

FIPS 202 and Keccak-

Derived Functions

John Kelsey, NIST

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html

FIPS 202 is Out!

•	 We ran a competition for a new cryptographic hash

function from 2007-2012.

•	 63 submissions from all over the globe.

•	 Winner was Keccak from a Belgian/Italian team.

•	 After extensive discussions with designers and lots
of interaction with community, standardized it

•	 FIPS 202 out earlier this year.

The Swiss Army Knife of

Crypto

•	 Hash functions are used *everywhere* in crypto, even in places
where they're not really appropriate.

•	 Digital signatures (code signing)

•	 Message authentication codes (HMAC)

•	 Key derivation and key agreement schemes (TLS KDF)

•	 Proof of knowledge and timestamping (digital timestamps)

•	 Proof of work and consistency (Bitcoin)

• Cryptographic pseudorandom bit generation (HMAC-DRBG)

So, What's in FIPS 202?

• SHA3 functions: fixed-length hash functions just like SHA2

• SHA3-224, SHA3-256, SHA3-384, SHA3-512

• Number after hyphen is length of output

• "Drop-in replacements" for SHA2

• Shake functions: extendable-output functions

• Shake128, Shake256

• Number is security level

• All based on Keccak algorithm that won competition

What's Next?
•	 Keccak has a bunch of nice features that allow new

functions to derived from it

•	 In the pipeline now: (more on the way later)

•	 KMAC: keyed hash construction, like HMAC, but more
efficient and with variable-length output.

•	 Fast Parallel Hash: takes advantage of parallelism to get
faster, without losing security.

•	 TupleHash: hashes a sequence of strings together in a
sensible way.

New Features

•	 Domain-separated: You can't compute KMAC from
SHA3 or Shake

•	 Customization string: You can "name" an instance
of any function to domain-separate it from all other
uses of SHA3-derived functions

•	 Variable output length: specify any output length--
get a byte string of whatever length you ask for

KMAC = Keyed Hashing

KMAC128(K,X,96)

•	 Three security levels: KMAC128, KMAC256,
KMAC512

•	 Variable-length output

•	 Different output lengths give unrelated outputs

•	 Domain-separated and customizable

TupleHash = Hashing a List

of Strings

TupleHash([s1, s2, s3], 192)

•	 Always 256-bit security level

•	 Any or all strings may be empty, but list may not be
empty

•	 Variable length

•	 Different lengths give unrelated outputs

•	 Domain-separated and customizable

Fast Parallel Hash

Hash big messages in parallel

FPH128(message, blocksize, output_length)

•	 Two security levels: FPH128 and FPH256

•	 Variable length output, different output lengths give
unrelated outputs

•	 Domain separated and customizable

There's also a SHA2-derived version which works very
differently, and has different properties. I'm not talking
about it here.

 E F G H I J K L M N O P R S T U V W X Y Z 0 1 2 ...

Fast Parallel Hash

Message: A B C D yada

h0 h1 h2 h3 h4 h5 h6 ... hn

h[final]

• Break long message into blocks

• Blocksize in bytes, between 2^8 and 2^40.

• Hash each block and store result

• Finally hash all the results together sequentially

Wrapup

•	 Keccak has a bunch of nice features built in and provided by

designers.

•	 We plan to make use of them in our Keccak-derived standards

•	 KMAC

•	 TupleHash

•	 FPH

•	 All with customization strings and variable-length output

•	 We hope to have the first of these out for public comment soon!

Bonus Slides for

Questions

Domain Separated
•	 This means you can't compute KMAC by calling

SHAKE or SHA3 or TupleHash or FPH

• NOTE: Very different from how HMAC works!

•	 Outputs of different functions completely
unrelated

•	 This should make it a little harder to shoot yourself
in the foot with these functions

Customization Strings

This is domain separation controlled by the user

• KMAC["KDF"](K,X)

is completely unrelated to

• KMAC["Message Block"](K',X')

Like strong typing for uses of a hash function

Customization Strings

•	 All new Keccak-derived functions will support
"customization strings" to let users further domain-
separate them

•	 We plan to introduce a new SP to allow
customization strings for Shakes and SHA3, too

Variable Length

•	 The Shakes are variable length, but different output lengths give

related outputs.

•	 Shake128(X,96) = ABC

•	 Shake128(X,128) = ABCD

•	 KMAC, TupleHash, and FPH are variable length, and different output
lengths give unrelated outputs

•	 KMAC128(K,X,96) = EFG

•	 KMAC128(K,X,128) = HIJK

•	 This is easier to use--harder for a designer to shoot himself in the foot

x

Keccak looks nothing like MD4

y z z

Images from Keccak submission ‹#›

No More MD: Keccak is a

Sponge

► Security based on fixed-length permutation
f

► r bits of message XORed into state at a time

► c bits left untouched
► Can generate arbitrary number of output

39 ‹#›

bits

Hash Function = "digital

fingerprint" of a message

•	 Collision-resistance: It should be very hard to find
X,Y so that

hash(X) = hash(Y)

•	 Preimage-resistance: Given some target T, it should
be even harder to find an X so that

hash(X) = T

•	 Pseudorandomness: If you don't know all the bits of
X, hash(X) should look very random to you.

 Capacity and Security

► A sponge has collision and preimage
resistance of c/2 bits.

► Finding a collision or preimage is equally
hard

40 ‹#›

 Security/Performance Tradeoff

► Bigger c ! smaller r ! slower hashing
► The choice of c is a tunable parameter in

Keccak
► Allows a security/performance tradeoff
► Security level is c/2.

41 ‹#›

