USING DATATYPE-PRESERVING ENCRYPTION TO
ENHANCE DATA WAREHOUSE SECURITY

Michael Brightwell

FM Software, Inc.

621 17t Street, Suite 825

Denver, Colorado 80293
telephone: 303-298-8262

email: mbrightw@fmsoftware.com

Abstract

A well-designed data warehouse invariably
contains information which must be consid-
ered extremely sensitive and proprietary.

Protection of this information, as important
as it is, is too often complicated by the pres-
ence of heterogeneous computing environ-
ments, organizational politics, difficulties in
controlling data distribution, and lax atti-
tudes towards information security. We
present a method of information protection,
based on an encryption scheme which pre-
serves the datatype of the plaintext source.

We believe that this method is particularly
well-suited for complex data warehouse en-
vironments.

Introduction

Data warehouse technology has, in recent
years, provided corporate executives and
business planners with extraordinarily pow-
erful decision-support tools. Data ware-
houses can tell us which products to
manufacture, where to locate factories and
how to gain market share. They can be used
to answer questions which weren’t even
contemplated when the data warehouse was
built. Most remarkable of all—these feats
can be accomplished using data extracted
from existing operational systems.

It has become increasingly apparent, how-
ever, that the data warehouse is an inviting
target for snoopers. Imagine that you are a
disgruntled employee, social activist, or in-
dustrial espionage agent who manages to
gain access to an organization’s computer
system. Now, what would you like to find?

Data grouped into subject data areas so
that you can quickly find the items of
interest.

Accurate and complete information that
has been painstakingly reviewed for
correctness.

Harry E. Smith

Quest Database Consulting, Inc.

5600 South Quebec Street, Suite 310-D
Greenwood Village, CO 80111
telephone: 303-771-2246

email: hsmith@qdbc.com

Time-indexed data so trends can be eas-
ily identified.

Summarized information with the abil-
ity to drill down for details.

In short, you would be looking for a data
warehouse!

Conceptually, the data warehouse process
consists of three simple steps:

1) Extract data from the operational sys-
tem,

2) Load the extracted data into data ware-
house tables, and

3) Query the data warehouse to obtain de-
cision-support information.

Data is at risk during each of these phases.
Several factors render data warehouses par-
ticularly susceptible to attack:

1) Extracted data is frequently transmitted
of over insecure communication lines.

2) Extracted data is stored on a variety of
computer systems and removable media
which may have only minimal security.

3) The extraction process produces inter-
mediate files and load files which con-
tain sensitive information, but may not
be well-protected.

4) Maintaining proper security attributes
for the data warehouse tables is ex-
tremely time consuming in the face of
constant organizational change.

5) Users often retrieve data from the data
warehouse and create a “data mart,”
leading to widely distributed copies of
sensitive data.

6) Sound security practice are often un-
dermined because the data warehouse
development effort is a “high visibility”
project with a tight schedule. (It is a
brave developer, indeed, who is pre-
pared to tell senior management that the

delivery of their long-awaited decision
support tool will be delayed in order to
investigate problems which might hap-
pen in the future.)

Furthermore - given that research into the
unique aspects of data warehouse security is
still in the early stages - additional vulner-
abilities will certainly be identified in the
future.?

Problem Statement

When we decided to develop a crypto-
graphic approach to data warehouse secu-
rity which could be applied in the complex,
heterogeneous environments encountered in
the business world, we identified certain
critical objectives:

1) The approach should work with any
combination of commonly used rela-
tional databases. (This rules out re-
quiring binary data storage or other
database-dependent features.)

2) It must function on multiple hardware
platforms and operating systems.

3) It must correctly encrypt and decrypt
data on machines with different charac-
ter sets (e.g., ASCII and EBCDIC).

4) The strength of the encryption algorithm
should be comparable to widely-used,
state-of-the-art technology.

5) Adding encryption to an existing data-
base should require no changes to the
structure of the database. (Neither
should any application changes be re-
quired to access non-encrypted fields.)

6) Encryption should occur as early as pos-
sible in the extraction process and de-
cryption should occur at the last
possible moment.

7) It could not be dependent on a particu-
lar programming language.

1 Credit for early recognition of these special
data warehouse security problems goes to
Bill Inmon, the “father of the data ware-
house.” Bill also gets credit for the concept
of encrypting the data during extraction and
decrypting it just before it is presented to the
user to provide a “safety net” in case of
compromise of one of the standard security
mechanisms. See, for example, his presen-
tation at the April 21-25, 1996 “Data Ware-
house and Decision Support Systems 96’
conference in Arlington, VA (Barnett Data
Systems, 19 Oracle Way North, Rockuville,
MD 20854)

8) It should be “fail safe.” (Any likely fail-
ure mode should be such that that ac-
cess to the data is denied.)

These requirements, based on our business
requirements, constituted a formidable
challenge. During the course of our re-
search, however, it became apparent that the
tractability of the problem could be im-
proved significantly if we could find a way
to preserve the original datatype across the
encryption and decryption transformations.

Proposed Solution

Ciphertext (data in encrypted form) bears
roughly the same resemblance to plaintext
(data in its original form) as a hamburger
does to a T-bone steak. A social security
number, encrypted using the DES encryp-
tion algorithm, not only does not resemble a
social security number but will likely not
contain any numbers at all. A database field
which was defined to hold a nine-character
social security number (eleven, if you want
to include the hyphens) would not be able to
store the DES-encrypted version of the data.
A Visual Basic program would not read it.
A graphical interface would not display it.
There would be nothing that you could do
with the encrypted social security number
unless you had made extensive provisions
for changes in data format throughout your
application and physical database design.

Basic Datatype Preservation

Our method reduces the need for changes to
database structures and applications by pre-
serving the datatype of the encrypted field.
Datatype preservation simply means that
each ciphertext field is as valid as the plain-
text field it replaces. The key to our ap-
proach is defining an appropriate alphabet
of valid characters and performing all op-
erations within the constraints of the defined
alphabet.

Each different datatype requires a judicious
choice of alphabet. An alphabet consisting
of numeric digits (“0123456789”) could be
used to encrypt most number data, such as
social security numbers (e.g. 123-45-6789).

(The dashes, not included the chosen alpha-
bet, are copied unchanged to the corre-
sponding positions in the ciphertext output.)
Other alphabets, such as all printable ASCII
characters, all characters shared by ASCII
and EBCDIC, or all hexadecimal digits can
be used to encode a variety of common da-
tatypes.

The Approach

The first processing step involves replacing
each plaintext character in the string by an
integer that represents its position, or index,
within the chosen alphabet. This number is
between zero and one less than the total
number of characters in the alphabet. If a
plaintext character is not in the valid alpha-
bet, it is copied to the output and removed
from the string to be encrypted.

Figure 1 includes a worked example of the
basic algorithm.;

Example:
plaintext = “hello”

alphabet = “abcdefghijkim
nopgrstuvwxyz”

Step 1: Assign Index Values
index values =7, 4, 11, 11, 14
Step 2: Add Position Sensitive Offsets
offsets = 10, 5, 18, 25, 4
new index values = 17, 9, 3, 10, 18
Step 3: Shuffle the Index Value String
shuffled values = 3, 18, 17, 10, 9
Step 4: Convert Back to Desired Datatype
ciphertext = “dsrkj”

Figure 1: Basic Processing Example

After the alphabet index values have been
assigned, we add a varying integer “offset”
to each. We use modular addition to ensure
that we generate only valid characters (i.e.
characters which are contained in the alpha-
bet). Remember that “modular” addition
means adding two numbers and then de-
termining the remainder after division by a
constant “modulus” value. In the example
above the alphabet size is 26 so, for example,
18 + 11 (mod 26) = 3. The actual offset val-
ues are generated based on a portion of the
key being used to encrypt the data. This
step ensures that long series of identical
characters (such as 20 blanks at the end of a
character field) will not encrypt identically.

After adding the offsets, the entire string is
shuffled. The shuffling method varies ac-
cording to a permutation-invariant property
of the index values, such as a sum or exclu-

sive-or, of all values.2 The shuffling step
helps to ensure that plaintexts with common
prefixes or suffixes do not produce cipher-
text with common prefixes or suffixes.

Once the encoding process is complete, each
index value is mapped to the appropriate
character in the alphabet.

To recover the plaintext from the ciphertext,
one replaces the ciphertext characters by
their alphabet index values, “unshuffles” the
string, regenerates the offset values, sub-
tracts modularly on an integer-by-integer
basis and substitutes the appropriate alpha-
bet character.

Two enhancements to the above algorithms
may be used to deal with certain data-
specific situations:

First, in order to ensure that the encoded
values of two single character strings with
adjacent characters are not sequential (for
example, we would not want “b” to encrypt
as “y” whenever “a” encrypts as “x”), the
alphabet itself can be shuffled based on a

portion of the encryption key.

Second, in order to inhibit guesses based on
encrypted character permutations, we can
“ripple” the data from left to right and from
right to left. This is done by hashing the key
into a “starter-digit” and adding adjacent
values pairwise. For example, the string of
index values “1, 2, 3” might be rippled into
“23,5,40” as follows (assuming a 55 char-
acter alphabet):

starter value = 72 (obtained by hashing the
encryption key)

adding left to right;

72 +1 (mod 55) = 18
18 + 2 (mod 55) = 20
20 + 3 (mod 55) = 23

adding right to left;

23 + 72 (mod 55) = 40
20 + 40 (mod 55) =5
18 + 5 (mod 55) =23

Applying this same method to the permuta-
tion “3, 2, 1,” on the other hand, ripples it to
“27,7,40” and the fact that the two strings
contain the same characters is disguised.

2 A variety of techniques could be used to
generated the offsets and shuffling pattern,
including the use of pseudo-random num-
ber generators.

Enhanced Encryption

While the encoding scheme presented above
is sufficient to deter casual attacks (“keeping
your sister out” as Bruce Schneier would put
it3), more substantial protection is required
to protect sensitive data in the data ware-
house. The approach described above can
be combined with well-known encryption
algorithms, such as DES or IDEA, to signifi-
cantly increase the attacker’s burden. The
basic idea is to use an established algorithm
of known strength to produce the “offset”
values.

The DES algorithm takes as input a 64-bit
input block and a 64-bit key (56 key bits and
8 parity bits) and uses these two values to
produce a 64-bit output. The ciphertext out-
put can be decrypted using the same key.
For all practical purposes, the only way to
break the scheme is by an exhaustive search
of the keyspace.

DES, like any block cipher, can be operated
as a stream cipher in “cipher-feedback”
mode. We use this mode to encrypt one in-
dex value at a time. At the end of each en-
cryption pass, we also shift the plaintext
data into the DES input register. This proc-
ess is illustrated as follows:

Let the alphabet index values of the n-
character, plaintext input string be repre-
sented by

1112131415 .. In

Let the 64-bit DES initial value required by
cipher-feedback mode be constructed based
on a portion of the encryption key

H(K) —aiazazasasagarag= A

where each subscripted “a” value represents
an 8-bit number (“0” to “255”). Let the out-
put of the DES algorithm, using a key of “K”
and an input of “A,” be represented by

Ex(a1a;azasasagazas) =
b1 bz bs b4 b5 be b7 b8.

The first transformed index value is the
modular sum

z1 = bg+ i1 (mod I). Where “I” represents the
alphabet length.

At this point, a new DES input value, A, is
constructed as

A2 =Dy bz bs bs bs b7 bs i1

3 Schneier, Bruce, Applied Cryptography,
New York: John Wiley, 1996

and a new DES output is obtained

Ek(b2 b3z bs bs bs b7 bg i1) =
C1C2C3C4Cs5CphC7C8.

The second transformed index value is the
modular sum

z2=cg+i2(mod).

Note that the use of an addition operator is
required, instead of the usual exclusive-or
operator, is required to ensure that the da-
tatype is preserved.

After n such steps, during each of which a
single input index value is transformed, we
have an encrypted index-value string

Z=2122732475 ... Zn

... In, from the transformed string, z1 2, 23 24 75
.. Zn, Without knowledge of the key, K, is as
difficult as breaking the DES algorithm it-
self.

When using cipher-feedback mode, DES
decryption, per se, is never invoked. Re-
versing the transformation is done by sub-
tracting the low order DES output from the
transformed index value.

Below is a summary of the algorithm.

Setup tasks:

1) Choose an encryption key with enough
bits for the encryption algorithm key,
encryption algorithm initial value and
any basic processing stages.

2) Choose a suitable alphabet to support
the datatype of the data to be encrypted.

3) Shuffle the alphabet according to a
scheme based on the key.

For each encrypted field:

4) Scan the input buffer for characters
which are not included in the chosen al-
phabet. Move all invalid characters un-
changed to their corresponding
positions in the ciphertext output buffer.

5) Move the index values of all valid char-
acters to adjacent positions in a work
buffer.

6) Add position-sensitive offsets according
to a key-dependent scheme.

7) Shuffle the work buffer positions ac-
cording to a data-dependent scheme.

8) “Ripple” the work buffer by calculating
a key-based starter number and modu-
larly adding pairwise from left to right
then from right to left.

9) Set the cipher-feedback initial value us-
ing the chosen key.

10) Calculate the modular sum of the first
work buffer position and the lowest-
order DES output byte. Store this value
in a second work buffer.

11) Obtain a new DES initial value by
moving the DES output to the input,
shifted one byte to the left, and shifting
the work buffer value into the lowest-
order position.

12) Repeat steps 9 through 11 using succes-
sive work buffer index values until all of
the data is transformed.

13) Replace the transformed index values by
their corresponding character equiva-
lents and store them in the open cipher-
text positions.

Decryption is accomplished by performing
the inverse of each transformation in the
reverse order.

Implementation Issues and
Usage Constraints

Perhaps the most important caveat for any-
one who wishes to implement our proposed
encryption scheme is to guard against possi-
ble misinterpretation of encrypted data.
Scrambled text fields such as names and
addresses are not likely to be mistaken for
real information, but numeric fields may
contain quite plausible values. A legitimate
user who, through some administrative
oversight, is erroneously presented with
encrypted data may not recognize it as such
and make bad decisions as a result.

One approach to this shortcoming may be to
include code in the query tool to fill in en-
crypted fields with a default value when-
ever the user has not been authenticated.
Another approach may be simply to restrict
the application of the technique to text
fields. A revenue field may be quite useless
without the corresponding product data or
sales region information.

Another restriction on the use of this tech-
nique is that decryption must be performed
before aggregate functions, such as mini-
mum, maximum, sum, and average, are ap-
plied. This is not a serious inconvenience in
the data warehousing environment because
precomputed summary tables are usually
available.

One must also bear in mind that this en-
cryption scheme is consistent in that the same
plaintext always results in the same cipher-
text. This has both positive and negative

implications. On the positive side, the con-
sistency of the encrypted data allows for
relational joins and blind keys (described
later). On the other hand, consistent en-
cryption exposes the data to the possibility
of a statistical attack. If an attacker knows
the relative frequency of specific data items,
such as medical tests, he can deduce the cor-
responding encrypted values. This kind of
attack can be stymied by using a value from
another field (the table’s primary key, for
example) to modify the encryption key. This
would, of course, preclude the use of this
data in relational join predicates.

Coexistence with Other Se-
curity Controls

We do not propose datatype-preserving en-
cryption as the ultimate solution to all data
warehouse security concerns. It is pre-
sented, rather, as one of several mechanisms
to be employed in a more comprehensive
security strategy. Specifically, we see our
technique as a containment device which
limits potential damage in the event of a
successful bypass of other security controls.

In general, there are at least five categories
of security controls:

Prevention. Preventative measures include
anything which can be done to prevent an
attack or to keep it from succeeding. This
includes strengthening vulnerabilities and
providing disincentives to the attacker.

Detection. Detective measures include any-
thing which alerts the support staff to the
fact that an attack is in progress or has been
recently attempted.

Containment. Containment measures in-
clude anything which can serve to limit the
damage of a successful attack.

Recovery. Recovery measures include any-
thing which is done to restore normal op-
eration and user access after an unscheduled
interruption.

Investigation. Investigative measures include
anything which is done to identify a male-
factor and collect evidence which will be
used in a disciplinary process or criminal
prosecution.

A good data warehouse security plan will
include multiple countermeasures for each
identified threat—ideally, at least one from
each of these categories.

Applications to Other Areas

In addition to data warehouse security,
there may be several other areas in which

this technique may prove useful, such as
providing an additional check on data integ-
rity. By adding a check character to the be-
ginning of each plaintext field (easily
automated during database load) any al-
teration would be immediately obvious
during the decryption process. The decryp-
tion routine could be modified to perform
this check and return an error code is tam-
pering is suspected.

Another possible application is in the use of
blind keys. In certain situations, one needs to
know that two quantities are equal without
actually knowing the quantities themselves.
One may wish to match bank account num-
bers from multiple sources, for example, in
credit check applications but not use the
actual numbers themselves because of the
potential for fraudulent activity.

It may also be possible to control access to
commercially available data through the use
of this technique. A master database could
be distributed to subscribers with individu-
ally licensed components encrypted using
different keys. Access to the individual
components could be made available by
distributing keys following payment of the
proper license fees.

Conclusion

Progress in the field of cryptology is based
on the practice of making the algorithms
public and inviting interested parties to find
the flaws. It is in this spirit that our method
is presented. We welcome comments, criti-
cisms and suggestions for improvement
from readers. Please feel free to contact ei-
ther of the authors at the addresses pro-
vided.

