
Algorithm Validation Testing

Larry Bassham
and

Sharon Keller



Validation Testing for 
Cryptographic Algorithms

• Prerequisite to FIPS 140 Validation Testing



Validation Process
• NIST and CSE develop validation suite consisting 

of validation tests
• Accreditation Laboratory supplies data and 

applicable validation tests required to validate a 
vendor’s Implementation Under Test (IUT)

• Vendor runs the specified validation tests on the 
IUT and returns the results to the laboratory

• Laboratory verifies results and sends the IUT’s
results and a request for validation to NIST



Validation Process 
(Continued)

• NIST reviews the results
– Adds the vendor algorithm IUT information to

NIST’s algorithm validation database
– Creates an algorithm validation certificate 

which NIST and CSE sign and send to the 
laboratory to be sent to the vendor

– Adds an entry to the appropriate validation list 
which is accessible via 
http://csrc.nist.gov/cryptval



Cryptographic Algorithms for Which
NIST Currently Has Standards and Validation 

Tests
• FIPS 197 – Advanced Encryption Standard (AES)
• FIPS 46-3 and FIPS 81 – Data Encryption 

Standard (DES) and DES Modes of Operation –
specifies the DES and Triple DES algorithms

• FIPS 186-2 and FIPS 180-1 – Digital Signature 
Standard (DSS) and Secure Hash Standard (SHS)

• FIPS 185 – Escrowed Encryption Standard (EES) 
– specifies the Skipjack algorithm



Cryptographic Algorithms for Which
NIST Is Developing Standards and 

Validation Tests
• HMAC
• SHA-256, SHA-384, SHA-512
• Key Establishment using Diffie-Hellman 

and MQV



Validation Tests
(TDES, DES, and Skipjack)

• 3 types of cryptographic algorithm validation tests
– Known Answer tests

• Variable Plaintext/Ciphertext Known Answer Test
• *Inverse Permutation Known Answer Test
• Variable Key Known Answer Test
• *Permutation Operation Known Answer Test
• *Substitution Table Known Answer Test

– *Multi-block Message test

– Monte Carlo test
(* Not run for Skipjack)



Validation Tests
(TDES, DES, and Skipjack)

(Continued)

• A separate set of Known Answer Tests and 
a corresponding Monte Carlo test and (if 
applicable) a Multi-block Message Test 
exist for every state in every mode of 
operation



Validation Tests
(TDES, DES, and Skipjack)

(Continued)

• States
– Encrypt
– Decrypt



Validation Tests
(TDES, DES, and Skipjack) 

(Continued)

SkipjackTriple DESDES

OFB-Interleaved

OFB

CFB-Pipelined - 1,8,64 
bit

OFBCFB - 1,8,64 bitOFB

CFB - 1,8,64 bitCBC-InterleavedCFB - 1,8,64 bit

CBCCBCCBC

ECBECBECB

Modes of Operation per Algorithm



Known Answer Tests
(Triple DES and DES)

– Verifies that the implementation correctly 
performs the algorithm

– Provides conformance testing for components 
of the algorithm

• Initial permutation IP
• Expansion matrix E
• Inverse permutation IP-1

• Key permutation PC1 and PC2
• Data permutation P
• Substitution tables S1, S2, …, S8



Known Answer Tests 
(Skipjack)

– Verifies that, given known inputs, the correct 
results are produced.



Known Answer Tests

• Test procedures:
– Lab supplies known values for key(s), 

plaintext, and, if applicable, IV(s) for every 
Known Answer Test

– Vendor runs each known value through the IUT 
of the TDES, DES, or Skipjack algorithms

– The results are recorded and compared to the 
known answers



Multi-block Message Test

• Tests the ability to properly process multi-
block messages, requiring the chaining of 
information from one block to the next

• Lab supplies the IUT with pseudorandom 
values for key(s), messages that are integral 
numbers of blocks in length, and, if 
applicable, IV(s)

• Evaluates the resulting ciphertext



Monte Carlo Test

• Tests for implementation flaws 
• Lab supplies pseudorandom values for 

key(s), plaintext, and, if applicable, IV(s)
• Test consists of 4 million cycles through the 

TDES, DES, or Skipjack algorithms
• The results of every 10,000th encryption or 

decryption cycle are recorded and evaluated



Validation Tests
(AES)

• Same three test types as DES and 3DES
– Know Answer Tests
– Multi-block Message Test
– Monte Carlo Test

• Known Answer Tests differ
– Variable Plaintext/Ciphertext Test
– Variable Key Test
– GFSbox Test (stress math operations and Sbox used in 

round function
– Key Sbox Test (stresses Sbox used in key schedule)

• Separate tests required for each of three key sizes 
as well as each state (encrypt/decrypt)



SHA-1

• Three Tests
– Short Messages
– Selected Long Messages
– Monte Carlo

• Two modes: bit-oriented and byte-oriented



SHA-1: Short Messages

• Tests the ability of the IUT to generate 
digests for messages of arbitrary length

• Generates messages of length 0 ≤ i ≤ 1024
• Calculates message digests of messages
• Compares message digest calculated with 

those supplied by the tool



SHA-1: Selected Long Messages

• Tests the ability of the IUT to generate digests for 
messages that span multiple blocks

• Generates messages of length:
– Byte-oriented: 1032+i*1024, 0 ≤ i < 100
– Bit-oriented: 1025+i*1024, 0 ≤ i < 100

• Calculates message digests of messages
• Compares messages digests calculated with those 

supplied by the IUT



SHA-1: Monte Carlo

• Tests for implementation flaws by 
providing pseudo-random input

• Generates 100 message digests, using 
previous digests as input

• Compares messages digests calculated by 
the IUT with the expected values



DSS

• Primality
• Domain Parameter Generation
• Domain Parameter Validation
• Key Pair Generation
• Signature Generation
• Signature Validation



Primality

• Tests the ability of the implementation to 
determine whether large numbers are prime

• Generates several large numbers, some of 
which are prime and some of which are not

• Compares the determination of the IUT 
regarding primality with the expected value



Domain Parameter Generation

• Tests the ability of the IUT to generate 
Domain Parameters

• Requests the IUT to generate a specific 
number of Domain Parameter sets (P, Q, G, 
Seed, Counter, H)

• Recalculates the Domain Parameters using 
the same Seed and verifies the remaining 
values in the set



Domain Parameter Validation

• Tests the ability of the IUT to recognize 
valid vs. invalid Domain Parameters

• Generates several sets of Domain 
Parameters

• Modifies components of some parameters
• Compares the IUT’s results with the 

expected values



Key Pair Generation

• Tests the ability of the IUT to generate pair-
wise consistent keys

• Provides seed values to the IUT to use to 
generate key pairs

• Verifies the consistency of key pair or 
performs public key validation on the public 
key



Signature Generation

• Tests the ability of the IUT to derive correct 
signatures for messages

• Generates several messages to be signed by 
the IUT

• If the IUT can output the private key, 
compares the derived signatures with the 
expect signatures

• Otherwise, runs signature verification



Signature Verification

• Tests the ability of the IUT to recognize 
valid vs. invalid signatures

• Generates several messages and signatures
• Alters some signatures or messages to 

introduce errors
• Compares the IUT’s results with the 

expected values



Questions??


