
A METHODOLOGY FOR MECHANICALLY VERIFYING

PROTOCOLS USING AN AUTHENTICATION LOGIC
�

Munna

Theoretical Computer Science Group

Tata Institute of Fundamental Research

Homi Bhabha Road

Bombay 400005, India

munna@tcd.tifr.res.in

Jim Alves-Foss

Laboratory for Applied Logic

Department of Computer Science

University of Idaho

Moscow, ID 83844-1010 USA

jimaf@cs.uidaho.edu

Abstract

This paper describes a methodology that can be used for rigorously developing authentication protocols for

distributed systems. It is based on the logic of authentication proposed by Lampson et al. We implemented

the logic of authentication using Higher Order Logic (HOL) as the theorem prover. Based on this imple-

mentation, a methodology was developed for analyzing authentication protocols for distributed systems,

and was utilized to analyze published authentication protocols. This methodology took into consideration

the prudent engineering practices for cryptographic protocol design, proposed by Abadi and Needham. It

was observed that formalizing the steps in a protocol let the aws in the design be easily noticeable. The

methodology developed assists in systematically checking for known types of vulnerabilities in authentication

protocols.

Keywords: Authentication, Modal Logic, Formal Methods

Introduction

With the ever increasing role of open network communications, such as the Internet it is essential that

certain measures be put in place to ensure the security of the systems. One such measure, authentication,

enables systems to reliably validate the identity of remote users before granting them access to system

resources. This measure is implemented through the use of network authentication protocols.

The development of authentication protocols is di�cult, as evidenced by the number of published pro-

tocols which have been found to contain aws [10]. This demonstrates the need for mechanisms that assist

protocol designers with the construction and the veri�cation of protocols. To ensure correctness, the security

properties of a protocol and the functionality of a protocol are the most important areas to concentrate on

while developing a veri�cation method. Formal validation of security mechanisms is a method that can be

used to avoid aws and enhance protocol correctness.

Formal veri�cation of mathematical protocols is usually performed in a theorem proving system. Al-

though ad hoc testing techniques may be used, these do not provide the level of assurance required by secure

computing systems, since there is the chance of a aw being overlooked by the test cases used. Hand veri-

�cation is prone to inconsistencies and is cumbersome. In a formal approach, the speci�cations are written

�
Project sponsored in part by the National Security Agency under Grant Number MDA904-96-1-0108. The United States

Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation hereon.



in a formal logic such as predicate calculus or higher-order logic. For the work presented here, we used the

Higher Order Logic (HOL) theorem proving system [8].

The theory of authentication of Lampson et al. [9] addresses di�erent issues concerning authentication

in distributed systems. Mechanizing the logic in the theory will lead to mechanizing the speci�cation and

veri�cation of authentication protocols. Protocols written in conventional security notation can be translated

to the form used in the theory and mechanized directly using a theorem prover like HOL. This will give the

authentication protocol designer the ability to mechanically verify the protocol.

Related Work

Relevant related veri�cation work includes the development of a mechanized logic for secure key escrow

protocol veri�cation by Schubert and Mocas [14]. They developed a framework to formally specify and verify

the correctness of key escrow protocols which were mechanized using HOL. They followed the SVO logic [15]

for their work.

Brackin [3] proposed a method to decide cryptographic protocol adequacy with HOL based on the GNY

logic [7]. He gives a de�nitional HOL formalization of the GNY logic for analyzing whether protocols achieve

desired communication conditions.

Contributions

The main contributions of the work referred to in this paper to the �eld of veri�cation of authentication

protocols for distributed systems are:

� This is the �rst report of the logic of authentication of Lampson et al. [9] being mechanized in a theorem

proving system for veri�cation of protocols for authentication in distributed systems.

� We have mechanized the logic of authentication in HOL such that, given a protocol, it can be converted

easily to a form that can be veri�ed automatically. In this process, the assumptions being made become

clear so that the occurrences of aws can easily be spotted, thus making the protocol designer's job

much easier.

� The logic that we used has been shown to be implementable in a distributed system [16]. By mecha-

nizing it, we have been able to take the concept of a fault-free protocol for distributed systems closer

to reality.

The rest of this paper follows the following format: �rst we briey discuss the implementation of the

logic. We then focus on using the implementation in a methodical fashion, to demonstrate an approach

to systematic analysis of cryptographic protocols. Finally, we discuss uses and future exploration of this

material.

Implementation of the Logic of Authentication

The aim of this work was to mechanically implement a modal logic of authentication to verify authen-

tication protocols. The formal model of the authentication logic needed to be developed in a mechanical

veri�cation system in order to ensure the accuracy of authentication protocol veri�cation. The mechanical

system performs syntax and type checking of the speci�cations and prevents the proofs from containing

logical mistakes. The proofs involved necessitated the use of a veri�cation system which supported higher-

order logic and typed lambda calculus. We chose the HOL system for the work because of its support for

higher-order logic, generic speci�cations and polymorphic type constructs. These features directly a�ect the

expressibility of the speci�cation language. In this section we discuss the logic of authentication used in this

paper and briey discuss how it was implemented in the HOL system. The intent of this section is to give



the reader a familiarity of the concepts of the implementation, a full description of the implementation is

provided in [11].

Basic Concepts in the Logic of Authentication

In the theory of authentication of Lampson et al. [9], the basic conceptual units include principal and

statement. A statement can be a request or an assertion and a principal is the entity that makes a statement.

Each type of principal can only say (make) statements. Speci�cally, principals of the type channel can make

statements directly, all other principals make statements through a channel. An important concept in this

logic is the speaks for relation. It lets information be carried forward by incorporating the operation of one

principal speaking for another. Lampson et al. describe this relation as follows: A speaks for B is the fact

that if principal A says a sentence s, then this is equivalent to principal B saying s. For example, a channel

from a terminal speaks for the user at the terminal.

The basic operators de�ned in this logic include and, quotes, as, etc. The and operator is a conjunctive

for principals; a principal can quote another; a principal can be in the role of another principal, and it can

act as that principal.

The HOL System

HOL is a general theorem proving system developed at the University of Cambridge [8, 4] that is based on

Church's theory of simple types, or higher{order logic [5]. Similar to predicate logic in allowing quanti�cation

over variables, higher{order logic also allows quanti�cation over predicates and functions thus permitting

more general systems to be described.

HOL is not a fully automated theorem prover but is more than simply a proof checker, falling somewhere

between these two extremes. HOL has several features that contribute to its use as a veri�cation environment:

built{in theories, rules of inference for higher{order logic, proof tactics, a proof management system, and a

meta-language for extending the prover.

Notations and conventions. Throughout this paper we present several de�nitions and theorems devel-

oped in the HOL system. To make this work more understandable to the reader unfamiliar with HOL syntax,

we have run the HOL output through a post-processor. This post-processor transfers HOL special symbols

into their logic symbol counterparts. These include:

1. quanti�ers 8, 9, � (forall, there exists, lambda abstraction)

2. logical operators :, ^, _, =) (negation, and, or, implication)

3. comparison operators >, �, =, �, and <

4. conditional operator ! (such that a ! b | c meaning \if a then b else c")

Variables and terms from the HOL listings are presented in typewriter font when discussed in the text

of this paper. De�nitions in the HOL system are preceded by `def . Theorems that have been proven are

preceded by `.

Implementation of Concepts in Authentication

The �rst stage in mechanizing the logic of authentication presented in [9] involved the translation of the

de�nitions and conventions of the logic into HOL. Full details of the development of the HOL theory from

the authentication logic are provided in [11]. The mappings made in developing the theory included using

the HOL type bool for statement in [9] and creating the new type principal to model principal in the



authentication logic. The structures of the operators says, and, quotes, and speaksfor were speci�ed as

follows:

Constants and Infixes --

says ":principal -> (bool -> bool)"

and ":principal -> (principal -> principal)"

quotes ":principal -> (principal -> principal)"

speaksfor ":principal -> (principal -> bool)"

The properties of these operators were de�ned in the axioms and theorems, Sn and Pn, according to the

corresponding axioms and theorems in Lampson et al.'s theory. For example, the theorem S5 corresponding

to S5 in Lampson et al.'s theory is:

S5

` 8A s s0. A says (s ^ s0) = A says s ^ A says s0

It is equivalent to the original theorem

(S5) ` A says (s ^ s0) � (A says s) ^ (A says s0)

which states that says distributes over ^. The proofs of the theorems were developed using the HOL theorem

prover. Details of all the proofs are given in [11].

The HOL version of the axiom P1, that states that (A ^ B) says something if both A and B say it, is:

P1

`def 8A B s. (A and B) says s = A says s ^ B says s

In [11] we show the direct mechanization of all similar basic axioms and theorems involving the principals

and the statements in Lampson et al. 's [9] theory. In [11] we also illustrate the mechanization of the

axioms and theorems involving roles and delegation in the theory. These are also direct implementations of

corresponding axioms, theorems and operators in the theory. For further manipulation of the theory and

its consequent use, some properties of the operators were proven. Wobber et al. [16] describe a few more

properties that were built to enhance the original theory. The axioms and theorems corresponding to these

properties can also be found in [11]. All of this additional material is beyond the scope of this paper.

Methodology for Verifying Authentication Protocols

As pointed out by Abadi and Needham [2], the use of a set of design principles can reduce errors in

the design of cryptographic protocols or make the protocols more e�cient. From this work we selected

the principles which came within the scope of the theory of authentication and used them to develop a

methodology to check for aws in protocols which allow spoo�ng and replay attacks. Subsequent subsections

provide a detailed illustration of the methodology using examples given in [2].

Methodology

The general steps in mechanizing a protocol and analyzing it in the automated environment are as

follows:



1. Translate the protocol into the notation of [9] and then to the HOL notation agreeable to the theory

developed. It might be necessary to de�ne new operators and prove corresponding theorems in the

theory to incorporate new concepts in the protocol being analyzed.

2. Examine the implications in the protocol and develop rules that the protocol follows to (supposedly)

correctly authenticate a channel. For this we analyze each step of the protocol and analyze the precon-

ditions and post-conditions and put them in the form of rules that the protocol follows. While doing

this, we can determine the protocol steps that are derived using earlier (independent) steps in the

protocol and corresponding rules. Initially we de�ne the set of actual assumptions and requirements

of formal veri�cation and then separate the rules for interactions, namely, requests or responses.

3. Develop a model of the protocol which has only the independent steps of the protocol by removing any

dependent steps of the protocol, e.g., responses from server.

4. Use the theorem prover to prove that this model of the protocol, along with the rules developed earlier,

leads to the authentication of the channel. (Note this only checks that the protocol authenticates a

valid user, it does not check if the protocol does not authenticate an invalid user).

5. To check for aws, we add corresponding assumptions (depending on the aw that we are trying to

�nd, e.g., vulnerability to spoo�ng or replay attack) to the protocol model just developed, and check

with the theorem prover, whether the protocol incorrectly authenticates the channel. If it does, we

have shown that the original protocol is awed.

6. If, in the previous step, it has been shown that the protocol is awed, we try to �nd which part of the

protocol has the aw. This is facilitated by the rules developed from the protocol earlier. Depending on

which vulnerability of the protocol that we are checking for, we can try to make changes in the protocol

that might eliminate the error. Examples of such changes are discussed by Abadi and Needham in [2].

7. These steps can be repeated to check for the known types of attacks and possible types of errors.

Example of spoo�ng based on a naming problem in protocol

Abadi and Needham illustrate in [2] that a protocol is prone to spoo�ng when there is a lack of association

of a name (of a principal) with the content of a message. They use the authentication protocol of Woo and

Lam [17] based on symmetric key cryptography for this (Example 3.2 in [2]). We use this illustration,

along with their possible attack method to demonstrate how to apply the methodology described above to

mechanize an authentication protocol to detect a aw that will allow spoo�ng in a protocol. Woo and Lam's

protocol, as described by Abadi and Needham [2] is as follows:

Message 1 A ! B : A

Message 2 B ! A : Nb

Message 3 A ! B : fNbgKas

Message 4 B ! S : fA; fNbgKasgKbs

Message 5 S ! B : fNbgKbs

This is described in the words of Abadi and Needham [2]:

Here Nb is a nonce, S is a server, and Kas and Kbs are keys that A and B share with S.

Basically, A claims his identity (Message 1); B provides a nonce challenge (Message 2); A returns

this challenge encrypted under Kas (Message 3); B passes this message on to S for veri�cation,

bound with A's name under Kbs (Message 4); S decrypts using A's key and re-encrypts under

B's (Message 5). If S replies fNbgKbs
, then B should be convinced that A has responded to the

challenge Nb.



Following Step 1 of the methodology we have developed, the protocol can be written in the format

recognizable to the theorem prover based on the logic of authentication as:

Protocol 3 2

(8A B Server Kas Kbs Ch Nb.

(Kas speaksfor (A and Server) ^

Kbs speaksfor (B and Server) ^

Ch says (Ch speaksfor A) ^ %Message 1%

Nb isnonce (Ch as A) ^ %Message 2%

Ch says (Kas says Nb) ^ %Message 3%

B says (Kbs says (Ch speaksfor A ^ Kas says Nb)) ^ %Message 4%

Kbs says Nb =) %Message 5%

Ch speaksfor A) %Authentication of channel for A%

Note that we include Kas speaksfor (A and Server) and Kbs speaksfor (B and Server) as they

are assumed in the development of the original protocol. Also, we introduce the channel Ch as required

by the theory of Lampson et al. to indicate the channel over which communication occurs. We have also

added a new operator isnonce as there are no operators in [9] that involve nonces. We use the notation Nb

isnonce (Ch as A) to indicate that B has allocated the nonce Nb to the channel Ch claiming to be A.

Performing Step 2, we analyze the preconditions and post-conditions of each of the steps in the protocol

to �nd dependent messages, or submessages. These are messages that will only be sent if the corresponding

preconditions hold. The rules deriving these steps, as well as the rule for the �nal step of authentication are

given as general rules to be used while invoking the protocol. The rules obtained in this case are:

Protocol 3 2 Rule1 % Authentication Step %

`def 8Server Nb Ch A.

Server says Nb ^

Nb isnonce (Ch as A) =)

Ch speaksfor A

Protocol 3 2 Rule2 % Generate dependent message 5 %

`def 8Server A B Kas Kbs Ch Nb.

B says (Kbs says (Ch speaksfor A ^ Kas says Nb)) ^

Kbs speaksfor (B and Server) ^

Kas speaksfor (A and Server) =)

Kbs says Nb

Protocol 3 2 Rule3 % Generate dependent mesage 4 %

`def 8s A B Kas Kbs Ch.

Ch says (Ch speaksfor A) ^ Ch says (Kas says s) =)

B says (Kbs says (Ch speaksfor A ^ Kas says s))

private key lemma

` 8s K Client Server.

K speaksfor (Client and Server) ^

K says s =)

Server says s

In Protocol 3 2 Rule1, obtained by analyzing the mechanism involved in the original protocol, if the

Server says the nonce Nb and if it is the nonce originally sent to the channel Ch claiming to speak for A,

then, according to the protocol, Ch speaksfor A. This is the �nal step of the protocol used for validating

authentication.



According to Protocol 3 2 Rule2, if Kas and Kbs are private keys of A and B respectively with the

server, and B says (Kbs says (Ch speaksfor A ^ Kas says Nb)), then Kbs says Nb. In other words,

when B asks the server to decode the message containing the nonce from A sent on channel Ch, the server

decodes it with the key it shares with A. This rule removes dependent message 5.

By Protocol 3 2 Rule3, if Ch says that it speaks for A and and that (Kas says s), then, B will say

that (Kbs says (Ch speaksfor A ^ Kas says s)), according to the original protocol. This rule removes

dependent message 4.

The private key lemma, also part of the original protocol, states that if K is the shared private key of

the pair Client and Server, and if K says s, then we can assume that Server says s.

Following Step 3, we develop a model of the protocol which has only the independent steps of a protocol

by eliminating the steps derived with the generic rules of the protocol that were listed above. In this example,

we obtain the following:

Protocol 3 2

` (8A B Server Kas Kbs Ch Nb.

(Kas speaksfor (A and Server) ^

Kbs speaksfor (B and Server) ^

Ch says (Ch speaksfor A) ^ %Message 1%

Nb isnonce (Ch as A) ^ %Message 2%

Ch says (Kas says Nb)) =) %Message 3%

Ch speaksfor A) %Authentication of channel for A%

Step 4 involves the use the theorem prover to prove that this is a valid protocol based on the generic

rules extracted earlier. The details of the proof are given in [11].

In Step 5, to check whether this protocol can detect an intruder C impersonating the principal A, while A

is o�-line, we include the possible messages that C may be using during the protocol run as given by Abadi

and Needham [2]:

Protocol 3 2 flaw

` 8Nb Nb0 Ch A B C Kbs Kcs Server.

Kbs speaksfor (B and Server) ^

Kcs speaksfor (C and Server) ^

Ch says (Ch speaksfor A) ^

Ch says (Ch speaksfor C) ^

Nb isnonce (Ch as A) ^

Nb0 isnonce (Ch as C) ^

Ch says (Kcs says Nb) ^

Ch says (Kcs says Nb) =)

Ch speaksfor A

Here, C �rst claims to be A and then C, through the channel Ch. B sends nonces Nb and Nb' in response

to these two claims. C responds twice with the nonce Nb encrypted with Kcs. B veri�es these responses with

the server by sending fA; fNbgKcs
gKbs

and fC; fNbgKcs
gKbs

. Server responds with fNb00gKbs
and fNbgKbs

respectively, where fNb00gKbs
is the result of decrypting fNbgKcs

with Kas. Of the two responses of the

server, only the second response makes any sense to B, as it has never sent out a nonce Nb00. The response

that had a valid meaning was corresponding to the nonce Nb, so it assumes that the channel Ch is speaking

for A, since B had assigned the nonce Nb to A. Thus, C could impersonate A, when B is willing to talk to A

and C at the same time. When we run this using the theorem prover, we can prove that C can impersonate

A, thus letting us detect the aw.



In Step 6, we try to detect the location of the error in the protocol. As the messages we included were

to check whether there is a problem with the association of a name with a message content in a protocol

message, the domain of the aw that needs to be detected gets narrowed down. In the case illustrated, the

problem lies with the lack of association of the name with the content of the last message of the protocol

(Message 5) which is the message from the server, returning the veri�ed value of the encrypted nonce. This

can be observed through the lack of association of the name A with the nonce Nb in the inference part

of Protocol 3 2 Rule2. So, we change that part of Protocol 3 2 Rule2 from Kbs says Nb to Kbs says

(Ch speaksfor A and Nb). This corresponds to changing the actual protocol message 5 from fNbgKbs
to

fA;NbgKbs
, thus �xing the naming problem in the protocol. We can repeat all the steps of the methodology

to show that this is true.

Example of replay attack based on use of a compromised key

Abadi and Needham state that the use of a key in the recent past does not guarantee its freshness

[2]. They illustrate how leaving this principle out while designing a protocol can cause problems using the

Needham-Schroeder protocol (the Kerberos protocol also has similar structure) which is as follows (Example

9.1 of [2]):

Message 1 A ! S : A;B;Na

Message 2 S ! A : fNa; B;Kab; fKab; AgKbs
gKas

Message 3 A ! B : fKab; AgKbs

Message 4 B ! A : fNbgKab

Message 5 A ! B : fNb + 1gKab

When A contacts the server S, A is provided with the session key, Kab, and a certi�cate encrypted with

B's key Kbs conveying the session key to B. When B obtains the certi�cate, to make sure that it got it from

A, it carries out a handshake with A with the nonce Nb encrypted with the session key Kab. A sends back

Nb + 1 encrypted with the same key.

Applying the �rst step of mechanizing and analyzing this protocol, we build the following:

Protocol 9 1

8Ch A B Na Nb Server Kas Kbs Kab.

Kas speaksfor (A and Server) ^

Kbs speaksfor (B and Server) ^

Ch says ((A to communicate to B) ^ (Na isnonce Server)) ^ %Message 1%

Server says (Kas says ((Na isnonce Server) ^

(Kab speaksfor B) ^

(Kbs says (Kab speaksfor A)))) ^ %Message 2%

Ch says (Kbs says (Kab speaksfor A)) ^ %Message 3%

B says (Kab says (Nb isnonce A)) ^ %Message 4%

Ch says (Kab says (nonce check function(Nb isnonce A))) =) %Message 5%

Ch speaksfor A %Authenticating channel for A%

Note that the operator to communicate to and the function nonce check function were introduced to

those already existing in the current theory.

In the second step, we derive the following rules:



Protocol 9 1 Rule1 % Authenticate message %

`def 8Server Kab A B Nb Ch.

Server says (Kab speaksfor A) ^

B says (Kab says (Nb isnonce A)) ^

Ch says (Kab says (nonce check function(Nb isnonce A))) =)

Ch speaksfor A

Protocol 9 1 Rule2 % Generate dependent message 2 %

`def 8Ch A B Na Server Kas Kbs Kab.

Ch says (A to communicate to B ^ Na isnonce Server) =)

Server says

(Kas says

(Na isnonce Server ^

Kab speaksfor B ^

Kbs says (Kab speaksfor A)))

Protocol 9 1 Rule3

`def 8B Ch Kbs s Server.

Ch says (Kbs says s) ^ Kbs speaksfor (B and Server) =)

Server says s

Protocol 9 1 Rule1 shows that, if Server announces the session key for communication, and B uses

that key to encrypt a nonce and send it to the channel speaking for A and if the channel responds with the

result of applying the nonce check function on the nonce encrypted with the same session key that B had

just used, then, according to the protocol, the channel speaks for A.

According to Protocol 9 1 Rule2, when A requests for a session key to communicate to B and includes

a nonce Na in the message, the server responds with the message, signed with the shared key with A, Kas,

which has the nonce Na, the session key Kab and a certi�cate intended for B, which is encrypted with the

shared key between Server and B, and conveys the session key Kab to be used to communicate with A.

Protocol 9 1 Rule3 states that if Ch presents the statement s signed with the shared key between

Server and B, it implies that the server said s.

The modi�ed version of the protocol developed in the third step is:

Protocol 9 1

` 8Ch A B Na Nb Server Kas Kbs Kab.

Kas speaksfor (A and Server) ^

Kbs speaksfor (B and Server) ^

Ch says ((A to communicate to B) ^ (Na isnonce Server)) ^ %Message 1%

Ch says (Kbs says (Kab speaksfor A)) ^ %Message 3%

B says (Kab says (Nb isnonce A)) ^ %Message 4%

Ch says (Kab says (nonce check function(Nb isnonce A))) =) %Message 5%

Ch speaksfor A %Authentication of channel as A%

And we prove that this protocol authenticates the channel using the rules illustrated, using the theorem

prover in the fourth step. The proof is included in [11].

In the �fth step, for a possible attack method to show that this protocol is not valid, we assume that

C tries to establish communication with B after recording all the message exchanges between A and B

(messages 3-5) and somehow obtaining the session key Kab. C now replays the message 3 to make B think

that A is trying to initiate a new conversation. B then requests a handshake from A by sending A the



message, fN 0

b
gKab

. C can intercept this message and return f(N 0

b
+ 1)gKab

to B as C has got the key Kab.

We check this attack method using the theorem prover and �nd that the protocol still authenticates the

channel in which C is speaking, as the channel that is speaking for A, without any transmission of Message 1.

Protocol 9 1 flaw

` 8Ch A B Na Nb Server Kas Kbs Kab.

Kas speaksfor (A and Server) ^

Kbs speaksfor (B and Server) ^

Ch says (Kbs says (Kab speaksfor A)) ^

B says (Kab says (Nb0 isnonce A)) ^

Ch says (Kab says (nonce check function(Nb0 isnonce A))) =)

Ch speaksfor A

In the sixth step, to �nd out where in the protocol the error has occurred, we check the rules used in the

proof and notice that Protocol 9 1 Rule2 was never used in the proof, thus letting C use an older session

key that the server had issued for A to communicate with B and the replay attack to make B believe that A

is trying to communicate.

Denning and Sacco [6] point out that this protocol needs a whole new approach to eliminate the error.

They suggest the use of time stamps. However, the use of time stamps involves checking the time with the

local or synchronized clock to check the time delay between the time stamp and the time of receiving a

message, in addition to incorporating the timestamps into the messages. We are not dealing with this in

this paper, though this can be done by further developing our scheme for mechanizing the protocols.

Abadi and Needham [2] show that there are ways to increase the e�ciency of a protocol by avoiding

double encryption and avoiding and use of encryption unnecessarily. We are not exploring methods to develop

generic methods meant for improving the e�ciency of protocols mechanically. But this is one possible arena

where future work can be done, as the principles to be followed to achieve it would be similar to the ones

developed for �nding faults in protocols.

Conclusions and Further Research

Summary

In this project, we presented the results of implementing a theory of authentication for distributed sys-

tems in a formal theorem proving environment. We presented the mechanization of the important sections

of the theory of authentication by Lampson et al. [9] and the enhancements in [16]. We applied the mech-

anized model of Lampson et al.'s theory to implement the basic protocol units in [1] and other arbitrary

authentication protocols. We developed a methodology for analyzing authentication protocols mechanically

and applied it to a set of protocols that were illustrated to be faulty in [2] and used it to locate faults in

them. It is this mechanism that was presented in this paper, the rest of the results can be found in [11].

Conclusions

The main goal of this work was to show that application of a mechanized logic for authentication can be

useful for the design of authentication protocols. In the process, we found that formalizing ideas have some

bene�ts in a protocol veri�cation environment. When the implicit assumptions are stated formally, the aws

that are not easily noticeable become clear.

Using a consistent notation to describe all protocols also helps. It sets the ground for comparing di�erent

protocols and standardizing the checking for a given type of aw in any protocol.



Mechanically verifying protocols takes away the tedium of veri�cation by hand. It enables the veri�er

to show that the proofs are logically correct, and allows common approaches to veri�cation of protocols to

be automated by mechanization. Proof maintenance becomes easy and changes can be implemented easily.

Mechanization and application of a di�erent logic for authentication also become easy once the general

principles for mechanizing a logic are de�ned.

References

[1] M. Abadi, M. Burrows, B. Lampson, & G. Plotkin. A calculus for access control in distributed systems.

DEC-SRC Technical Report #70, 1991.

[2] M. Abadi & R. Needham. Prudent engineering practice for cryptographic protocols. Proc. IEEE

Symposium on Research in Security and Privacy, 1994, pp. 122-136.

[3] S. H. Brackin. Deciding cryptographic protocol adequacy with HOL. Proc. International Workshop on

Higher Order Logic Theorem Proving and its Applications, 1995, pp. 90-105.

[4] A. Camilleri, M. Gordon, and T. Melham. Hardware veri�cation using higher order logic. In D. Borrione

(ed), HDL Descriptions to Guaranteed Correct Circuit Designs. Elsevier Scienti�c Publishers, 1987.

[5] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5, 1940.

[6] D. E. Denning & G. M. Sacco. Timestamps in key distribution protocols. Communications of the ACM,

24(8):533-536, August 1981.

[7] L. Gong, R. Needham & R. Yahalom. Reasoning about belief in cryptographic protocols. Proc. IEEE

Symposium on Research in Security and Privacy, 1990, pp. 234-248.

[8] M. Gordon. A proof generating system for higher-order logic. Technical Report 103, University of

Cambridge Computer Laboratory, January 1987.

[9] B. Lampson, M. Abadi, M. Burrows & E. Wobber. Authentication in distributed systems: Theory &

practice. Technical report #83, DEC Systems Research Center, February 1992.

[10] A. Liebl. Authentication in distributed systems: A bibliography. Operating Systems Review, 27(4):31-41,

October 1993.

[11] Munna. Mechanical Veri�cation of Authentication Protocols for Distributed Systems. MS Thesis,

University of Idaho, November 1995.

[12] R. M. Needham & M. D. Schroeder. Using encryption for authentication in large networks of computers.

Communications of the ACM, 21(12):993-999, December 1978.

[13] R. M. Needham & M. D. Schroeder. Authentication revisited. ACM Operating Systems Review, 21(1):7,

January 1987.

[14] T. Schubert & S. Mocas. A mechanized logic for secure key escrow protocol veri�cation. Proc. Inter-

national Workshop on Higher Order Logic Theorem Proving and its Applications, September 1995, pp.

308-323.

[15] P. Syverson & P. van Oorschot. On unifying some cryptographic protocol logics. Proc. IEEE Symposium

on Research in Security and Privacy, 1994, pp. 14-28.

[16] E. Wobber, M. Abadi, M. Burrows & B. Lampson. Authentication in the Taos operating system. ACM

Transactions on Computer Systems, 12(1):3-32, February 1994.

[17] T. Y. C. Woo & S. S. Lam. Authentication for distributed systems. IEEE Computer, 25(1):39-52,

January 1992.


