FIPS 202 and Keccak-
Derived Functions

John Kelsey, NIST

http://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202. pdf

http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html

FIPS 202 1s Out!

 We ran a competition for a new cryptographic hash
function from 2007-2012.

* 63 submissions from all over the globe.
* Winner was Keccak from a Belgian/Italian team.

e After extensive discussions with designers and lots
of Interaction with community, standardized it

e FIPS 202 out earlier this year.

The Swiss Army Knife of
Crypto

Hash functions are used *everywhere* in crypto, even in places
where they're not really appropriate.

Digital signatures (code signing)

Message authentication codes (HMAC)

Key derivation and key agreement schemes (TLS KDF)
Proof of knowledge and timestamping (digital timestamps)
Proof of work and consistency (Bitcoin)

Cryptographic pseudorandom bit generation (HMAC-DRBG)

So, What's in FIPS 2027

« SHAS functions: fixed-length hash functions just like SHA2
- SHAS3-224, SHA3-256, SHA3-384, SHA3-512
 Number after hyphen is length of output
e "Drop-in replacements’ for SHAZ2

o Shake functions: extendable-output functions
- Shake128, Shake256
« Number is security level

e All based on Keccak algorithm that won competition

What's Next”

Keccak has a bunch of nice features that allow new
functions to derived from it

In the pipeline now: (more on the way later)

KMAC: keyed hash construction, like HMAC, but more
efficient and with variable-length output.

Fast Parallel Hash: takes advantage of parallelism to get
faster, without losing security.

- TupleHash: hashes a sequence of strings together in a
sensible way.

New Features

 Domain-separated: You can't compute KMAC from
SHAS3 or Shake

 Customization string: You can "name" an instance
of any function to domain-separate it from all other
uses of SHA3-derived functions

* Variable output length: specify any output length--
get a byte string of whatever length you ask for

KMAC = Keyed Hashing

KMAC128(K,X,96)

* Three security levels: KMAC128, KMAC?256,
KMAC512

e Variable-length output
* Different output lengths give unrelated outputs

 Domain-separated and customizable

TupleHash = Hashing a List
of Strings

TupleHash([s1, s2, s3], 192)
Always 256-bit security level

Any or all strings may be empty, but list may not be
empty

Variable length
Ditferent lengths give unrelated outputs

Domain-separated and customizable

~ast Parallel RHash
Hash big messages In parallel

FPH128(message, blocksize, output_length)
* [wo security levels: FPH128 and FPH256

» Variable length output, different output lengths give
unrelated outputs

 Domain separated and customizable
There's also a SHAZ-derived version which works very

differently, and has different properties. I'm not talking
about it here.

Fast Parallel Hash

Message: [A B C [yada

hO h h2 h3 h4 hS hG .. hn T

h[final]

* Break long message into blocks
* Blocksize in bytes, between 2248 and 27 40.
 Hash each block and store result

* Finally hash all the results together sequentially

Wrapup
Keccak has a bunch of nice features built in and provided by
designers.
We plan to make use of them in our Keccak-derived standards
- KMAC
- TupleHash
- FPH

All with customization strings and variable-length output

We hope to have the first of these out for public comment soon!

Bonus Slides for
Questions

Domain Separated

* This means you can't compute KMAC by calling
SHAKE or SHAS3 or TupleHash or FPH

« NOTE: Very different from how HMAC works!

* Qutputs of different functions completely
unrelated

e This should make it a little harder to shoot yourselt
in the foot with these functions

Customization Strings

This is domain separation controlled by the user
o KMAC["KDF"](K,X)

iIs completely unrelated to
« KMAC["Message Block'|(K', X")

Like strong typing for uses of a hash function

Customization Strings

* All new Keccak-derived functions will support
‘customization strings” to let users further domain-
separate them

* We plan to introduce a new SP to allow
customization strings for Shakes and SHAS3, too

Variable Lengtnh

The Shakes are variable length, but different output lengths give
related outputs.

Shake128(X,96) = ABC

Shake128(X,128) = ABCD

KMAC, TupleHash, and FPH are variable length, and different output
lengths give unrelated outputs

KMAC128(K X,96) = EFG
KMAC128(K,X,128) = HIJK

This is easier to use--harder for a designer to shoot himself in the foot

Keccak looks nothing like MD4

® > ® X
@ » ’ v
D ANOMMGAODE
< ® ‘ 'S
o | L3R
o
Ve B T &5 & & SO
() /.) \Q\ \j \ ¥ \
4 |e R
o | Y ® 7

Images from Keccak submission <#>

No More MD: Keccak is a

Sponge
!
o PL P l 25 z
: ' A
A i N i N l 1 i N
r O > - i» - - -
X !
|
f el |f] f f
|
C O - e - - - - - - - - -
!
!
v —/ —/ _/ : _/ —/

Security based on fixed-length permutation
f

r bits of message XORed into state at a time
c bits left untouched
Can generate arbitrgry number of output

W%~

Hash Function = "digital
fingerprint’ of a message

* Collision-resistance: It should be very hard to find
X,Y so that

hash(X) = hash(Y)

* Preimage-resistance: Given some target T, it should
be even harder to find an X so that

hash(X) =T

 Pseudorandomness: |f you don't know all the bits of
X, hash(X) should look very random to you.

Capacity and Security

o
R
T
2y
N

i NN Wa TR e

f f f

0)

|
'
¢

f f

[
|
|
¢
l
1
|
|
|
¢

v _/ _/ _/ _/ _/

A sponge has collision and preimage
resistance of c/2 bits.

Finding a collision or preimage is equally
hard

40

Security/Performance Tradeoff

Po
0 i Y
rilo

f

-

v _/

-l

—/

|

|

_/

N

f

=

—/

f

—/

Bigger ¢ = smaller r - slower hashing
The choice of c is a tunable parameter in

Keccak

Allows a security/performance tradeoff

Security level is c/2.

41

