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Abstract. Differential power analysis attacks are among the ‘classical’ non-invasive types of attacks
against physical devices. Attacks belonging to that class are well studied in the literature, however a
seemingly simple yet very important question has proven to be exceptionally difficult to answer: given a
cryptographic device, how do I best choose a distinguisher to actually perform a differential power analysis
attack? This question needs to be unpicked before an attempt to an answer can be made: what is known
about the power consumption characteristics of the device (everything—i.e. power profiles are available,
not much—i.e. one can realistically assume a certain standard power model such as Hamming weight can
be used, or nothing). Does the device allow control over its inputs to the cryptographic routine that is
targeted? Are there any countermeasures built in, and if so which? In this article we aim to illuminate
one particular aspect of such considerations. Namely, is there any best distinguisher, and consequently,
can the choice of distinguisher and the modelling of the power consumption be made independently? Our
approach in answering these questions is to draw from our own recent results and research into evaluation
strategies for distinguishers, and linking them to other recent works. The conclusion that we can draw
is that there is no generally best distinguisher, but for well defined scenarios there are best choices for a
distinguisher in conjunction with a power model.

1 Introduction

Differential power analysis (DPA) attacks' use key-dependent hypotheses to extract information about secret
data used in the cryptographic algorithm executed on a physical device. In this process, which can be broken up
into five steps [15, ch. 6], the attacker selects a power model by which to map key-dependent intermediate values
to hypothetical power consumption values, which are then somehow ‘compared’ to the real power consumption
from the device using a statistic. This statistic is commonly referred to as a ‘distinguisher’ in the side channel
literature and is the focus of this article.

An obvious question, that is somewhat simple and yet difficult to fully answer, is what is the best distinguisher?
Is there any generally best method; is it possibly dependent on the devices’ power consumption characteristics, or
maybe even on the attackers’ model thereof? The research community has been hunting for the best distinguisher
ever since the introduction of power analysis attacks: shortly after the original DPA article, Messerges published
so-called multi-bit attacks ([17] and [19]) which essentially involved using all predictable bits in a distance-of-
means style attack. This was seen as an extension to the classical power analysis attack ([11]) that made
only use of one predictable bit, also in a distance-of-means type distinguisher. Based on the generalisation of
Messerges, more papers have claimed to improve attacks, e.g. [4] and [13] by using distinguisher results from
various bits. Concurrently, researchers started exploring covariance/correlation type distinguishers ([6], [20])
which were then coined correlation power analysis (CPA) in [5].

The obvious advantage of using correlation with a suitable power model was clear from those papers, yet the
jury was still out there whether correlation would always outperform other methods, or if certain conditions
(e.g. quality of the available power model) would favour other distinguishers. Finally, template attacks [7] were
recognised as the most powerful flavour but required profiling, a disadvantage that was seemingly overcome

! Whilst we use the term DPA in this article, our analysis and argument is not dependent on the type of side channel
used.



by using mutual information (MI) as a distinguisher in [9]. However, MI based attacks failed to live up to the
expectations as shown in subsequent, at first mainly empirical, studies such as [2].

In this article we focus our investigation on a fair comparison of the aforementioned distinguishers. For this
purpose we analyse the existing literature and bring together those results that clarify the ‘best choice’ in
certain scenarios. We make use of our own recent work, in particular, this article draws heavily from [32]. Our
article is structured as follows. In Sect 2 we set the choice of the distinguisher in context with the overall DPA
scenario and define give a precise definition of the distinguishers under consideration. In Sect. 3 we review the
key points of research results that focus on studying distinguisher properties. We conclude in Sect 4.

2 Differential Power Analysis Attacks

We consider a ‘standard DPA attack’ scenario as defined in [16]. In short, we assume that the power consumption
L of the target cryptographic device depends on some internal state fi«(X). The state is a function of some part

of the plaintext, which we denote by the random variable X g X, as well as some part of the secret key k* € K.
Consequently, we have that L = Lo fi«(X) 4 ¢, where L is some function which describes the data-dependent
component and € comprises the remaining power consumption, which can be modeled as independent random
noise. In our scenario the attacker has N power measurements corresponding to encryptions of N known
plaintexts z; € X, ¢ = 1,..., N and wishes to recover the secret key k*. The attacker can accurately compute
the internal values as they would be present in the device under each key hypothesis {fi(z;)}Y,, k € K and
uses whatever information he possesses about the true leakage function L to construct a prediction model
M: f(X) — M.

DPA is based on the intuition that the modeled power traces corresponding to the correct key hypothesis
should bear more resemblance to the true power traces than the modeled traces corresponding to incorrect key
hypotheses. An attacker is thus concerned with comparing the degree of similarity between the true and modeled
traces. A range of comparison tools—‘distinguishers’—can be used: a distance-of-means inspired distinguisher
was used in [11] as well as in follow-up work [19]. Pearson’s correlation coefficient [5] is a particularly popular
choice. Mutual Information Analysis (MIA) has been proposed as an enhancement to correlation DPA (CPA)
which relies less on M [9], and Kolmogorov-Smirnov Analysis (KSA) has been suggested as an alternative
enhancement, conceptually similar to MIA but less sensitive to choices made about estimation procedure [30].

We describe these distinguishers in more detail in Sect. 2.2, but let us first consider what it means for a DPA
attack to be successful.

2.1 Swuccess of DPA attacks

We concentrate on the notion of key-recovery success as formalised by Standaert et al. in [27]. The theoretic
attack distinguisher is D = {D(k)}rex = {D(Lo fx«(X)+e, Mo fr,(X)) }rex, where the plaintext input X takes
values in X according to some known distribution (usually uniform). We say the attack is theoretically successful
if D(k*) > D(k)Vk # k*. We say it is o-th order theoretically successful if #{k € K : D(k*) < D(k)} < o.

However, in practice D must be estimated. Suppose we have observations corresponding to the vector of
inputs x = {x;}¥ |, and write e = {e;}, to be the observed noise (i.e. drawn from the distribution of ¢). Then
the size #K estimated vector is Dy = {Dy (k) rex = {Dn(L o fi-(x) + €, M o fi(x))}rex. We then say the
attack is successful if Dy (k*) > Dy (k) Vk # k* and o-th order successful if #{k € K : Dy (k*) < Dn(k)} < o.

To avoid over-stating the physical security of a device it is important to take into account the most powerful
methods available to an attacker with access to side-channel measurements. Attempts to compare different
distinguishers in the search for the ‘most effective’ (i.e. achieve o-th order success with the least number of N
of measurements) have thus received considerable attention in the literature (see [26] for thorough empirical



evaluation). As the available literature shows, general statements about the relative merits of particular methods
are extremely hard to come by as attack outcomes are highly scenario-specific. Hence we now briefly review
some of the contributing factors and the way they interact.

Factors Contributing to Success of DPA Attacks

Target intermediate function: The target intermediate function f is known to play an important role in de-
termining DPA outcomes; some operations—most notably those which are designed to be cryptographically
secure—are particularly vulnerable [10,21]. This is because small changes in the input produce big changes in
the output, so that any wrong key hypothesis leads to predictions which are clearly distinguishable from the
true consumption. On the other hand, cryptographically weak functions such as AddRoundKey are far more
resilient to DPA, as similar keys produce similar predictions and the true key is thus identified by a much
smaller margin. In this article we hence concentrate on the DES and AES substitution boxes as well as bitwise
exclusive-or to compare distinguishers.

Device leakage vs attacker’s power model: The characteristics of the device leakage—the functional form of
the data-dependent component and the relative size and shape of the independent noise—will substantially
dictate how easily and effectively the side-channel can be exploited. In particular, studies such as [8] have
clearly demonstrated the central role of the attack power model in determining distinguisher performance. In
the case that an attacker has full control over an identical device, profiling (as, for example, in [7]) can produce
a very good approximation of the leakage function. However, we restrict our focus to a weaker adversary, with
access only to an unverifiable guess about the leakage function based on what is known or assumed about the
underlying technology of the device. Therefore the extent to which the device leakage is ‘typical’ or predictable
will have a significant bearing on the attack outcome. In particular we study adversaries who either use a
Hamming weight model or the identity function (representing the absence of any power model). In line with
previous work we choose three different leakage scenarios in this article. In the optimistic scenario, we assume
that the data-dependent leakage really is proportional to the Hamming weight of the target intermediate
function. In the realistic scenario, as motivated by [1], we assume that the true leakage is actually an unevenly
weighted sum of the bits.2 In the challenging (but still realistic) scenario we assume that the true leakage is a
highly nonlinear function of the intermediate data.?

Noise: It is natural to expect the presence of noise to have an impact on practical outcomes: the weaker the
signal-to-noise ratio (SNR, defined as %&";X»), the more data will be required to estimate the distinguish-
ing vector with sufficient precision to detect the true key (see Chap. 4 of [15]). In this paper we show results for
different SNRs to represent high quality to low quality measurements, and include the possibility that signal
processing might have been used to achieve an improved SNR. Less obvious is the fact that the shape of the
underlying theoretic vector can also be sensitive to noise; with the exception of correlation DPA, noise impacts
differentially by key hypothesis so that it actually plays a role in determining whether or not the correct key is
identified (and by what margin). In order to separately consider the roles of the leakage scenario (f, L) and of
the noise we will initially consider the behaviour of our distinguishers in a pure-signal setting and then go on
to show how Gaussian noise of varying size impacts on distinguisher outcomes.

2 Specifically, we allow the least significant bit (LSB) to dominate with a relative weight of 10, since the experiments
of [30] identified this as sufficient distortion to enable MIA to outperform CPA.

% Specifically, we map the target value to the Hamming weight of the AES S-Box output. There is no significance to
this choice other than that it is well-known and specially fitted with the nonlinearity properties useful to produce
our hypothetical degraded leakage scenario. Such non-standard leakage has recently been observed in the context of
emerging nanoscale technologies [23], but also previously in typical hardware implementations of substitution boxes
[14].



Theoretic Outcomes vs. Practical Outcomes At the beginning of Sect. 2.1 we briefly introduced theoretic
success and (practical) success, which are related to theoretic and practical distinguishing vectors. As the
distinction and relationship between these two vectors is crucial for the comparison of distinguishers, we return
now to these concepts.

Suppose that the attacker has chosen a distinguisher which is theoretically capable of determining the correct
key in a given setting (i.e. a given combination of (f,L,¢)), distinguishing it from the incorrect hypotheses
by a margin of a certain size (this is called effect size). The practical outcome of the attack will ultimately
depend on the attacker’s ability to estimate the distinguishing vector sufficiently precisely so as to detect a
difference of that size. The theory behind statistical power analysis [12] tells us that the amount of data needed
to do this depends on the effect size and on the sampling distributions of the estimator under the true and
rival hypotheses. Since these sampling distributions depend on the true underlying trace distribution (which is
unknown), the overlapping tasks of choosing a ‘good’ estimator and of computing the sample size N required
by an estimator are usually extremely difficult, at least under reasonable assumptions. The sample correlation
coefficient is a somewhat exceptional case, as we explain in section 2.2.

Consequently, in general there is no such thing as a universal ‘ideal’ estimator for any given distinguisher, by
which to fairly measure its best case capabilities in a given leakage scenario. This rather undermines attempts to
compare distinguishers on the basis of practical experiments with simulated or measured traces: perceived ad-
vantages/ disadvantages are inconclusive as we do not know if they truly indicate inherent strengths/weaknesses
of the distinguishers or merely arise from the choice of estimation procedure.

By abstracting away from the estimation problem in order to focus on theoretic distinguisher values we are
however able to make like-for-like comparisons, but with the drawback that our results will not necessarily
translate into the practical realm due to the differential burden of estimation incurred by different statistics.
However, it is possible to define theoretic outcome measures that are highly indicative of practical performance—
as we explain in Sect. 2.3.

2.2 Background to Distinguishers

We now briefly describe the correlation coefficient, mutual information, and the Kolmogorov-Smirnov test
statistic, and explain how they can be used to construct DPA distinguishers. We omit the often used distance-
of-means test as a single-bit correlation based attack is equivalent.

Pearson’s Correlation Coefficient-Based Distinguisher Pearson’s correlation coefficient measures the

total linear dependency between two random variables A and B. It is defined as p(A, B) = %. It
var var

takes values from -1 to 1 and is zero whenever A and B are independent. However, the converse is not true;
namely, A and B may be (non-linearly) dependent with a (linear) correlation of 0.

It is estimated from samples {a;}7_;, {b;}}=, via the sample correlation coefficient:
A B) = Ding(aiza)(bizb)

(4, B) Vi (ai=a)? /327, (bi—b)?
unbiased and efficient if A and B have a joint Normal distribution. Under the same assumptions, we can even
approximate the sampling distribution which, in the context of DPA, leads to ‘nice’ results such as the number
of trace measurements required for attacks to be successful (see Chap. 6.4 of [15]).

. This is a consistent estimator for p(A, B) and, moreover, is asymptotically

Because we are primarily interested in the magnitude (as opposed to the direction) of the relationship between
the true and modeled leakage we base our distinguisher on the absolute value of the correlation, comparing
measured traces L = L + ¢ with the hypothesis-dependent predictions M}, as follows:

Dy(k) = |p(L, My)]
_ ‘ cov(L, My)
V/var(L)/var(Mj)

(1)




If the model M adequately approximates the data-dependent leakage L (up to proportionality) then we expect
(1) to be maximised for the correct key hypothesis k = k*.

The impact of noise on the distinguisher is straightforward. (as derived in Chap. 6.3 of [15]); in short, the larger
the noise, the more diminished are the correlations. Most importantly, the theoretic distinguisher vector is scaled
in such a way that the rankings and other relative features (such as the standard score and distinguishability
measures defined in 2.3) are preserved. This does not at all imply that practical CPA attacks are immune to
noise: As the sample variance of the estimator increases, the number of traces required to reach a sufficient
level of precision also increases (see Chap. 4 of [15]).

Pearson’s correlation coefficient has no natural multivariate extension, but it has been adapted for use in higher-
order DPA attacks against masked implementations by introducing a data pre-processing step ([18], Chap. 10
of [15] gives a good overview of available options, [22] details the best possible choice for pre-processing in the
context of an optimistic Hamming weight leakage scenario).

Mutual Information-Based Distinguisher Mutual information is measured in bits and is most intuitively
expressed in terms of entropies via Shannon’s formula: I(A4; B) = H(A) — H(A|B).

As a function of probability distributions, MI is notoriously problematic to estimate as we have explained in
[31]. All estimators are biased, and furthermore no ‘ideal’ estimator exists—that is to say, different estimators
perform differently depending on the underlying structure of the data. The usual approach is to first estimate
the underlying marginal and conditional densities and then to substitute these into Shannon’s formula via a
‘plug-in’ estimator for discrete entropy.

Unfortunately, estimators for MI do not behave so ‘nicely’ as the sample correlation coefficient. In the absence
of general results about the sampling distribution of the estimators, we cannot compute (for example) the

number of traces needed for an attack to be successful, except under the strongest of assumptions?.

Its application as an attack distinguisher is as follows:

Dwn (k) =1(L; My,)
_ H(L) — H(L|My) 2)
=H(L) - E [H(LM=m)],

and because the ‘unexplained’ entropy (the second term) is smallest when the predictions are good, we expect
(2) to be maximised for the correct key hypothesis k = k*.

Unlike CPA the impact of noise on the MIA distinguishing vector is complex. In particular, whilst I(L+¢; My) <
I(L; My,) (L, € independent), nonetheless I(L; M) —I(L +¢; My,) # I(L; My ) —I(L 4 €; My ). Hence, the vector
elements are differentially affected so that theoretic outcomes in a pure-signal setting do not directly generalise
to theoretic outcomes in the presence of noise.

MI generalises quite naturally to higher-order statistics via several different meaningful extensions. The authors
of [2] presented three such notions and explored how each could be adapted to the purposes of DPA.

Kolmogorov-Smirnov-Based Distinguisher The Kolmogorov-Smirnov (KS) distance between the distri-

butions of random variables A and B is defined as K(A||B) = sup,c_aup |Fa(x) — Fp(x)| where Fy, Fp are the

cumulative distribution functions (CDFs) of A and B, i.e. Fa(z) = P(A < ). In a two-sample KS test designed

to test the null hypothesis that A and B share the same distribution, the empirical CDFs are estimated from

samples {a;}7_,, {bi}1,, e.g. Fa(z) = IS 1 Itas<ay (I{a,<s} is the indicator function, taking the value 1 if

* Under strong simplifying assumptions, estimating an MIA parametrically can be shown to be equivalent to conducting
a correlation attack [16].



a; < z and 0 otherwise). The fact that the KS test statistic does not require explicit density estimation is what
makes it appealing as an alternative to MI.

Just as MTA can be understood to operate by comparing the global traces L with the hypothesis-dependent con-
ditional traces L|My—via the expected change in entropy—a KS-inspired distinguisher measures the maximum
distance between the global and the conditional trace distributions, as averaged over the prediction space:

Ds (k) = E[K (L|| L] My)]

(3)
= . E/\/l sup |P L (y) — I L\Mk:m(y”

In case of the correct key hypothesis we expect the test statistic to return a large difference.

Whilst the sampling distribution of the KS test statistic is known, the distribution over the average of such
statistics is not. Multivariate extensions of the KS test are somewhat more difficult to achieve, as one first needs
to formulate an appropriate notion of a multivariate CDF; a discussion of this problem can be found in [33].

2.3 A Comparison Framework for Distinguishers

As mentioned before, a useful measure of physical security would be the number of traces needed for an attack
to be successful. We can compute this for a given estimator using the techniques of statistical power analysis
[12], provided the sampling distribution can be approximated—but this is not achievable in general (see Sect.
2.2).

Our solution, as first introduced in [31] and further extended in [32], is to choose measures based on those
characteristics of the theoretic vectors which have the greatest bearing on the trace efficiency of a practical
attack. The precise formulae are provided in [32]; descriptions and rationale are provided below.

The first needs little explanation:

1. Correct key ranking: The position of the correct key when ranked by distinguisher value. If the correct key
is ranked joint first the ranking order is the number of keys sharing position 1, so that an attack with a
ranking order of o is o"-order theoretically successful as defined in Sect. 2.1. The relationship with practical
efficiency is obvious: attacks which are not first-order successful will not be able to uniquely extract the
correct key from any number of trace measurements (except by random chance).

The theory behind statistical power analysis tells us that, when estimating population quantities, the sample
size required to detect a statistically significant difference increases as the actual magnitude of the true difference
decreases. Therefore, of crucial relevance to practical attack outcomes are the theoretical margins by which the
true key is isolated from the remaining keys. Such is the motivation for the next three measures:

2. Relative distinguishing margin: The distance between the correct key distinguisher value and the value for
the highest ranked alternative, normalised by the standard deviation of the distinguishing vector so that
scale-free comparisons can be made between different distinguishers in different leakage scenarios. (Note
that it is zero for attacks with success orders greater than 1, and negative for failed attacks, where it gives
further indication of the extent of the failure).

3. Absolute distinguishing margin: The relative margin allows us to summarise the shape of a distinguishing
vector and how this responds to noise or scenario degradation. However, it disguises changes in the actual
magnitude of the margin and the fact that this is more sensitive for some methodologies than for others.
We need some way to take into account raw margin size as well as size relative to the vector as a whole,
which is still scale-independent so that we can make like-for-like comparisons between distinguishers. We
therefore report the ratio between the nearest-rival margin and that of the corresponding ‘optimal’ vector:



the univariate equivalent in an optimistic (i.e. known Hamming weight power model) noise-free setting.
This will allow us to comment meaningfully on the impact of model degradation and noise on the real size
of the margins to be estimated.

4. Standard score: This is the same as the “DPA signal-to-noise ratio” described by [10]: the number of standard
deviations above (or below) the mean, for the correct key distinguisher value. It provides a more general
measure of the sensitivity of an attack in isolating the correct key. A theoretically ‘unsuccessful’ attack may
still be able to return a small candidate subset containing the correct key if the standard score is high.

By computing the above measures for uniformly drawn plaintexts X m<l—zf' X, we are able to compare the
theoretic behaviour of attacks when provided with full information. We propose to explore the sensitivity of
attacks to incomplete information by inspecting theoretic attack vectors as restricted on reduced subsets of the
plaintext space: D|ys where X’ C X. These vectors depend not only on the size but also on the composition
of the input set X’; we cannot perform the computations exhaustively over the entire space of possible subsets
(it is too large), but by repeated random draws of increasing size we can estimate the support size needed
for theoretic success. We argue that this provides insight into the relative data complexity of distinguishers
and their particular limitations in small samples. We thus add the following measures (defined for theoretically
successful distinguishers only):

5. Awerage critical support: On average, the required support size of the input distribution for the attack to
achieve o'"-order success (where o is the ranking order).

6. Critical support for 100 x p% success rate: The support size for which the rate of success (of the appropriate
order) is at least 100 x p per cent.

Our criteria are best viewed in conjunction with one another rather than in isolation, and trade-offs between
them will interplay differently with practical considerations. For instance, a methodology which achieves only
o'"-order success (where o > 1) might be preferable to one achieving 1t-order success if the distinguisher
vector can be estimated more precisely and/or efficiently. Likewise, nearest-rival distinguishability may be
more important than average critical support in the presence of high noise.

Computing the Theoretic Vectors For each possible input x € X to the cryptographic function we obtain a
vector evaluating the Gaussian density centred at the corresponding data-dependent leakage value L o fi-(x)
and having variance Var(e). The average of these vectors, weighted by the input probabilities P(X = z),
then gives the probability density of the power consumption evaluated over the full range of possible leakage
values. Conditional densities, corresponding to each possible prediction value m € M under each key hypothesis
k € K, are constructed similarly. From these probability densities we are able to directly compute (via numerical
integration) the moments, entropies and cumulative probabilities comprising the formulae for our distinguishers
(as detailed in Sect. 2.2).

3 Results about ‘Best’ Distinguishers

We now analyse and summarise results that have been achieved for the distinguishers that we defined in the
previous section. As we have pointed out, comparisons based on practical vectors suffer from the drawback that
they rely on the quality of the used estimator. Hence conclusive results are not always possible. Comparing
theoretic vectors overcomes this problem, but suffers from the drawback that one can not always deduce practical
efficiency from theoretic distinguishability. Consequently if we want to gain a rounded view we must take into
account results looking at both theoretic and practical vectors.

In the subsequent analysis we first look at results from comparing theoretic vectors as they will represent the
‘best’ case in terms of DPA outcomes. We then look at how they relate to practical outcomes and focus on
trace efficiency. We provide a summary of key observations made when studying theoretic vectors. Thereafter
we look at results based on comparing practical vectors only. We compare and contrast these results with each
other and results from theoretic vectors.



3.1 Results concerning Theoretic Distinguishing Vectors

Our own recent work has been within the framework we have outlined in Sect. 2.3. In particular, our published
work [31], [32], and [33] includes a comprehensive overview of correlation, MI, and KS based DPA attacks based
on theoretic distinguishing vectors (we have provided results relating to practical vectors as well in [31] and
[33] which confirm the meaningfulness of studying theoretic vectors).

Whilst we do not want to repeat our previous results and analysis here, we want to illustrate the meaning of the
previously definitions on one concrete and very simple example in the following section. Thereafter we merely
summarise key observations and results from our previous work on theoretic vectors.

Univariate Attacks Targeting the First DES S-Box We study the performance of several distinguishers
in three leakage scenarios that we identified before as practically meaningful (i.e. the optimistic, realistic, and
challenging scenarios, see Sect.2.1).

The Noise-Free Setting The first two blocks of Table 1 report the outcomes of standard and generic univariate
attacks on an unprotected DES S-Box with noise-free data-dependent leakage. In the optimistic scenario, the
MIA distinguishers exhibit substantially larger relative margins than standard CPA, confirming that in some
sense MIA does meet the a priori expectation of enhanced data exploitation. However, it also requires a larger
support to be successful, and it is this initial ‘information overhead’, combined with the relative efficiency of
estimating the correlation coefficient, which accounts for the consistently reported CPA advantage in practical
attacks with a good power model. Unsurprisingly, when the standard Hamming weight power model is a good
fit to the true leakage, generic MIA offers no advantage, exhibiting a substantially reduced margin in absolute
terms and requiring a larger input support to succeed.

As the true leakage diverges from the standard power model, the advantage to MIA increases. In the challenging
scenario, CPA actually fails whilst MTA continues to identify the correct key. Moreover, the generic capabilities
of the latter become apparent as the distinguishing margins and the critical support size are remarkably robust
to the deterioration of the leakage. Hence it appears that the ability of generic attacks to recover the key is in
some sense independent of the true leakage: whilst it is always preferable to use a power model when a good
one is available, a generic model will work just as well however typical or unusual an unknown leakage function
really is.

Generic KSA performs very similarly to generic MIA in each scenario, with slightly diminished relative margins.
Standard Hamming weight KSA performs similarly to its MIA counterpart in the optimistic scenario but is less
robust to model degradation.

The Impact of Noise on Distinguishing Margins Figure 1 shows the impact of noise on distinguishing margins.
As we know already (from Sect. 2.2), the CPA vector is merely scaled by a constant as the SNR varies, so
that the relative distinguishing margin is unchanged. By contrast, the relative margins for MIA are affected by
noise, and in such a way that the relationships are not monotonic. In each leakage scenario there seems to be
an optimal SNR at which the margin reaches a maximum, subsequently diminishing to that of the noise-free
setting. Such a phenomenon is a type of stochastic resonance [3], which can (in principle) occur in any nonlinear
measurement system. The impact on KSA margins is less marked.

In the optimistic scenario, standard MIA exhibits the largest relative margins across the tested noise range (in
particular maintaining an advantage over generic MIA). Generic KSA gains an advantage over its standard
power model counterpart in the presence of sufficient noise, but the margins of each reduce to below those of
CPA when the SNR is less than around 0.5. In the realistic scenario the impact of noise is more marked, and
with greater implications for the relative effectiveness of the distinguishers. For one, it can now be seen that
the advantages exhibited by the generic attacks are actually far more substantial in low-signal settings, so that
they may well prove more practically efficient than their standard counterparts. Note also that convergence to



the noise-free setting occurs (for all distinguishers) at a larger SNR threshold, hence the different z-axes. In
the challenging scenario the generic attacks remain clearly favourable throughout the tested range; in fact the
standard MTA and KSA attacks are actually rendered unsuccessful by high levels of noise, only achieving key
recovery once the signal begins to dominate in the leakage.

The lower part of the figure shows absolute margins as the SNR varies. These are most robust for CPA, in such
cases that the attack is theoretically successful (i.e. the optimistic and realistic scenarios). Since the actual
size of the margins to be estimated has a bearing on the amount of data needed for estimation (in addition to
the size relative to the variation in the vector), this is likely only to enhance its proven advantage in practical
attacks in the presence of noise. It is interesting to note that KSA absolute margins are more robust to noise
than those of MIA, so that the former method may actually prove the preferable of the two in (noisy) practical
settings. This is particularly relevant, for example, in the challenging scenario where the generic MIA and KSA
attacks are the only two which remain successful across the tested range.

The Impact of Noise on Critical Support Size Within each scenario, we tested the strongest MIA and KSA
variants (standard in the optimistic scenario, generic in the realistic and challenging scenarios) to see whether
noise had any detrimental effect on the support size required for key recovery. We found that it did not—i.e.
the outcome measures relating to support size remained constant across the tested SNR range. (For CPA we
do not need to test this because of the noise-invariance of the shape of the distinguishing vector). Thus the
advantages of MIA and KSA in terms of distinguishing margin size and (in the generic case) scenario and noise
robustness are not undermined by any increased support size costs as noise varies.

Table 1. Theoretic outcomes in optimistic, realistic and challenging scenarios with noise-free data-dependent leakage.

Optimistic Realistic Challenging
CPA MIA KSA|CPA MIA KSA |CPA MIA KSA

1. Standard attacks against DES S-Box

Correct key ranking (order) 1 1 1 1 1 1 12 1 1
Standard score 5.14 6.59 5.95|3.21 6.38 5.49 | 0.74 5.23 2.66
Relative margin 3.56 5.61 4.24 |1.22 5.12 3.61 [-2.38 3.22 0.40
Absolute margin 1.00 1.00 1.00|0.30 0.86 0.66 |-0.28 0.21 0.04
Average critical support 6 8 8 17 10 12 - 26 39
Critical support for 90% SR 8 11 11 32 14 20 - 37 61
Critical support for 100% SR 16 19 19 49 21 34 - 46 64
2. Generic attacks against DES S-Box
Correct key ranking (order) 1 1 1 8 1 1 64 1 1
Standard score 5.39 6.35 6.20 | 1.45 6.66 5.77 |-1.29 6.48 5.94
Relative margin 3.61 5.08 4.60 [-0.81 5.45 4.12 |-3.95 5.30 4.41
Absolute margin 0.85 0.68 0.74 [-0.14 0.86 0.80 |-0.55 0.77 0.80
Average critical support 9 16 16 - 15 15 - 15 15
Critical support for 90% SR 14 19 19 - 17 17 - 18 18
Critical support for 100% SR 27 24 24 - 21 21 - 25 25

Practical Outcomes (Simulations) We also test MIA and KS distinguishers against simulated traces with
different levels of Gaussian noise. For our MIA estimations we employ the heuristic rule favoured by the
literature, and estimate PDFs via histograms with the number of bins equal to the cardinality of the power
model image (i.e. 5 for the HW power model, 16 for the identity power model). Therefore, though these are
not ‘definitive’ results (as no universally ‘best’ estimator exists) they do represent an established methodology
and, as such, a meaningful basis for comparison with KSA. As it is well known that correlation-based DPA is
the most efficient distinguisher in this optimistic scenario we omit it from the following Figures.

The first panel of Fig. 2 shows the mean number of traces needed to recover the key; the second panel shows the
90"-percentile, i.e. the number needed to achieve a 90% success rate. KSA(HW) performs almost identically
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Fig. 1. Theoretic relative and absolute distinguishing margins as SNR varies, for standard and generic univariate attacks
against the first DES S-Box.

to MIA(HW) (as could be expected from the theoretic vectors), with some evidence of a small advantage in
weak-signal settings (again in keeping with the theoretic vectors). The ID attacks are more data intensive in
both cases, but KSA(ID) exhibits consistently better performance than MIA(ID), probably due to the heavy
estimation overhead incurred by the large number of bins required by the latter.

Traces required for key recovery: mean Traces required for key recovery: 90th percentile
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Fig. 2. Mean and 90'" percentile of the trace requirement for key recovery, in repeated experiments against simulated
HW leakage of the first DES S-Box, as SNR varies.

Realistic Scenario—Hamming Distance to unknown reference state The scenario in which a device
exhibits a Hamming distance leakage to an unknown but constant reference state turned out to favour MIA as
a distinguisher over correlation based DPA in practice (see [31]). When including KSA into the comparison the
picture is similar to that of the weighted bits leakage that we studied in [32]: KSA with the identity function



as power model performs better than MIA (with the identity function as power model) in low signal scenarios,
and is outperformed by MIA in high signal scenarios. Depending on the reference state, correlation based DPA
might or might not at all be able to recover the key.

Summary We summarise our key observations and conclusions in the following list:

1. We found that MIA has theoretic advantages even in scenarios which are particularly favourable to CPA (i.e.
when the attacker has a good power model), so confirming that the underperformance frequently observed
in practical experiments can be largely attributed to estimation overheads.

2. MIA gains in superiority as the true leakage diverges from the attacker’s power model, especially when the
‘generic’ (power model-free) approach can be used, as when targeting non-injective functions (such as the
first DES S-Box). It can therefore be seen as a practically useful alternative to CPA in unusual leakage
scenarios.

3. As a special case to the aforementioned unusual leakage scenarios we have found that MIA is able to
distinguish keys in scenarios (and CPA is not) where the device leakage is that of the Hamming distance
to an unknown reference state. We have also shown how this relates to leakage exhibited from dual-rail
pre-charge logic.

4. KSA distinguishers, whilst consistently inferior to MIA in noise-free settings, do exhibit a similar adapt-
ability to non-standard leakage and moreover appear to be more robust to increasing noise so that they
may become practically useful alternatives to CPA and MIA when the side-channel leakage is both unusual
and noisy.

5. We also observed that (in the context of MI or KS based attacks) the ‘near-generic’ approach using the
7LSB power model does not, as hoped, supply an equivalent functionality against injective targets (such as
the AES S-Box)—rather it produces some very unexpected results and actually fails quite catastrophically
in strong-signal settings. Whether or not the generic capabilities of MIA can be exploited against injective
targets remains an open question.

6. We found that theoretic MI distinguishing vectors are profoundly influenced by noise. Whilst it has always
been expected that the presence of noise affects an attack at the practical stage—i.e. the precision with
which the distinguishing vector can be estimated—it has not, to our knowledge, been hitherto observed
that the underlying ability of a distinguisher to recover the key can itself vary, and to a substantial degree.
CPA distinguishers inherently do not possess this property, which accounts for the fact that it has not been
previously investigated.

3.2 Results concerning Practical Distinguishing Vectors

The first systematic empirical comparison was [26] and they looked at distance-of-means based DPA (using
single or several bits), correlation, MIA, Bayes, and a variance based attack. The empirical study involved
two leakage scenarios (an optimistic and a realistic by our terminology). Noise levels were not varied for the
scenarios, but were different between the two scenarios. As measures of performance the success rate for a given
success order was used as well as the guessing entropy (which we do not use in the context of this article).
General conclusions from the paper were the heavy reliance of MIA performance on the choice of estimator,
the fact that many-bits attacks favour different distinguishers in different scenarios, and that whenever a good
power model is available correlation outperforms any other distinguisher in standard unprofiled settings (when
profiling is allowed Bayes attacks are superior as to be expected).

A different approach to evaluating distinguishers was taken in [16]. Rather than focusing on differences between
distinguishers, the authors aim to show that in the so-called standard DPA scenario (also assumed in this
article and in [26] and [8]), distance-of-means, correlation and Bayes based distinguishers are in fact equally
efficient when supplied with the same power model. The notion of efficiency used is that of the average minimum
number of power traces needed to achieve a certain success rate. The proof in the paper relies on a number of key
assumptions (that the leakages can be modeled by Gaussian distributions, and that the average minimum traces



needed is sufficiently large). The article provides evidential support for this result even when the assumptions are
not perfectly fulfilled (e.g. several of the supplied examples are for Hamming weight leakage), by performing
attacks with the analysed distinguishers in optimistic, realistic, and challenging scenarios. Interestingly, the
article also shows that under the strict assumption of Gaussian leakages and models, the mutual information
can be expressed in terms of the correlation between models and predictions. From this it clearly follows that
in the best case, the theoretic MI-based and correlation-based distinguishers are equally effective; however, as
estimating MI incurs an overhead, it can be expected that correlation based DPA will outperform MI based
DPA in those scenarios in practice. Another interesting side-note in this article is related to key and algorithm
independence of DPA attacks: assuming the so-called EIS property [24], the success rate of an attack against,
e.g., the AES SubBytes operation on a certain device should be no different to that of any other cipher using
a cryptographically equivalent substitution box. Summarising the key message from this work though is that
the most important factor contributing to the success of a DPA attack is that of the relationship between the
power model of the attacker and the true leakage of the device.

This idea/insight was further developed in [8] where it is shown that under the assumption of having ‘balanced’
input sets, several distance-of-means based distinguishers can in fact be expressed as correlation based DPA
with an appropriately chosen power model. The proofs in the article are constructive, hence these appropriate
power models are derived in the paper. This result seems to strengthen [16] as the requirement for ‘balanced’
input sets seems slightly weaker than that of having ‘a high enough average minimum sample size’ (i.e. noisy
enough measurements).

The key results of these three articles all give the same message: the choice of distinguisher is less important than
that of the power model, and in many standard cases the distinguishers’ performances are in fact equivalent.

4 Conclusions

After having defined standard DPA attacks and a number of distinguishers in this context, we have reviewed
several key results about distinguisher performance in the literature. Two approaches to evaluating distinguisher
performance can be followed: in the first approach one examines several key properties of so-called theoretic
distinguishing vectors which are relevant for practical distinguisher performance. Results using this approach
strongly suggest that only in certain scenarios (e.g. devices leaking the Hamming distance from an unknown
reference state, or a highly non-linear function, or a function that is sufficiently different from the attackers
power model, or is built in a not perfectly balanced dual-rail pre-charge logic style) one can expect distinguishers
such as MI or KS to outperform correlation in practice. Results based on investigating practical distinguishing
vectors have repeatedly shown that distinguisher performance is mainly depend on the power model. Hence
these results echo the conclusions drawn from the study of theoretic vectors.

We promised at the outside of this article to give some guidance to choosing distinguishers. As can be expected
from the preceding analysis, the key points to observe when choosing distinguishers are the leakage from the
device and the availability of a good (or not) power model of the attacker. Table 2 gives the best choices
in a number of relevant scenarios to the best of our current knowledge®. It shows that in the absence of an
adequate power model, KSA with the identity power model is the best choice whenever noisy measurements
are encountered. MIA with the identity power model is superior when high quality measurements are available.
For both these cases we assume that the leakage model of the device is not ‘simple’ Hamming weight such that
the attacker (in the unprofiled scenario) lacks a good power model. Importantly one should keep in mind that if
an attacker is able to derive a ‘good’ power model (e.g. by first deriving a stochastic model if ‘proper’ profiling
is not possible) then a correlation attack with this good model (assuming that there is a strong enough linear
component in the power model) will most likely be the most efficient (in terms of number of power traces)
option.

® This table is based on our data from [31], [32], and [33]



Table 2. Best distinguisher choices

Scenario Leakage SNR Favoured Distinguisher
Optimistic |[HW Low/High|Correlation (HW)
Realistic ~ |Weighted sum of bits|Low/High|KSA (ID)(/MIA (ID)
Challenging non-linear Low/High|KSA (ID)/MIA(ID)
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