test. It does not store

cryptographic keys. DES and Triple-DES keys and their associated DESTable and DES3Table struct,

and HMAC keys are zeroized after used.

Key Archival

FIPS.SYS does not archive cryptographic keys. All key copies inside FIPS.SYS are destroyed and

their memory location zeroized after used. It is the caller’s responsibility to maintain the security of

DES, Triple-DES and HMAC keys when the keys are outside FIPS.SYS.

Key Destruction

All DES and Triple-DES key copies, their associated DESTable and DES3Table struct copies, and

HMAC key copies inside FIPS.SYS are destroyed and their memory location zeroized after they have

been used in FipsDes, Fips3DES, or FipsCBC.

The module’s software integrity key is stored as part of the module binary and can be zeroized by

deleting the module.

Windows XP FIPS.SYS Security Policy 17

Power up

The following FIPS-approved algorithm tests are initiated upon power-up

• Triple-DES (3 key and 2 key) ECB encrypt/decrypt KAT

• Triple-DES (3 key and 2 key) CBC encrypt/decrypt KAT

• SHA-1 hash KAT

• HMAC SHA-1 KAT

• Software integrity test using Triple-DES MAC

• FIPS186-2 Change Notice General Purpose random generator

The following non-FIPS approved algorithms power-up tests include (may not be used in FIPS-mode)

• DES ECB encrypt/decrypt KAT

• DES CBC encrypt/decrypt KAT

Conditional

The following are initiated at random number generation:

• Continuous random number generator test for both approved and non-approved RNGs

SELF-TESTS

Windows XP FIPS.SYS Security Policy 18

The following items address requirements not addressed above.

Cryptographic Bypass

Cryptographic bypass is not support in FIPS.SYS.

Operator Authentication

FIPS.SYS provides no authentication of operators. However, the Microsoft Windows XP operating

system upon which it runs does provide authentication, but this is outside the scope of FIPS.SYS FIPS

validation. The information about the authentication provided by Microsoft Windows XP is for

informational purposes only. Microsoft Windows XP requires authentication from a trusted computer

base (TCB) before a user is able to access system services. Once a user is authenticated from the

TCB, a process is created bearing the Operator’s security token. All subsequent processes and

threads created by that Operator are implicitly assigned the parent’s (thus the Operator’s) security

token. Every user that has been authenticated by Microsoft Windows XP is naturally assigned the

Operator role when he/she accesses FIPS.SYS.

Operating System Security

The FIPS.SYS crypto module is intended to run on Windows XP SP3 in the Single User Mode.

When the Windows XP operating system Loader loads the crypto module into memory, the crypto

module runs a Triple-DES MAC on the crypto module’s disk image of FIPS.SYS, excluding the Triple-

DES MAC checksum, and export signature resources. This MAC is compared to the value stored in

the Triple-DES MAC resource. Initialization will only succeed if the two values are equal.

MISCELLANEOUS

Windows XP FIPS.SYS Security Policy 19

For the latest information on Windows XP, check out our World Wide Web site at

http://www.microsoft.com/windows.

FOR MORE

INFORMATION

