
Entropy as a Service
Unlocking the full potential of cryptography

Apostol Vassilev, NIST
Harold Booth, NIST
Robert Staples, NIST

Imagine…

 My organization’s security policy requires strong keys

 Example: 256-bit AES keys that are 256-bit strong

 But, what does that mean? How to measure it?

 The solution: get entropy from a known good source!

The Challenge

 Public service providing entropy for use in
cryptography
 Delivers entropy upon request from clients

 clients seed DRBG’s after mixing EaaS random data with
locally available entropy

 clients use the DRBG output to generate local keys
independently from EaaS

 Delivers entropy securely - no one else can see it

 High-Quality entropy from a provably good source

 Client receives assurance of key strength

Our Solution

 NOT a key generation service
 Cryptographic keys are generated locally on the client using

DRBG’s

 DRBG’s are seeded with random data resulting from mixing
several independent sources, including local entropy

 Even if an attacker gains full control of one server, he/she will have
no possibility of gaining meaningful insights into the client keys

 NOT similar to the NIST beacon or sharing components with it
 The service does NOT record any incoming or outgoing record

 The service does NOT record any internal quantum random data

 The service does NOT share any components with the beacon

What Our Solution is

The Solution Architecture

Demo

Note: I’ll be available in Booth 219 in the expo floor after my
presentation to continue with questions or discussions

 Note: We’ll be available in Booth 219 in the expo floor
after the demo to continue with questions or
discussions

 Replay Attack

 Messages are timestamped and the signature includes
the timestamp

 Man-in-the-Middle

 Data is encrypted and signed, ensuring both security
and authenticity

 DNS Poisoning

 Messages are signed, ensuring authenticity

Potential Attacks and Defenses

 Server – Java JBoss AS 6.1.0 run in Eclipse Luna

 Client – C#, written and run in Visual Studio

 Hardware Root of Trust – TPM “Trusted Platform
Module”

 Encryption/Signature – RSA/SHA-256

 Operating System – Windows 7 Enterprise SP1

 Proof-of-Concept implementation will be opened for
others to review

Our Demo Implementation

 Collective Authority (Cothority)

 Developed by Bryan Ford and others

 Decentralizes authority in a system

 Entropy created and signed by a network of
independently-operated EaaS servers

 Compromising one node does not compromise the
resulting entropy

 Trust is not in an individual organization, but in the
collective of all EaaS hosts

Future Work

 The Problem

 Our Solution

 The “Big” Picture

 Potential Attacks and their Defenses

 Our Implementation

 Demo

 Future Work

Contents

