
WORKING DRAFT

Page 1 of 10
WORKING DRAFT

A SURVEY OF ACCESS CONTROL MODELS

INTRODUCTION

Computer systems and the information that they create, process, transfer, and store
have become indispensable to the modern enterprise. In today’s on-demand, always
connected, data-driven world—and especially in light of the transformation of entire
national economies from manufacturing-based paradigms to knowledge-based ones—
many organizations rightly count their information systems among their most important
assets. Organizations often use these IT systems to store and process vast quantities of
sensitive data, which, if disclosed, could be potentially damaging to an organization. At
best, an organization may be embarrassed by an unauthorized disclosure; at worst, it
may lose its competitive stance in the market if the information were a proprietary trade
secret, or may be sued if the information were confidential customer information. Some
companies have gone out of business when the damage from an unauthorized access
proved too great for them to weather.

Loss of competitive advantage, or even going out of business, is, of course, a very
grave situation. However, it is not the worst outcome imaginable from an unauthorized
access to an information system. IT systems now integrate with—and even control—
critical national infrastructure components, such as the hardware components
responsible for the safe operation of power plants, chemical manufacturing facilities,
and transportation systems. Controlled access to these types of systems is critical
because of the very real potential for loss of life or massive environmental and
infrastructure damage that improper or malicious operation could cause.

Organizations use access control mechanisms to mitigate the risks of unauthorized
access to their data, resources, and systems. Several access control models exist.
Their corresponding access control mechanisms—the concrete implementations of
those access control models—can take several forms, make use of different
technologies and underlying infrastructure components, and involve varying degrees of
complexity. In some cases, the more complicated models expand upon and enhance
earlier models, while in other cases they represent a rethinking of the fundamental
manner in which access control should be done. In many cases, the newer, more
complicated models arose not from deficiencies in the security that earlier models
provide, but from the need for new models to address changes in organizational
structures, technologies, organizational needs, technical capabilities, and/or
organizational relationships.

The business-to-business (B2B) relationships that enable organizations to successfully
execute their missions, for example, sometimes require users or systems from one
business to access resources from business partners. Simpler access control models
often cannot adequately meet the complex access control requirements that such
relationships require, and so more granular, powerful, dynamic models and

WORKING DRAFT

Page 2 of 10
WORKING DRAFT

mechanisms are needed to address these new realities. In short, increasingly complex
data access and sharing requirements drive the need for increasingly complex access
control models and mechanisms (see Figure 1). The rest of this paper discusses current
and future access control models—including access control lists, role-based access
control, attribute-based access control, policy-based access control, and risk-adaptive
access control—and the infrastructure needed to support them.

Figure 1--Selected Access Control Models

WORKING DRAFT

Page 3 of 10
WORKING DRAFT

ACCESS CONTROL LISTS

Access Control Lists (ACLs) are the oldest and most basic form of access control. They
gained prominence in the 1970s with the advent of multiuser systems where the need to
limit access to files and data on shared systems became necessary. Not surprisingly,
some of the earliest access control lists were implemented on UNIX systems. Later, as
multiuser operating systems for personal use became popular, the idea of ACLs was
introduced into them as well. Many modern operating systems, whether UNIX, UNIX-
like, or Windows, make use of ACLs at some level, although the access control
mechanisms used to protect system resources have become more complex in recent
years.

The concept of an ACL is very simple: each resource on a system to which access
should be controlled, referred to as an object, has its own associated list of mappings
between the set of entities requesting access to the resource and the set of actions that
each entity can take on the resource. For example, each file on a file system might have
an associated data structure that holds the list of users that the operating system as a
whole recognizes, along with a flag which indicates whether each user may read, write,
execute, delete, or modify the file (or some combination of these). Whenever a user
tries to perform any of these actions on the file, the operating system checks the file’s
ACL and determines whether the requested action—appending data to the file, for
example—is allowed. If the action is allowed for that user, the data is appended; if not,
the append operation fails. This may also apply to groups of objects—a directory, or a
group of processes for example—and current ACL implementations often provide users
with sufficient privileges to modify the ACLs associated with objects.

Although ACLs are commonly associated with operating systems on a single system—
they are, in fact, ubiquitous across all modern operating systems at one level or
another—the ACL concept has also been implemented in other contexts. They have, for
example, been used in network contexts wherein the target resource to which access is
sought rests on remote systems. Some applications also maintain access control lists to
determine which users are able to view certain data elements (some relational database
management systems, for example, may make use of ACLs as a simple way to
implement data views, so that one user has a different view of a subset of data than
another).

The relative simplicity of ACLs means they do not need much underlying technological
infrastructure to work. They are prevalent across all modern operating systems, even
among many of the most basic ones, so every organization that makes use of an
operating system almost certainly has an ACL implementation by default. At the
application level, where developers may feel the need to implement access control list
functionality, this can be done using basic built-in map-type data structures common in
many programming languages—such as dictionaries in the Python programming
language—or maps in the Java programming language, and relatively simple functions.

WORKING DRAFT

Page 4 of 10
WORKING DRAFT

In cases where ACLs need to be managed for hundreds of thousands or millions of
users, and where in-memory data structures do not scale well, databases may be used
to store some of the ACL data.

While widely used, ACLs do have their limitations. The ACL for a particular file, process,
or other resource must be checked every time the resource is accessed, and this can
be an inefficient means of providing access control. Furthermore, ACLs control not only
user access to system resources; they also control application and system access as
well. So in a typical computing session, the files a user tries to access perform ACL
lookups, the applications he tries to open perform ACL lookups, the files and
applications those applications open and modify perform lookups, and the system
applications perform lookups, and so on.

ACLs can also be difficult to manage in an enterprise setting where many people need
to have different levels of access to many different resources. Selectively adding,
deleting and changing ACLs on individual files, or even groups of files, can be time-
consuming and error-prone.

ROLE-BASED ACCESS CONTROL

Role-based Access Control (RBAC) is a newer access control model than the ACL
paradigm. Unlike ACLs, access to a resource is determined based on the relationship
between the requester and the organization or owner in control of the resource; in other
words, the requester’s role or function will determine whether access will be granted or
denied.

Role-based Access Control addresses some of the shortfalls of the ACL model, while
presenting some new and interesting opportunities. For example, one limitation of the
ACL model is that it treats every user as a distinct entity with distinct sets of permissions
for each resource. This means that ACLs are resource-focused. ACLs have to be set for
each resource (or group of resources) separately, a cumbersome process when large
groups of resources are involved, or when different people need to be able to access
different resources. The fact that ACLs are generally set a by resource’s owner and are
not always centrally managed only complicates matters, since a fair amount of
coordination and planning has to be done to ensure that the correct people have the
correct access to the correct resources. In short, the largest single pitfall of the ACL
model is that it has limited scalability at the enterprise level.

Since RBAC determines access based on roles, and since more than one person can
have the same role (the role of software engineer, for example), RBAC allows for the
grouping of individuals into categories of people who fulfill a particular role. This means
that one set of access control permissions on a particular resource—the source code
tree for a new piece of software, for instance—can be set once for all members of the
software engineering department.

WORKING DRAFT

Page 5 of 10
WORKING DRAFT

RBAC also allows users to be members of multiple groups. An accountant can be a
member of the “employees” group, thereby gaining access to resources to which all
employees need access, but would also be a member of the “accounting” group, which
provides access to the company’s spreadsheets and financial reports. RBAC also
creates the potential for hierarchies of permissions and inheritance, wherein more
restrictive permissions override more general permissions.

Variants of the RBAC model have been implemented at different levels. As with ACLs,
there is at least rudimentary support for groups and roles in most modern desktop
operating systems, so at a minimum the infrastructure for RBAC is available to
operating system users. Windows 2000 and later operating systems added the concept
of “groups,” which facilitate RBAC. Among some of the groups available in these
operating systems are the “Administrator” group, members of which have complete
control over the operating system, “Power Users,” which have fewer privileges than
administrators, but still operate with elevated privileges, and normal users, which have
limited privileges on the system.

RBAC is also increasingly being implemented at the application level, particularly in
enterprise settings where it is commonly implemented as a component of enterprise
middleware. Implementing RBAC at the application level creates new opportunities for
scalability and versatility because a single middleware product can be used to control
access to many systems and resources. Tivoli Identity Manager, for example, has an
RBAC component which treats someone’s role as a part of his/her identity. The Identity
Manager then mediates access to a large variety of operating system services and
enterprise resources.

Most implementations of RBAC-based middleware require additional infrastructure
components. Many, for example, require directory services, such as Microsoft Active
Directory or Sun Java System Directory Server, in addition to relational database
management systems, such as offerings from Oracle or IBM. The need for additional
middleware or infrastructure components varies depending on the vendor; several
vendors offer complete infrastructure solutions in support of their access control
products.

Despite its many advantages (particularly when compared with the ACL model), RBAC
has its own disadvantages. One of the most significant is the fact that dividing people
into categories based on roles makes it more difficult to define granular access controls
for each person. It is often necessary to create more specific versions of roles or devise
other mechanisms to exclude specific individuals who fall into a particular role, but do
not necessarily need to have the full rights accorded to other members of a group.
Consider a large organization, UltraMegaCorp, which has subsidiaries in multiple
locations. It might be necessary to segregate IT personnel across the various locations.
Furthermore, it might be necessary to organize IT systems so that certain resources
reside in particular locations with their own administration personnel. With such a setup,
a generic “administrator” role might need to be decomposed into sub-roles based on the
type of resource to be administered, and perhaps also based on the location that the

WORKING DRAFT

Page 6 of 10
WORKING DRAFT

resource serves. Giving a SharePoint administrator from the Colorado site office the
ability to administer a SharePoint deployment at the New York headquarters might
make sense; on the other hand, it might not. However, creating a generic “SharePoint
Administrator” role does not allow for easy differentiation between the two use cases;
opportunities exist for one administrator to have unnecessary or undesired access to
particular systems. What is needed in this case is the ability to differentiate individual
members of a group and to selectively allow or deny access based on a granular set of
attributes. The Attribute-based Access Control (ABAC) model was designed to fulfill this
requirement.

ATTRIBUTE-BASED ACCESS CONTROL

Attribute Based Access Control (ABAC) is an access control model wherein the access
control decisions are made based on a set of characteristics, or attributes, associated
with the requester, the environment, and/or the resource itself. Each attribute is a
discrete, distinct field that a policy decision point can compare against a set of values to
determine whether or not to allow or deny access. The attributes do not necessarily
need to be related to each other, and in fact, the attributes that go into making a
decision can come from disparate, unrelated sources. They can be as diverse as the
date an employee was hired, to the projects on which the employee works, to the
location where the employee is stationed, or some combination of the above. One
should also note that an employee’s role in the organization can serve as one attribute
that can be (and often is) used in making an access control decision.

A typical ABAC scenario involves a requester who attempts to access a system either
directly or through an intermediary. The requester will have to directly or indirectly
provide a set of attributes that will be used to determine whether the access will be
allowed. Once the requester provides these attributes, they are checked against the
permissible attributes and a decision will be made depending on the rules for access. If
UltraMegaCorp implemented an ABAC model for access to their distributed
infrastructure, for example, they could create access control rules that state that a
person who tries to access a particular administration interface for a critical router in
New York must present credentials with a division attribute of “5,” which corresponds to
the IT division, a title of “senior network engineer,” and a location attribute of “New
York.” If any of these attributes do not match, access to the server will be denied.

A key advantage to the ABAC model is that there is no need for the requester to be
known in advance to the system or resource to which access is sought. As long as the
attributes that the requestor supplies meet the criteria for gaining entry, access will be
granted. Thus, ABAC is particularly useful for situations in which organizations or
resource owners want unanticipated users to be able to gain access as long as they
have attributes that meet certain criteria. This ability to determine access without the
need for a predefined list of individuals that are approved for access is critical in large
enterprises where the people may join or leave the organization arbitrarily.

WORKING DRAFT

Page 7 of 10
WORKING DRAFT

Unlike RBAC and ACLs, readily available operating systems do not inherently support
the ABAC model. Instead, such access control is most often implemented at the
application level, with an intermediary application that helps to mediate access between
a user or application and the resource to which access is requested. For relatively
simple implementations, large databases or other infrastructure are not necessary and
the application logic for allowing access based on attributes is all that is required. In
more complicated environments, however, the need for databases becomes critical,
particularly if some of the attributes that go into making a decision include organizational
or personal information. For example, if a person’s role in the organization were used as
one of the attributes that determines access, a database and directory services
infrastructure become indispensible.

One limitation of the ABAC model is that in a large environment with many resources,
individuals, and applications, there can be disparate attributes and access control
mechanisms among the organizational units. It is often necessary to harmonize access
control across the enterprise in order to meet enterprise governance requirements.
Policy-based Access Control (PBAC) enables organizations to have a more uniform
access control model throughout the organization.

POLICY-BASED ACCESS CONTROL

Most organizations have some kind of policy and governance structure in place to
ensure the successful execution of the organization’s mission, to mitigate risk, and to
ensure accountability and compliance with relevant law and regulations. The internal
security posture of most companies and organizations has traditionally been out of the
purview of law and regulation, although banking, government-related bodies, and critical
infrastructure are some notable examples of organizations where the government has
exercised its authority to push for tighter security controls. With the institution of
regulation and legislation in several industries, such as Gramm-Leach-Bliley (GLBA) for
financial services, Health Insurance Portability and Accountability Act (HIPAA) for
healthcare, and Sarbanes-Oxley (SOX) for corporations, many organizations are
discovering that they need to put into place tighter policies and uniform controls across
the enterprise in order to stay in compliance. They need to create and enforce policies
that define who should have access to what resources, and under what circumstances.
They also need to put in place mechanisms so that access can be easily audited
because these Acts hold the organizations’ executives responsible for their
subordinates’ actions. Policy-based Access Control (PBAC) is an emerging model that
seeks to help enterprises address the need to implement concrete access controls
based on abstract policy and governance requirements.

In general, PBAC can be said to be a harmonization and standardization of the ABAC
model at an enterprise level in support of specific governance objectives. PBAC
combines attributes from the resource, the environment, and the requester with
information on the particular set of circumstances under which the access request is
made, and uses rule sets that specify whether the access is allowed under

WORKING DRAFT

Page 8 of 10
WORKING DRAFT

organizational policy for those attributes under those circumstances. In an ABAC-only
model, the attributes required to gain access to a particular resource are determined on
a local level and can vary greatly from one organizational unit to the next. For example,
one organizational unit might determine that access to a sensitive document repository
requires credentials with a username, organizational role and password; another unit
might require that the credentials necessary to access its repository also include a
digital certificate issued by a trusted Certificate Authority. If documents are transferred
from the latter repository to the former one, they lose the protection afforded by the
digital certificates, and thus can be more easily compromised. Under the PBAC model,
the organization would likely have one policy governing access to all resources that
meet particular sensitivity criteria, and this policy would be enforced across the board
for all attempts to access the resource, no matter where the documents are housed at
any given point.

Although PBAC is an evolution of ABAC, it is a much more complicated model. Since
the attributes have to be maintained across the enterprise, it is necessary to design and
deploy enterprise-level systems to accommodate PBAC. This includes databases,
directory services, and other middleware and management applications, all of which
must be seamlessly integrated. In contrast to the other access control models, PBAC
requires not only complicated application-level logic to determine access based on
attributes, but also a mechanism to specify policy rules in unambiguous terms. It is
extremely important that policies be unambiguous; otherwise, there is the potential for
unintended, unauthorized access to a resource with which a particular policy is
associated. The eXtensible Access Control Markup Language (XACML) is based upon
XML, and was developed as a way to specify access control policy in a machine-
readable format. Unfortunately, policy creation can be complicated and the use of
XACML does not necessarily make the task of creating, specifying, and enforcing good
access control policy any less difficult.

There is also a need to ensure that the entire enterprise uses the same attributes for
access, and that all of the attributes are from an authoritative source. In simple terms,
an Authoritative Attribute Source (AAS) is the one source of attribute data that is
authorized by the organization and that overrides all other attribute sources. Ideally,
policies should be able to specify which sources of attributes are authoritative for the
particular policy, and there should be mechanisms to verify that the attributes provided
by a requester come from the AAS. Although seemingly simple in theory, in practice it
can be very difficult to establish one authoritative attribute source. This is especially true
in situations in which different enterprises must work together, and must implement
access control among them. One organization might consider a particular repository of
attribute data authoritative, but another partner may consider the repository inadequate.
Thus, like policy, the establishment of an authoritative attribute source that all partners
can agree upon is not necessarily an easy task.

WORKING DRAFT

Page 9 of 10
WORKING DRAFT

RISK-ADAPTIVE ACCESS CONTROL

Organizations are not static; they constantly evolve and respond to a variety of stimuli,
which can include legal requirements, economic and financial realities, market
challenges, a variety of risk factors, and leadership styles. Their dynamic nature means
that the policies that guide them must also be adaptable; this naturally extends to the
organization’s security and access control requirements as well. The security threats
that organizations face are also dynamic, so they must constantly assess the risk to
their IT infrastructure and the associated data. Even the more advanced access control
paradigms, such as ABAC and PBAC cannot adequately address the need for
dynamism and changes in the risk levels. The Risk-Adaptive Access Control (RAdAC)
model was devised to bring real-time, adaptable, risk-aware access control to the
enterprise.

RAdAC represents a fundamental shift in the way access control is managed. It extends
upon other earlier access control models by introducing environmental conditions and
risk levels into the access control decision process, in addition to the concept of
“operational need.” RAdAC goes beyond the traditional reliance on static attributes and
policies. It combines information about a person (or machine’s) trustworthiness,
information about the corporate IT infrastructure, and environmental risk factors and
uses all of this information to create an overall quantifiable risk metric. RAdAC also uses
situational factors as input for the decision-making process. These situational inputs
could include information on the current threat level an organization faces based on
data gathered from other sources, such as CERTs or security vendors.

After all of this information is gathered, it is compared against access control policy. The
access control policy could include directives for how access control should be handled
under a variety of situations and with a variety of risk levels. For example, under normal
operating conditions a person may be able to log into an IT system with a username
and password per the normal operating policy, but under heightened conditions, RAdAC
could enforce a second, stricter policy that also requires a digital certificate for two-
factor authentication. Under RAdAC, policies would be able to specify the set of
circumstances under which ordinarily strong access control could be relaxed to allow
access based upon a determination of operational need to access a resource. This
means that RAdAC allows operational need to override security risk, if necessary, and if
the policies allow the overrides. RAdAC also takes a probabilistic, heuristic approach to
determine whether the access should be granted under the circumstances. The
heuristics include a historical record of access control decisions and machine learning.
This means that a RAdAC system will use previous decisions as one input when
determining whether access will be granted to a resource in the future.

The infrastructure required to support a RAdAC implementation is understandably large
and complex given the number of inputs that would be required to autonomously make
a reasonable access decision based on risk metrics. Among the diverse array of
systems and inputs necessary to make RAdAC work are: key management services, a
situational awareness service, user information, metadata and attributes for resources,

WORKING DRAFT

Page 10 of 10
WORKING DRAFT

policies that help to determine access control, information about enterprise IT systems,
and a repository of access decision data. Some of these RAdAC components are data
repositories, such as databases; others, such as those that provide user data, are
directory services; many are full-fledged applications in their own right. Some of these
applications can be standalone; in many environments, a better approach might be to
implement them as loosely-coupled services. A service-oriented architecture approach
to RAdAC implementation helps to limit vendor lock-in and promotes modular
architecture. This in turn enables enterprises to add and remove modules as needed, or
to select from among different modules that encapsulate similar functionality. A SOA
approach also facilitates standards-based information exchange, which is critical to the
success of inter-enterprise access control decision-making.

Despite the power and attractiveness that RAdAC provides, actually implementing the
model will be daunting. There are numerous obstacles to successful implementation,
many of them technical in nature. First, integrating the many systems involved in
RAdAC will be a challenge, given that they are diverse and data exchange among them
has not been standardized. Second, RAdAC, like PBAC, relies on digital policies in
order to help to determine whether access should be allowed. This will require
standardized ways of exchanging policy, and a means to unambiguously define these
digital policies so that the RAdAC system can correctly interpret them. As with the
PBAC model, XACML is a potential solution to this problem, but it needs to reach a
higher level of maturity before it can be included in a RAdAC solution. Third, trustworthy
sources of user information will need to be made available to the system; the need for
trustworthy information about the status, capabilities and security posture of various
parts of the IT infrastructure is equally important. Trusted Platform Modules (TPMs),
which are hardware components that can attest to the trustworthiness of a system, are
one potential source of information; behavioral analysis might be able to do the same
for users. Unfortunately, both TPMs and automated behavioral analysis have a long
way to go before they can be reliably implemented and integrated into a RAdAC
scheme. Fourth, since a part of RAdAC’s functionality is the ability to adapt to changing
environmental conditions, unambiguous mechanisms to describe the various
environmental conditions that need to go into an access control decision is also
necessary. Again, standardized data exchange formats will determine how robust,
adaptable, and useful the environmental data will be in a RAdAC implementation. A fifth
challenge for RAdAC is the reliance on heuristics in the assessment of whether to allow
access to a system. Machine learning, genetic algorithms, and heuristics have come a
long way, but they still have a long way to go before they can be included in RAdAC.

Finally, RAdAC faces a variety of non-technical challenges, including those of policy
and law. Does deploying RAdAC in certain environments violate the law? Who is
accountable if a security breach were to occur, given that the decisions to allow or deny
access to a system are automated? Are the system owners, the RAdAC implementers
and administrators, and/or the RAdAC system designers ultimately responsible if a
breach were to occur? These questions must be addressed before RAdAC can be
widely deployed, and certainly before organizations feel comfortable allowing RAdAC to
control access to their sensitive information.

