
Multi-Protocol Attacks and the Public Key Infrastructure∗∗

Jim Alves-Foss
Center for Secure and Dependable Software

Department of Computer Science
University of Idaho

Moscow, ID 83844-1010
email: jimaf@cs.uidaho.edu

Abstract
The public-key infrastructure will be utilized to store and disseminate certified copies of

user’s public keys for use in secure transmission and digital signature verification. This paper
presents a class of attacks, multi-protocol attacks, which can be used to break otherwise secure
public-key based authentication protocols. These attacks are possible when the public-key
infrastructure permits the use of a user's public key in multiple protocols. An attacker can then use
either an existing protocol or a tailored protocol to subvert an otherwise secure protocol.
Possible solutions are discussed.

Keywords: Public Key Infrastructure, Cryptography, Security, Authentication

1 Introduction
The widespread use of electronic commerce and other networked applications that require a

high level of authentication will benefit from the establishment of a public-key infrastructure
(PKI). With such an infrastructure in place, it will be easy for users to obtain the public keys of
other participants in a trusted and secure manner. This trusted distribution of public keys would
allow for the widespread use of public-key based algorithms for secure and authenticated
communication across public networks.

Unfortunately there is a class of attacks, multi-protocol that are successful against a large
class of public-key authentication protocols. In implementations of the public-key infrastructure
where a user’s public key can be used for more than one specific protocol, public-key
authentication protocols can be broken. For example, the installation of an insecure or possibly
tailored protocol (called chosen protocols in [KSW97]) on user B’s machine could result in an
attacker being able to masquerade as B to other entities.

For the purposes of this paper, we define a public-key authentication protocol as any
protocol that relies on the use of public-key signatures and/or encryption to validate the identity
of protocol participants. We assume that the definition of the protocols and the generation of
public-key pairs is disjoint and that a public key can be used in more than one protocol. We

∗ Project sponsored in part by National Security Agency under Grant Number MDA904-96-1-0108. The

United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright
notation hereon.

concede the security of the private part of the public key within the user’s machine and the
security of public-key certificates as the security of these items does not affect the attacks
presented here.

This paper discusses multi-protocol attacks and how they can be realized to defeat otherwise
secure public-key authentication protocols. We highlight this discussion with examples of attacks
on two proposed public key-based authentication protocols. We conclude with a discussion of
design measures that must be taken to prevent this class of attack.

2 Authentication
We make several assumptions in the analysis of authentication protocols in this paper. Most

of these assumptions can be relaxed and will not affect the efficacy of the attacks presented. These
assumptions are justified as protocol designers make several of these assumptions in the design
and analysis of authentication protocols. We have used them to simplify the analysis and
discussion of multi-protocol attacks.

• Perfect encryption. We denote message M encrypted with key K by {M}K (if K is A’s
public key we write K as PK(A), if K is A’s private key we write K as PKS(A)). Perfect
encryption means that no user can determine M from {M}K without knowledge of K and
that {M}K = {M’}K’ if and only if M = M’ and K = K’. The later can be realized if we
assume the inclusion of an encoded checksum within {M}K such that we can validate that
the decryption used the correct key K. This is a common practice in many encryption
schemes.

• Other than the implicit checksum within {M}K, we require that all other fields of the
message be explicitly specified (this includes direction bits, protocol sequence numbers or
protocol identification fields). This requirement avoids confusion due to hidden
assumptions in the presentation of protocols.

• Some portions of the message may be included in plain text. For example we specify all
protocols with the plain-text source and destination identifiers as the first two fields of the
protocol.

• Implicit connection determination. All interactions over the network are considered
connection oriented. Therefore, participants can be involved in multiple protocols
simultaneously without messages from those protocols being accidentally interleaved (see
the attack on the Woo-Lam protocol discussed in [AN94].)

• Implicit termination. If a data value is specified explicitly for a field of a protocol
message (such as the nonce N), occurrence of any other value in that field will result in
the termination of the protocol.

• Protocol completion. If a participant completes the sending/receiving of the last message
of the protocol, the participant accepts the authentication of the other participant and the
goals of the protocol.

3 Multi-Protocol Attacks
A multi-protocol attack is an attack against an authentication protocol that uses messages

generated from a separate protocol (not just another run of the same protocol) to spoof one of the
participants into successfully completing the protocol. In this section we present three examples
of multi-protocol attacks against secure protocols. These examples demonstrate attacks against

protocols that use public-keys for secrecy and against protocols that use public-keys for digital
signatures. Other examples of attacks can be found in [KSW97].

3.1 Example 1: Attacks Against Public-Key Secrecy
The protocol depicted in Figure 1 shows the original Needham Schroeder public-key

protocol (NS) [NS78]. The purpose of this protocol is to establish and authenticate
communication between A and B and to exchange copies of shared secret values (nonces). The
protocol proceeds as follows:

1. A requests a copy of B’s public key from the key distribution server, S.
2. S sends a signed message to A (hence the subscript PKS(S)) that includes a copy of B’s

public key. Such a message should be a signed public key certificate such as those defined
in PKCS#6 [RSA93a].

3. A then sends a secret message to B indicating A’s identity and a nonce Na. This message
is encrypted with B’s public key. (For efficiency purposes, modern implementations may
actually send a message encrypted with a message key, and send the message key
encrypted with B’s public key [RSA93b]).

4. B then requests A’s public key from the key distribution server.
5. The server responds with a certificate, as in step 2.
6. B sends a message to A including a new nonce Nb and A’s original nonce Na. The intent of

this message is to permit A to verify that B is active in this protocol.
7. Finally, A sends the new nonce Nb back to B to allow B to verify that A is active in this

protocol. Both participants can now use these nonces in subsequent communication, such
as the foundations of a session key.

Message 1. A → S : A.S.B
Message 2. S → A : S.A.{PK(B),B}PKS(S)

Message 3. A → B : A.B.{Na.A}PK(B)

Message 4. B → S : B.S.A
Message 5. S → B : S.B.{PK(A),A}PKS(S)

Message 6. B → A : B.A.{Na. Nb}PK(A)

Message 7. A → B : A.B.{Nb}PK(B)

Figure 1. Needham Schroeder Public-Key Protocol

Message 3. A → B : A.B.{Na.A}PK(B)

Message 6. B → A : B.A.{Na.Nb.B}PK(A)

Message 7. A → B : A.B.{Nb}PK(B)

Figure 2. Modified Needham Schroeder Public-Key Protocol

If we have a trustworthy PKI we can assume that steps 1, 2, 4 and 5 of the NS protocol can
be accomplished securely. This leaves us with only steps 3, 6 and 7 to worry about.
Unfortunately, messages 6 and 7 do not provide enough information to B to validate that A is
active in the current protocol run, but only to validate that A is active. Lowe [Low96]
demonstrated a successful attack against this protocol by interleaving messages from two
concurrent runs of the protocol with one untrustworthy participant able to masquerade as A to B.
Lowe then modified the relevant messages of the protocol (Figure 2) to provide a secure protocol
and provided a detailed proof of the security of this protocol.

Now consider the protocol in Figure 3. This protocol may have been designed by an
application programmer, or network service provide, who wanted to develop a certified message
receipt mechanism, or it could be a deliberately tailored protocol to break other authentication
protocol. In this protocol, user B sends a secret message consisting of data value M (this may
correspond to some message being sent to a higher level protocol on A’s machine), a nonce for
freshness and identification purposes and B’s name to indicate the source. A responds with a
signed copy of the nonce, hence the PKS(A) subscript, and B’s name. This provides a guarantee
to B that A is active and received the sent message. A quick examination of this protocol shows
that there is no authentication of B to A; other security problems may also exist. However, we
don’t care if this protocol is secure or not, since we are only going to use it to break the modified
NS protocol. The only important aspect of the protocol is that message i is exactly the same
format as message 6. This includes fields for sequence numbers, protocol step identifiers, protocol
identifiers, field data type indicators, checksums, etc.

As we have mentioned, Lowe provided a detailed proof of the security of the modified NS
protocol depicted in Figure 2. In Figure 4 we demonstrate an attack on this protocol through the
interleaving of messages from multiple protocol runs, specifically the tailored protocol of Figure 3
interleaved with the modified NS protocol. The attack proceeds as follows:

Message i. B → A : B.A.{M.Nb.B}PK(A}

Message ii. A → B : A.B.{Nb.B}PKS(A)

Figure 3. Tailored Protocol 1

Modified NS Protocol Tailored Protocol 1
Message 3. EA → B : A.B.{Na.A}PK(B)

Message 6. B → EA : B.A.{Na.Nb.B}PK(A)

Message i. EB → A : B.A.{M=Na.Nb.B}PK(A}

Message ii. A → EB : A.B.{Nb.B}PKS(A)

Message 7. EA → B : A.B.{Nb}PK(B)

Figure 4. Multi-Protocol Attack Against Modified NS

1. The intruder, EA, masquerading as A sends message 3 to B. The tailored protocol requires
nonce Na and M to have the same format.

2. The intruder will then receive the response message 6 from B.
3. The intruder, masquerading as B, forwards this message as message i for the tailored

protocol to user A.
4. A responds with message ii of the tailored protocol, which includes a publicly readable

copy of the nonce Nb.
5. The intruder grabs this value and creates message 7 and sends it on to B who then

validates the intruder’s identity as A.

The attack succeeds because the intruder is able to force A to decode the secret field Nb from
message 6 and to send it back to the intruder in a format that the intruder can read. Since message
i of the tailored protocol is formatted precisely the same as message 6 there is no way that A can
detect the attack.

3.2 Example 2: Attacks Against Public-Key Signatures
The protocol depicted in Figure 5 is based on the draft SSL-3 protocol. The intent of the

protocol is to enable server, B, with a signature only RSA certificate [RSA78], to authenticate
itself to A and to securely exchange data used to create a master encryption key for subsequent
communication.. All of the messages in this protocol are sent in plain text except for messages 4,
6 and 7. The protocol proceeds as follows:

1. The client initiates communication with the server by sending a client hello message that
contains a list of possible cryptographic and compression routines along with an initial
random number.

2. The server responds with a server hello message that contains similar information as the
client hello message except that it indicates specific cryptographic and compression
routines.

3. The server then sends a copy of its certificate(s), typically X.509.v3 certificates
[CCITT89].

4. In this version of the protocol, the server sends a plain text copy of a temporary RSA
public key (a modulus, exponent pair) and a signed hash of that key (the hash is an MD5

Message 1. A → B : Client Hello
Message 2. B → A : Server Hello
Message 3. B → A : Server Certificate
Message 4. B → A : K.{H(K)}PKS(B)

Message 5. B → A : Server Hello Done
Message 6. A → B : {M}K

Message 7. B → A : {Server Finished}K’

Figure 5. Proposed SSL-like Authentication Protocol

hash [Riv92] followed by a SHA hash [NIST93]). This message occurs if the server has
no certificate or has a signature only certificate; the later case is the one addressed here.

5. The server then sends a server hello done message.
6. The client sends a secret message (a pre-master key) encrypted with the server’s

temporary RSA public key.
7. The server responds with a server finished message that is a hash of the exchanged

information encrypted with the just negotiated values.

Note that message 4 includes a plain-text copy of the server’s temporary RSA public-key and
a digitally signed hash of that key. The client can use the server’s certificate and the signed hash to
authenticate the origin of the temporary public key. In message 6 the client uses this temporary
public key to secretly send some data (a pre-master key) to the server. Given the security of the
RSA algorithm the client can be assured that only the owner of the temporary RSA key can read
the message. Thus, an attacker who tries to replay an old message 4 from the server will not be
able to read message 6 from the client.

Now consider the protocol in Figure 6. This protocol may been designed by an application
programmer, or network service provide, who wanted to develop an certified message receipt
mechanism, or it could be a deliberately tailored protocol to break other authentication protocol.
In this protocol, user A sends a secret message consisting of some data value M to the server B.
The server responds with a signed hash of the message H(M) to authenticate receipt of the
message. Again, as with the first tailored protocol, we are not concerned about the security of this
protocol. However, upon completion the client is sure that the server received the secret message.

Message i. A → B : A.B.{M}PK(B}

Message ii. B → A : B.A.{H(M)}PKS(B)

Figure 6. Tailored Protocol 2

Proposed SSL-Like Protocol Tailored Protocol 2
Message i. A → B : A.B.{M=K’}PK(B}

Message ii. B → A : B.A.{H(M=K’)}PKS(B)

Message 1. A → EB : Client Hello
Message 2. EB → A : Server Hello
Message 3. EB → A : Server Certificate
Message 4. EB → A : K’.{H(K’)}PKS(B)

Message 5. EB → A : Server Hello Done
Message 6. A → EB : {M}K’

Message 7. EB → A : Server Finished

Figure 7. Multi-Protocol Attack Against Proposed Protocol

It is not unreasonable to believe that similar messages might exist in secure protocols. The
important concept of this protocol is that it forces the server to sign a hash of a message that it
did not create.

We can take advantage of this flaw in the protocol to attack the protocol of Figure 5 as
demonstrated in Figure 7. Here the intruder creates its own temporary RSA public key, K’ and
sends it to B who responds with a signed hash of the key H(K’). The intruder then stores that
value and waits for the client A to initiate communication to a site masquerading as the valid
server. During communication the intruder will send the hashed value of its own temporary RSA
public key to the client who will authenticate it as having come from the server. The client will
respond with a secret message encrypted with the intruder’s key. The intruder can read the
encrypted message and continue to masquerade as the valid server since the client’s only
authentication involves the checking of a spoofed digital signature and does not include any other
form of authentication. This attack forces B to blindly sign a message, something no secure
protocol should do.

3.3 Example 3: A Second Attack on a Public-Key Signatures
Consider the protocol depicted in Figure 8. This protocol is known as the Station-to-Station

(STS) protocol and was proposed by Diffie, van Oorschot and Wiener [DvOW92] and was
proven secure by Syverson and van Oorschot [SvO96]. In the discussion of the proof, Syverson
and van Oorschot state

“First, we may assume that honest principals are competent enough to not encrypt or
sign messages blindly, i.e., without any understanding of the message content.”

If we hold that this is true, the preceding attacks are not possible. However, here we present
a second attack on the SSL-like protocol that does not violate this claim. This attack is based on
an interleaving of an STS-based and SSL-like protocols; both of which can be shown to be
secure, and both of which have competent principals.

We make a few minor modifications and assumptions related to the STS-based protocol.
These are needed for the attack to work in this particular case, but do not detract from the
security of the protocol. With the proliferation of authentication protocols there is an increased
likelihood that a matching of message formats between protocols, as shown here, will occur, or
that an attacker could tailor a protocol as we have done. We assume that the digital signing found
in the STS protocol actually consists of a digital signing of hashed values in the same format of
the SSL-like protocol. This is a reasonable assumption since most cryptographic software
packages provide digital signatures only over hashes, and this form of signing is defined in many
of the standards. For this attack to work we assume that the RSA modulus and exponent of the

Message i. B → A : B.A.Rb

Message ii. A → B : A.B.Ra.Certb.{{H(Ra,Rb)}PKS(A)}K

Message iii. B → A : B.A.Certa.{{H(Ra,Rb)}PKS(B)}K

Figure 8. STS-based Protocol

SSL-like protocol and the Diffie-Hellman (DH) public values [DH76] all have the same number of
bits, (e.g., 16, 32, etc.). We also assume that neither protocol embeds any protocol identifiers or
other information (except for checksums) within the signed messages, and that all signing and
hashing use the same versions of the same algorithms. The STS-based protocol proceeds as
follows:

1. User B creates a DH public value Rb and sends it to A.
2. User A creates a DH public value Ra, the DH session key K and a token and sends the

public value, A’s certificate and the token to B. The token is the pair of public values
digitally signed by A and then encrypted with the DH session key. The signature actually
only occurs over the hash of these values, contrary to the original protocol specification.

3. User B reads and verifies the information from A. B then creates the DH session key K
and a token (similar to the token A created) and sends B’s certificate and the token to A.
Note that the order of the DH public values is reversed in our version of the protocol
compared with the original

Since A and B are the only entities able to digitally sign these tokens, and we assume that
they are competent in signing, the participants can successfully authenticate each other’s identity.
However, suppose that A is a malicious user that wants to masquerade as B. Consider the
following attack:

1. E receives a communication request from B with public value Rb.
2. E calculates two primes p and q to generate an RSA modulus n= pq. This is accomplished

by randomly generating DH public values until two reasonable primes are found, (the
density of prime numbers and the mathematical nature of the DH values guarantees that
this will not take an unreasonable number of computations). The DH public values are
generated by private values xp and xq which result in a private DH value x = xp + xq. E
uses this value to create Ra= n=pq. which is sent to B. E also uses Rb as an RSA public-
key exponent and using p and q generates a corresponding private RSA exponent.

3. B responds with its certificate and the encrypted, signed token. E, knowing the session
key K is able to obtain the signed pair {Rb,Ra}PKS{B} which exactly corresponds to a
signed version of E’s RSA public-key modulus and exponent.

4. E now has a message in the format of message 6 of the SSL-like protocol, signed by B,
and can proceed the same as the previous attack.

4 Understanding and Preventing the Attacks
The examples presented in the previous section demonstrate a broad class of tailored

protocols that can be used to attack existing, otherwise secure protocols. This section describes
the environment under which these attacks are viable and discusses techniques for preventing
these attacks. The two conditions that enable these attacks are:

1. The cryptographic services of the user’s machine must enable the use of a public key in
more than one protocol. Although it is not uncommon to assume that a user may have
multiple public keys for multiple levels of security, and possibly for multiple job functions;

it has previously not been seen necessary for a user to have a separate public key for every
authentication protocol that they use.

2. The second protocol which enables these attacks needs to be installed on the masqueraded
user’s machine and must have access to cryptographic services on that machine that utilize
the user’s public-key algorithms. As pointed out in the third example, this protocol need
not be a specific tailored protocol, but can be an authenticated secure protocol that
happens to share a message format with the attacked protocol.

Given that these conditions may exist in a wide range of systems and implementations of the
PKI, we need to explore methods that prevent this type of attack. If we make either condition
unattainable, we will succeed in blocking these attacks. The remainder of this section discusses
how we can thwart these attacks.

4.1 Kelsey, et. al. Design Principles
Kelsey, Schneier, and Wagner [KSW97] present the following five design principles for

protocols that "appear to render the chosen protocol attack impossible."
Principle 1. Limit the scope of the key. This addresses the first condition above. However,

we need some mechanism to implement this restriction. The current cryptographic
API's on the market do not restrict the use of certified keys, or for that matter any
keys. As long as the application has a handle for the key, it can use it. The API's have
to be designed to securely manage key use.

Principle 2. Uniquely identify each application, protocol, version, and protocol step. This
directly maps to condition two above. However, this inclusion of the identifier is not
sufficient if the tailored protocol does not follow this restriction, but rather matches
the attacked protocol.

Principle 3. Include a fixed unique identifier in a fixed place in the authenticated protocol. As
pointed out by Kelsey, Schneier and Wagner, this restriction prevents the multi-
protocol attack using protocols designed with this principle. However, it does not
prevent any such attack using tailored protocols that are not restricted to this design
limitation.

Principle 4. Tie the unique identifier to encryption in a way that forces the identifier to be
used for successful decryption. This technique prevents a blind signing protocol (one
that will automatically run the crypto-algorithm using their private key and then
responding with the result) from being used to decrypt secret messages. A more
generic approach is to force all encryption algorithms to add a checksum to the
original message prior to encryption, and to use it as a verification of decryption. This
forces encryption and decryption to be non-symmetric and will prevent this class of
attack. Note that we don't specify forcing the implementations to do this, but rather
insist that the algorithm specify adding the checksum, ensuring that all
implementations will comply.

Principle 5. Include support for these mechanisms in smartcards. This principle is not
actually a design principle, but rather a statement that infers that any device that
implements cryptographic protocols must be able to enforce restrictions that render
multi-protocol attacks impossible (or at least restrict their scope).

4.2 Addressing the Design Principles.
The design principles just discussed are not sufficient for stopping multi-protocol attacks

unless there is strong underlying support for the mechanisms. To address condition 1, and
principle 1, we need to limit use of a public key to a specific set of protocols. This limitation
requires one of the following:

• Inclusion of protocol identifiers in the public-key certificate, along with universal protocol
numbering and a secure mechanism for a protocol implementation to prove to the system
that it indeed implements the specified protocol.

• Cryptographic subsystem support for key limitations, where the user specifies which
protocols can use the specified keys. This places a large portion of the burden on the
user, who needs to understand the full ramifications of key sharing.

• Use the certified public key to certify new public keys that are generated for a single use
(as in [SH97]). The certified public key is then used in only the key distribution protocol,
and each new public key is used only once. A multi-protocol attack may still be possible
depending on the content and format of the newly distributed public-key certificate.
Examination of such attacks is left for future publication.

To address condition 2, and principles 2 and 3, we need to limit installation of all
cryptographic protocols. This limitation requires the following:

• Cryptographic subsystem support for protocol validation. Current cryptographic
subsystems require some form of authorization for the cryptographic modules (e.g., DES,
RSA, etc) and for public-key certificates (e.g., PKS#6), but then allow user applications
full access to the cryptographic subroutines. A malicious user application can then use
these routines to implement any tailored protocol. Unfortunately, this forces all protocols
to be installed within the cryptographic subsystem.

• A default identifier numbering mechanism (as in principles 2 and 3) that will uniquely
identify each run of the protocol. Note that this has to be used in conjunction with the
cryptographic subsystem support, otherwise a protocol can be tailored to use the same
identifiers. As such, these identifiers must be defined by the cryptographic subsystem and
not provided by the protocol user.

• Validation that there is no inadvertent flaw between two registered protocols that would
lead to a multi-protocol attack. This can be supported by a universal numbering system as
discussed above.

Without full consideration of these restrictions and conditions, multi-protocol attacks will be
possible. The public-key infrastructure needs to be designed with an end use in mind that includes
consideration of multi-protocol attacks and other possible public-key misuses.

5 Conclusions
The public-key infrastructure will be utilized to store and disseminate certified copies of

user’s public keys for use in secure transmission and digital signature verification. This paper
presented a class of attacks, multi-protocol attacks, which can be used to break otherwise secure

public-key based authentication algorithms. These attacks are possible when the public-key
infrastructure permits the use of a users public key in multiple protocols and when these protocols
can be installed on the user’s machine.

Some readers may feel that these attacks may not occur since they require the installation of
the attacking protocol onto the masqueraded user’s machine. The problem is that for everyday
user’s this is not an unlikely occurrence. A user who wants access to an interesting new network
service may be willing to download and install a new authentication protocol. If this protocol is
digitally signed and verified to be secure (as with the STS protocol) even cautious users may be
willing to install it. For network service providers there is interest in supporting a wide range of
protocols to reach the largest number of clients possible.

What has not been addressed in this paper is the security and reliability of the cryptographic
service modules on the user’s machines. There are several of these being developed a distributed
on the network. Not all of them are being developed with the same goals or levels of software
engineering quality. In addition, some of them may rely on the underlying operating system
security features, an assumption that may not be advisable.

References

[Alv97] J. Alves-Foss. The Failure of Formal Methods in the Analysis of Cryptographic
Protocols. University of Idaho Department of Computer Science, Technical Report.
LAL-97-06, March 1997.

[AN94] M. Abadi and R. Needham. Prudent Engineering Practice for Cryptographic
Protocols. In Proc. IEEE Symposium on Research in Security and Privacy, 122-136,
1994.

[CCITT89] CCITT, Draft Recommendation X.509. The Directory--Authentication Framework.
Consultation Committee, International Telephone and Telegraph, International
Telecommunications Union, Geneva, 1989.

[DH76] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions on
Information Theory, IT-22(26):644-654, November 1996.

[DvOW92] W. Diffie, P. van Oorschot and M. Wiener. Authentication and Authenticated Key
Exchanges. Deisgns, Codes, and Cryptography, 2:107-125, 1992.

[KSW97] J. Kelsey, B. Schneier and D. Wagner. Protocol Interactions and the Chosen Protocol
Attack. In Proc. Security Protocols - 5th International Workshop, 91-104, 1997
(LNCS 1361).

[Low96] G. Lowe. Some New Attacks upon Security Protocols. In Proc. 9th Computer
Security Foundations Workshop, 162-169, 1996.

[NIST93] National Institute of Standards and Technology, NIST FIPS PUB 188. Secure Hash
Standard. U.S. Department of Commerce, May 1993.

[NS78] R. Needham and M. Schroeder. Using Encryption for Authentication in Large
Networks of Computers. Communications of the ACM, 21(12):993-999, December
1978.

[RSA93a] RSA Laboratories. PKCS #6: Extended-Certificate Syntax Standard. Version 1.5,
November 1993.

[RSA93b] RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard. Version 1.5,
November 1993.

[Riv92] R. Rivest. The MD5 Message Digest Algorithm. RFC 1321, April 1992.
[SH97] B. Schneier and C. Hall. An Improved E-mail Security Protocol. In Proc. 13th Annual

Computer Security Applications Conference. ACM Press, 232-238, December 1997.
[SvO96] P. Syverson and P. van Oorschot. A Unified Cryptographic Protocol Logic. Draft,

December 1996.

	Multi-Protocol Attacks and the Public Key Infrastructure
	1 Introduction
	2 Authentication
	3 Multi-Protocol Attacks
	4 Understanding and Preventing the Attacks
	5 Conclusions
	References

	Table of Contents

