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Abstract
The growth of Internet-based electronic commerce,

with its potential to create new business markets and
streamline corporate operations, has been hindered
over the past three years by concerns over the secu-
rity of the system. While several secure transaction
protocols have emerged to allay concerns, most secu-
rity violations in practice are made possible by 
aws
in e-commerce client/server software. The approach
outlined in this paper develops a certi�cation process
for testing software components for security proper-
ties. The anticipated results from this research is a
process and set of core white-box and black-box testing
technologies to certify the security of software compo-
nents. The manifestation of the product is a stamp of
approval in the form of a digital signature.

1 Introduction
Component-based Internet technologies such as

Java and ActiveX are making the use of software com-
ponents easier and more pervasive than ever before.
Today, the Internet is being harnessed by main-stream
businesses of all sizes for group collaboration, commu-
nication, and inexpensive dissemination of informa-
tion. The medium of choice is the Web. Component-
based technologies such as Java applets, JavaBeans,
and ActiveX controls make it possible for businesses
to design Web-based information processing systems.
The next step in the evolution of business on the In-
ternet is electronic commerce.

The idea of electronic commerce|using the Inter-
net and the Web for commercial purposes|is tak-
ing hold in both corporate board rooms and Amer-
ican homes. Component-based technologies designed
for distributed networks, including the Internet, make
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widespread e-commerce possible and thus have the po-
tential to expand business markets considerably.

The infancy of e-commerce can be likened to the
pre-industrial era in the United States. Before parts
became standardized, master craftsmen would custom
design and build each hammer, each saw, each chair,
each wheel, and at a larger scale, each bridge. The
industrial era made possible the standardization of
parts. Thus a bike manufacturer could reliably build
a bike from standard bolts, wheels, seats, and handle-
bars. Without standardization, bolts would not �t in
their sockets, seats would not �t snugly, and wheels
on di�erent bikes would even be di�erently sized.

Today, there are myriad protocols for e-commerce
transactions: SSL, PCT, SET, S-HTTP, S/MIME,
Cybercash, and Digicash, among others. Unfortu-
nately, most of these protocols are not interoperable,
and consumers must choose one protocol over another.
If a merchant is not a subscriber to Cybercash, then
a Cybercash consumer will not be able to purchase
wares from the merchant. Similarly, if a consumer
does not have a browser client that supports S-HTTP,
then the consumer will not be able to engage in a se-
cure transaction with a merchant that uses S-HTTP.
Development of secure components for use in build-
ing commerce applications is an important step in the
maturation and acceptance process. Objective and
scienti�c security assessment is essential to this step.

Despite the great potential to connect businesses,
merchants, and consumers anywhere at anytime, af-
fordably and easily, the dangers of e-commerce loom
large. The e-commerce systems of today are composed
of a number of components including: a commerce
server, data transaction protocols, and client software
from which transactions originate. While most of the
attention in e-commerce security has been focused on
encryption technology and protocols for securing the
data transaction, it is critical to note that a weak-



ness in any one of the components that comprise an e-
commerce system may result in a security breach. For
example, a 
aw in the Web server software may allow
a criminal access to the complete transaction records
of an online bank without forcing the criminal to break
any ciphertext at all. Similarly, vulnerabilities in secu-
rity models for mobile code may allow insecure behav-
ior to originate from client-side software interaction.
Until the security issues of software-component{based
commerce are adequately addressed, electronic com-
merce will not reach mass market acceptance.

2 Approach

One of the most popular approaches today to
assessing computer security is using penetrate-and-
patch tactics. Security is assessed by exploiting well-
known vulnerabilities in an attempt to break into an
installed system. If a break-in attempt is successful,
the vulnerability that permitted the security breach
is patched. Traditionally, penetrate-and-patch tactics
were the domain of elite security professionals and
consultants whose methods and tools were as secre-
tive as their services were expensive. More recently,
many of their methods and tools have been captured
in public domain security tools like Satan, COPS, ISS,
and TAMU [2, 3, 7, 6]. These tools have been hailed
as bringing computer security analysis to the average
desktop computer user. They have also been criticized
for putting years of security experience into the hands
of computer crackers in the form of simple point-and-
click tools. It is exactly these sorts of tools that will
be applied against e-commerce systems.

Penetrate and patch, and the tools that help auto-
mate it, will always have a place in the security tool
box. But there are several drawbacks to relying solely
on the penetrate-and-patch approach: it happens too
late leaving crackers one step ahead, patches are of-
ten ignored, and patches, themselves, sometimes in-
troduce new vulnerabilities.

The approach developed here employs dynamic
software analysis techniques to certify software com-
ponents for secure behavior. The approach draws
on years of research in software engineering analysis
that has been employed in other areas of software
assurance: testing, safety, reliability, and testability
[9, 12, 11].

The approach is based on the premise that a sig-
ni�cant portion of computer security violations oc-
cur because of errors in software design and coding.
Cheswick and Bellovin state (page 7, [1]):

. . . any program, no matter how innocuous
it seems, can harbor security holes. (Who

would have guessed that on some machines
integer divide exceptions could lead to sys-
tem penetrations?) We thus have a �rm be-
lief that everything is guilty until proven in-
nocent.

The emphasis on security assessment during devel-
opment stems directly from the relationship between
bugs and security holes. Bugs are also the root cause
of dependability and reliability problems. That brings
up the issue of how dependability, reliability, and se-
curity are interrelated.

Dependability of a component measures a compo-
nent's resilience to changes in the operational pro-
�le. A high dependability component could be placed
in about any application environment and still work.
Reliability, on the other hand, is the probability of
failure-free operation of the component for a partic-
ular �xed environment. The de�nition implies that
though a reliable component may be well-suited for at
least one environment, it may not be very reliable in
another.

Component models in and of themselves are nei-
ther secure nor insecure, just as at a lower level, pro-
gramming languages are neither secure nor insecure.
The security of a component is the degree to which
the component thwarts malicious attacks that may en-
danger the functionality or information of the entire
system. Reliability and dependability are quanti�ed
using non-malicious test data. Security is a function
of malicious test data. Thus, it is logically possible
to have a highly dependable component that is at the
same time very vulnerable, and vice versa.

3 Certifying security

Security assessment must occur at two levels: the
component level and the system level. If individual
components behave insecurely than the security of the
system can fall like a house of cards falls when a card
is removed. Component certi�cation involves assur-
ing that a component will not behave dangerously
in its operating environment. One class of compo-
nent that is commonly understood to be dangerous is
Trojan horses or computer viruses. These malicious
components including hostile applets, malicious Ac-
tiveX controls, and voyeur JavaScripts violate security
and privacy by intention of their designers. Another
class of dangerous component not commonly recog-
nized is composed of components that pose security
hazards incidentally. For example, numerous versions
of sendmail, a Unix e-mail server, have posed secu-
rity hazards to systems that run it due to 
aws in
the implementation. Regardless of whether a software



component is designed to be malicious or whether its
design is benign but its implementation is 
awed in a
way that permits exploitation, systems that execute
these components are at risk. The latter category of
dangerous components are the root cause of the vast
majority of security violations in practice.

The second level at which security must be assured
is the system level. Even in cases where components
may exhibit secure behavior individually, the compo-
sition of components in systems may result in unex-
pected and possibly insecure behavior. Even so, it is
much easier to build secure systems from secure com-
ponents than building secure systems from insecure
components.

The proposed approach to certifying security of
software components is illustrated by the Component
Security Certi�cation (CSC) pipeline in Figure 1. The
CSC pipeline is an architecture for providing security-
oriented testing processes to a software component.
The pipeline consists of several processes including
the construction of test plans, analysis using white-
box testing techniques, black-box testing techniques,
and the stamping with a digital signature of the rel-
ative security rating based on the metrics evaluated
through the testing.

The processes are broken out into sub-pipes of test
plans, white-box testing, and black-box testing. The
�rst stage to component certi�cation is the develop-
ment of a test plan. The application in which the
JavaBean component will be used will in
uence the
security policy, test suites, assertions, and fault per-
turbations used in both white-box and black-box test-
ing processes. Based on the security policy, input gen-
eration will make use of test suites delivered from the
applicant for certi�cation as well as malicious inputs
designed to violate the security policy. The de�ni-
tion of the security policy is used to code security
assertions that dynamically monitor component vul-
nerability during security analyses. Finally, pertur-
bation classes are generated for white-box fault injec-
tion analysis according to the application in which the
component will be used.

The white-box and black-box dynamic analysis
techniques yield a set of relative security metrics that
can be used to determine how secure a given compo-
nent is relative to its peers in a particular class of com-
ponent given the testing processes and environment.
These metrics can be used by certi�cation authorities
to digitally sign a component for use in particular ap-
plications. Next, a brief overview of the certi�cation
technologies is presented.

4 White-box certi�cation technologies

Three white-box certi�cation technologies have
been identi�ed. The pipeline architecture permits in-
clusion of other security-oriented testing methods de-
pending on their contribution and the component be-
ing tested. The three white-box technologies brie
y
discussed here are: code coverage, fault injection, and
assertion monitoring.

Code coverage provides a measure for how well a
given component has been tested by identifying which
statements and branches in the code have not been
executed. If the code coverage analysis identi�es sec-
tion of the code that has not been executed (e.g., a
function that was not called or a branch that was not
followed), then more test cases can be constructed to
exercise those portions of the program. The more code
that is tested, the higher con�dence the analyst will
have on the results of the certi�cation process.

The code coverage metric by itself will not reveal
any security properties of the component. Rather,
code coverage analysis is most useful when combined
with security-oriented testing such as fault-injection
analysis and property-based testing [5, 4]. Fault in-
jection analysis can simulate both programmer 
aws
as well as malicious attacks against programs while
they are executing. Using fault injection analysis
for security-oriented testing, the e�ect of programmer

aws on the security of the program and the system
it is executing in can be observed. One common pro-
grammer error made in programs written in C is read-
ing unconstrained input into a bu�er. Fault injection
analysis can over
ow bu�ers with a calculated string
that will execute system commands if the program
stack can be reached from the bu�er.

Observing security violations either through fault
injection analysis or through property-based testing
is made possible through the use of assertions. Asser-
tions are conditional statements placed in the program
code that codify the security policy of the program.
Property-based testing is simply the process of ana-
lyzing the behavior of a program to determine if it ad-
heres or violates some property. For the certi�cation
process, the property that is analyzed is the secure be-
havior for software components. One example of using
assertions internally to the code is to determine if a
user is granted access to a privileged resource when
the use has not been authenticated. Assertions can
also be employed external to the program to monitor
system-wide properties. For example, an assertion can
be used to determine if a portion of the �le system has
been accessed by an unprivileged process.

Combining assertions with fault injection analysis
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Figure 1: The Component Security Certi�cation pipeline. The main pipeline is shown at the top of the �gure.
Three sub-sections of pipe making up the main pipeline are shown below. Both the white-box and black-box
pipes result in metrics that can be used in the certi�cation decision. Components that pass the rigorous testing
process will be certi�ed and digitally signed.

and coverage analysis, property-based testing of the
software component can be performed until a required
degree of con�dence is reached when the component
will be certi�ed. The degree of con�dence necessary
will be determined by the application in which the
component will be employed.

5 Black-box certi�cation technologies

In order to assess the security of components for
which the source code is not available, the certi�cation
pipeline employs black-box testing techniques. The
simplest of the black-box testing techniques involves
input generation.

A fundamental di�erence between standard testing
and the analysis proposed here is the ability to test
explicitly for security. Standard testing, which occurs
in good software development labs, generally tests for
functional correctness. Security is another story. Soft-
ware can be correct yet still be insecure, just as soft-
ware can be correct yet still be unsafe. The use of se-
curity assertions (described above) provides the ability
to determine if a security policy violation has occurred

as the result of input sampled from the expected user
distribution. Thus, employing assertions on program
outputs can enable monitoring of the security proper-
ties for a software component where source code is not
available.

The generation of an input stream can be conceived
as sampling from di�erent input spaces. Figure 2
shows the black-box testing of a software component
that employs security-based assertions. Most software
application testing samples input from the expected
user input distribution, or operational pro�le. In cases
where the operational pro�le is unknown, the input
generation functions provided will support sampling
from a wide range of potential user pro�les. In cases
where user pro�le data has been collected, the input
generation module will support sampling from the cus-
tomized user pro�le. Generally, the most glaring (and
perhaps most dangerous) vulnerabilities will be de-
tected by sampling expected input distributions.

The malicious input space consists of the inputs
that may be used to try to subvert a component. This
space will vary from application to application, how-
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Figure 2: Black-box security testing. The black-box analysis involves generating inputs from both the expected
operational pro�le as well as potentially malicious inputs. The software component is exercised with these test
cases while the output space is monitored with security-based assertions.

ever certain characteristics will prevail. For example,
the list of system commands that can be executed
on the operating system platform may form a subset
of the malicious input space. Another example is a
list of non-alphanumeric control or \meta" characters
that can potentially result in the execution of shell
commands. The test cases used for black-box testing
can be enhanced with malicious input using pertur-
bation functions. These functions include the ability
to truncate input streams, to over
ow input bu�ers,
to append garbage input and malicious commands, to
perturb numerical constants, and to garble strings.

Analyses that use inputs perturbed in this way can
be thought of as a variant on \stress testing". Stress
testing typically refers to measuring the performance
and availability of operating system and other multi-
user capabilities in times of particularly heavy work-
load requests, where (in this case) the heavy work-
loads represent classes of unexpected and rare inputs.
Many vulnerabilities result from design errors where
the developer did not properly account for unexpected
inputs. These errors are amenable to discovery by per-
turbation testing.

In addition to input generation and assertion mon-
itoring, a third component of the certi�cation testing
will test black-box components for the presence of Tro-
jan horses.

A Trojan horse is a program that surreptitiously
performs some malicious function while at the same
time appearing only to perform expected functions.
Trojan horses can either execute malicious functions
immediately upon startup or perform malicious func-
tions at a later time when prompted into action by
special input. The techniques discussed here address
the latter class of Trojan horses. This is a particularly
important class of programs because Trojan horses can
easily be used in o�ensive attacks against components
for electronic commerce.

The approach for detecting Trojan horses does not
require a precise program speci�cation. Instead the
approach is based on the premise that program code
(statements, functions, modules, libraries, etc.) that is
not executed after extensive testing using inputs sam-
pled from the expected operational pro�le may pose a
security hazard to a system where the program may
be installed.



The basic idea is to analyze software components to
determine which sections of the application are not ex-
ecuted in spite of extensive testing using inputs from
the expected operational pro�le. Those functions of
the code not covered through testing will be 
agged
as potentially dangerous and in need of additional in-
spection/analysis. The 
agged code may represent
some portion of a Trojan horse which will only exe-
cute based on some unexpected or anomalous input.

The approach discovers idle code fragments by
making use of expected input scenarios during exten-
sive component testing. For the class of Trojan horses
detected by this approach, Trojan horse code is exe-
cuted only by unexpected or rare event input. The
class of Trojan horses speci�cally excluded from this
approach are those that execute during normal usage
(e.g., a logic bomb). These Trojan horses will likely
be detected using input generation and assertion mon-
itoring.

6 Signing components
Once a component has been thoroughly tested and

some level of assurance is reached, it can be approved
for use in electronic commerce systems. Without the
application of formal methods which prove correctness
(and can prove some things about security), there is no
strict guarantee that a component will always behave
in a secure fashion. However, careful application of the
techniques we sketched above can lead to high levels
of assurance.

This implies that formal methods are in some sense
more powerful than extensive testing. This is certainly
true in some cases. But the reality is that formal
methods, though very powerful, cannot be economi-
cally applied to today's large and complex software
systems. Formal analysis does not scale well for large
systems, and formal techniques applicable component-
based software have yet to be devised. Lacking for-
mal analysis, security-based testing is a viable and
economically-feasible alternative.

Once a component has been thoroughly tested and
shown to be secure, it will be considered \approved."
But approval by itself is not su�cient to sustain se-
curity. A potential user of the component needs some
assurance that the approved component has been en-
dorsed by the certi�er and has not been altered since
the testing process was complete. Digital signatures
provide an answer to this problem.

One particular kind of cryptography tool allows
digital information to be \signed" by their authors
or distributors. Because a digital signature has spe-
cial mathematical properties, it is irrevocable and un-
forgeable. That means a program like a Web browser

can verify a signature, allowing a user to be abso-
lutely certain where a piece of code came from. Better
yet, browsers can be instructed always to accept code
signed by some trusted party, or always to reject code
signed by some untrusted party.

The key to certi�cation and authentication is the
use of digital signatures. The idea is simple: provide a
way for people to \sign" components so that these sig-
natures can be used in the same way we use signatures
on paper documents.

7 System-level security analysis
As stated earlier, composing secure components in

a system does not guarantee secure system behavior.
Conventional engineering of large systems follows the
doctrine of \divide and conquer". That is, large sys-
tems are broken into smaller subsystems and each is
individually engineered.

Component-based software is aimed at building sys-
tems from the ground up from software components.
One consequence of building large systems from com-
ponents is the loss of system-wide robustness proper-
ties such as security due to the increase in the num-
ber of components that must be maintained and the
number of interfaces that must be robust. A compo-
nent designed and built for one application might be-
have remarkably di�erent when employed in a di�erent
application. Even when component interfaces match
(which is a di�cult enough problem without univer-
sal acceptance of component standards), the system-
wide behavior of components hooked together is as
unpredictable as strange bedfellows. Unintended in-
teractions between components can result in emergent
system behavior that is unpredictable and possibly in-
secure.

In order to assess system-wide security properties,
the approach here will employ interface propagation
analysis (IPA) [10]. IPA is a fault injection analysis
technique that perturbs the data at component inter-
faces and observes its subsequent e�ects. IPA deter-
mines to what extent the failure of one component
will corrupt other components in a system | and ul-
timately the entire system itself.

Given a system composed of components A and B,
questions that IPA can be used to address are: (1)
will corrupted inputs to B result in corrupted outputs
from B? (2) will corrupted outputs from B result in a
corrupted input to A? and (3) will corrupted outputs
from B corrupt subsequent outputs from A? Combin-
ing IPA with system level assertion monitoring, the
security properties of the system can be analyzed.

The certi�cation pipeline will be applied to certify
and sign individual software components. IPA will be



used to certify the security of a given system composed
of signed components. Further research on the appli-
cation of IPA for security-based testing is necessary
before concluding to what extent this analysis will be
useful for system-wide security certi�cation.

8 Conclusion
This paper describes a new approach for certifying

software components for security using both tried and
true software engineering analysis techniques applied
to security problems as well as novel security analysis
techniques. The objective of this research is to invent
a process methodology that can be used to certify the
security of software components used in e-commerce
applications. By providing a means for assessing the
security of software components, the old practice of
\security through obscurity" will no longer be a vi-
able technique, and 
y-by-night software development
organizations will not get away with selling supposedly
secure products.

Bruce Schneier has an interesting commentary on
this topic [8]:

Billions of dollars are spent on computer se-
curity, and most of it is wasted on inse-
cure products. After all, weak security looks
the same on the shelf as strong cryptogra-
phy. Two e-mail encryption products may
have almost the same user interface, yet one
is secure while the other permits eavesdrop-
ping. A comparison chart may suggest that
two programs have similar features, although
one has gaping security holes that the other
doesn't. An experienced cryptographer can
tell the di�erence. So can a thief.

The same can be said for security in general. Elec-
tronic commerce components may all appear to be
equally secure on the surface. Only objective assess-
ment can ascertain the true story. The role of the cer-
ti�cation process will be to objectively evaluate the
security of software components.
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