Algorithm Validation Testing

Larry Bassham
and
Sharon Keller



Validation Testing for
Cryptographic Algorithms

* Prerequisite to FIPS 140 Validation Testing



Validation Process

NIST and CSE develop validation suite consisting
of validation tests

Accreditation Laboratory supplies data and
applicable validation tests required to validate a
vendor’s Implementation Under Test (IUT)

Vendor runs the specified validation tests on the
IUT and returns the results to the laboratory

Laboratory verifies results and sends the IUT’s
results and a request for validation to NIST



Validation Process
(Continued)

 NIST reviews the results

— Adds the vendor algorithm IUT information to
NIST’s algorithm validation database

— Creates an algorithm validation certificate
which NIST and CSE sign and send to the
laboratory to be sent to the vendor

— Adds an entry to the appropriate validation list
which 1s accessible via
http://csrc.nist.gov/cryptval



Cryptographic Algorithms for Which

NIST Currently Has Standards and Validation
Tests

* FIPS 197 — Advanced Encryption Standard (AES)

e FIPS 46-3 and FIPS 81 — Data Encryption
Standard (DES) and DES Modes of Operation —
specifies the DES and Triple DES algorithms

e FIPS 186-2 and FIPS 180-1 — Digital Signature
Standard (DSS) and Secure Hash Standard (SHS)

* FIPS 185 — Escrowed Encryption Standard (EES)
— specifies the Skipjack algorithm



Cryptographic Algorithms for Which

NIST Is Developing Standards and
Validation Tests

« HMAC
« SHA-256, SHA-384, SHA-512

» Key Establishment using Diffie-Hellman
and MQV



Validation Tests
(TDES, DES, and Skipjack)

» 3 types of cryptographic algorithm validation tests

— Known Answer tests
» Variable Plaintext/Ciphertext Known Answer Test
e *Inverse Permutation Known Answer Test
» Variable Key Known Answer Test
e *Permutation Operation Known Answer Test
» *Substitution Table Known Answer Test

— *Multi-block Message test

— Monte Carlo test
(* Not run for Skipjack)



Validation Tests

(TDES, DES, and Skipjack)
(Continued)

* A separate set of Known Answer Tests and
a corresponding Monte Carlo test and (1f
applicable) a Multi-block Message Test

exist for every state in every mode of
operation



Validation Tests

(TDES, DES, and Skipjack)
(Continued)

* States
— Encrypt
— Decrypt



Validation Tests

(TDES, DES, and Skipjack)

(Continued)
Modes of Operation per Algorithm
DES Triple DES Skipjack
ECB ECB ECB
CBC CBC CBC

CFB - 1,8,64 bit

CBC-Interleaved

CFB - 1,8,64 bit

OFB

CFB - 1,8,64 bit

OFB

CFB-Pipelined - 1,8,64
bit

OFB

OFB-Interleaved




Known Answer Tests
(Triple DES and DES)

— Vertifies that the implementation correctly
performs the algorithm

— Provides conformance testing for components
of the algorithm
e Initial permutation IP
« Expansion matrix E
e Inverse permutation IP-!
« Key permutation PC1 and PC2
e Data permutation P
* Substitution tables S, S,, ..., Sq



Known Answer Tests
(Skipjack)

— Verifies that, given known 1nputs, the correct
results are produced.



Known Answer Tests

» Test procedures:

— Lab supplies known values for key(s),
plaintext, and, if applicable, IV(s) for every
Known Answer Test

— Vendor runs each known value through the IUT
of the TDES, DES, or Skipjack algorithms

— The results are recorded and compared to the
known answers



Multi-block Message Test

 Tests the ability to properly process multi-
block messages, requiring the chaining of
information from one block to the next

* Lab supplies the IUT with pseudorandom
values for key(s), messages that are integral
numbers of blocks in length, and, 1f

applicable, IV(s)
* Evaluates the resulting ciphertext



Monte C

arlo Test

Tests for implementation flaws

Lab supplies pseudorandom values for
key(s), plaintext, and, 1f applicable, IV(s)

Test consists of 4 mi]

TDES, DES, or Skipj

lion cycles through the
ack algorithms

The results of every |

10,000 encryption or

decryption cycle are recorded and evaluated



Validation Tests
(AES)

« Same three test types as DES and 3DES
— Know Answer Tests
— Multi-block Message Test
— Monte Carlo Test

 Known Answer Tests differ
— Variable Plaintext/Ciphertext Test
— Variable Key Test

— GFSbox Test (stress math operations and Sbox used in
round function

— Key Sbox Test (stresses Sbox used in key schedule)

» Separate tests required for each of three key sizes
as well as each state (encrvpt/decrvpt)



SHA-1

* Three Tests
— Short Messages
— Selected Long Messages
— Monte Carlo

* Two modes: bit-oriented and byte-oriented



SHA-1: Short Messages

Tests the ability of the IUT to generate
digests for messages of arbitrary length

Generates messages of length 0 <1< 1024
Calculates message digests of messages

Compares message digest calculated with
those supplied by the tool



SHA-1: Selected Long Messages

Tests the ability of the IUT to generate digests for
messages that span multiple blocks

Generates messages of length:
— Byte-oriented: 1032+1*1024, 0 <1< 100
— Bit-oriented: 1025+1*1024, 0 <1< 100

Calculates message digests of messages

Compares messages digests calculated with those
supplied by the IUT



SHA-1: Monte Carlo

» Tests for implementation flaws by
providing pseudo-random input

* Generates 100 message digests, using
previous digests as mput

* Compares messages digests calculated by
the IUT with the expected values



IDNN

Primality

Domain Parameter Generation
Domain Parameter Validation
Key Pair Generation
Signature Generation

Signature Validation



Primality

* Tests the ability of the implementation to
determine whether large numbers are prime

* Generates several large numbers, some of
which are prime and some of which are not

* Compares the determination of the IUT
regarding primality with the expected value



Domain Parameter Generation

 Tests the ability of the IUT to generate
Domain Parameters

* Requests the IUT to generate a specific
number of Domain Parameter sets (P, Q, G,
Seed, Counter, H)

* Recalculates the Domain Parameters using
the same Seed and verifies the remaining
values 1n the set



Domain Parameter Validation

Tests the ability of the IUT to recognize
valid vs. invalid Domain Parameters

Generates several sets of Domain
Parameters

Modifies components of some parameters

Compares the IUT’s results with the
expected values



Key Pair Generation

» Tests the ability of the IUT to generate pair-
wise consistent keys

 Provides seed values to the IUT to use to
generate key pairs

* Verifies the consistency of key pair or
performs public key validation on the public
key



Signature Generation

Tests the ability of the IUT to derive correct
signatures for messages

Generates several messages to be signed by
the IUT

If the IUT can output the private key,
compares the derived signatures with the
expect signatures

Otherwise, runs signature verification



Signature Verification

Tests the ability of the IUT to recognize
valid vs. invalid signatures

Generates several messages and signatures

Alters some signatures or messages to
introduce errors

Compares the IUT’s results with the
expected values



Questions??



