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Abstract

This paper details our experiences with successfully val-
idating a trusted device at FIPS 140-1 Level 4—earning
the world’s first certificate at this highest level.

Over the last several years, our group designed and built
a physically secure PCI card (the IBM 4758 [5]) con-
taining a general-purpose processor with crypto support.
However, for this device to function as a trusted plat-
form for secure coprocessor applications, we needed to
establish that assurance through independent validation.
We chose FIPS 140-1, since discussions of secure hard-
ware usually cite that standard, and Level 4, since the
weaker levels did not provide sufficient assurance for
many proposed applications.

Successful validation at Level 4 required withstanding a
fairly open-ended suite of physical attacks, and prepar-
ing formal modeling and verification of the internal
software—as well as meeting a number of other siz-
able challenges that were not initially apparent. In some
sense, our validation effort was an experiment to quantify
the design and work effort necessary to achieve this pre-
viously unachieved security assurance level. Since our
device is a programmable platform, we hope this work
substantially lowers the barrier for others to develop,
deploy, and validate secure coprocessor applications.

1. Introduction

Secure coprocessors enable secure applications in hos-
tile environments, by providing trusted sanctuary for the
computation and data storage that such applications re-
quire. However, for this technology to take root in prac-
tice a sufficiently high-performance device must exist
that provides general-purpose programmability by third
parties in a way that is both practical and secure, and
independent evaluation must establish that the device is
indeed trustworthy.

For several years, our group has been working on trans-
forming these research ideas into real security solutions
that can be applied in the real world. Other reports sum-
marize the design problems we encountered [12] and the
solutions we applied, [13] in order to bring this tech-
nology into existence. This paper describes our experi-
ences in assuring its security by earning the first success-
ful FIPS 140-1 Level 4 validation. Section 2 describes
the device we built (the IBM 4758 [5]). Section 3 de-
scribes the FIPS 140-1 standard, and validation process.
Section 4 presents our experiences with this process, and
Section 5 presents some observations on potential areas
to improve the process.

2. Background: Design and Validation
Goals

Many existing—and potential—computing applications
suffer from a vulnerability: adversaries may have direct
access to the hardware, software, and data storage used
by an application. The data at risk may include private
and public cryptographic keys; the software at risk may
include the implementation of the cryptographic algo-
rithms that generate and use these keys; and these adver-



saries may include the end user of the application. The
potential of both buildinghigh-performance programma-
ble secure coprocessors, as well as using such platforms
to build secure applications, have been long-standing ar-
eas of research, both at our laboratory (e.g., [1, 2, 10,
14, 15, 21, 22]) and elsewhere (e.g., [9, 17, 18, 19, 20]).

In order for secure coprocessing technology to enable
real solutions in the real world, we felt that a flexible,
generic platform must exist as a mass-produced product,
not just a hand-built laboratory prototype. This platform
must provide:

� physical security against tamper attacks;

� high-speed cryptographic performance;

� general-purpose programmability (so that parties
other than the manufacturer can develop and se-
curely deploy software for these devices, in quanti-
ties as small as one);

� and a security architecture that knits this all together.

However, bringing such a platform into existence only
solves part of the problem. Applications founded on
trusted platforms require assurance of that trust. The
FIPS 140-1 standard is commonly cited (e.g., [16]) as
a metric for the resistance of a device against physical
and logical attacks—for applications as basic as crypto-
graphic accelerators or as advanced as postal meters or
network auditors. Only Level 4, the highest level of this
standard, provides sufficient physical or software secu-
rity assurance for mid-to-high level applications, espe-
cially when potential adversaries may have direct access
to the device. However, prioir to our work, no device
had ever achieved this level of validation.

This situation created another challenge for us. By suc-
cessfully validating our platform against this highest (and
previously unachieved) level of security, we would break
new ground. But in addition, since our device is a pro-
grammable platform, its validation would substantially
lower the barrier for validation of third-party applications
that add custom software to our platform.

3. The FIPS 140-1 Standard

In order to establish well-defined computing metrics for
critical applications, the U.S. government established a
set of Federal Information Processing Standards (FIPS).
Many of these pertain to computer security. U.S. law

requires that government entities abide by these stan-
dards, and many private-sector and international en-
tities voluntarily follow suit. FIPS 140-1, Security
Requirements for Cryptographic Modules, is the Federal
standard used for tamper-resistant devices in general,
and cryptographic modules in particular. The U.S.
National Institute of Standards and Technology (NIST)
and Canada’s Communications Security Establishment
(CSE) jointly administer FIPS 140-1.

Unlike many other standards, FIPS 140-1 consists of two
components: the standard itself, a set of rules specifying
security of such devices, and a validation process, by
which independent, government-sanctioned laboratories
certify that a given module actually complies with these
rules. The FIPS 140-1 standard was drafted over sev-
eral years by a panel of government and private-sector
scientists and engineers (including one of the authors
of this paper). The FIPS 140-1 validation program went
into effect in 1994; the legal requirement that all modules
used in government applications be validated against this
standard went into effect in 1997.

Due to its nature as both a set of rules and an evaluation
process for adherence to these rules, FIPS 140-1 includes
several components:

� the original standards document [8];

� the Derived Test Requirements document [3], which
expands the standard into a lengthy sequence of
explicit validation tests;

� online implementation guidance, which expand and
clarify various aspects of the standard and the tests;
the accumulation of precedent and interpretation at
NIST, CSE, and the evaluation laboratories;

� and the various standards and draft standards from
FIPS, ANSI and others for cryptographic algorithms
and protocols, cited by the above components.

The number and diversity of these components can make
it difficult to gain a working understanding of the vali-
dation process.

Levels Different applications may require a differ-
ent cost-benefit tradeoffs for security. The FIPS 140-1
process acknowledges this by providing for multiple lev-
els of validation, specifying increasing levels of security
assurance. Level 1, the weakest level, requires some
design assurance, but does not require physical security.



Level 2 adds a basic level of physical and software se-
curity, and places some limits on the handling of secrets.
Level 3 was intended to require substantial physical se-
curity, and places substantial limitations on the handling
of secrets, and requires substantial software documen-
tation and review. Level 4 approaches impenetrability:
the physical security must resist any attack the evalua-
tion laboratory attempts, and the software documentation
must extend to a full formal mathematical model and for-
mal proof of security within that model.

Compliance vs. Validation Any developer can
claim “FIPS 140-1 compliance” with no further scrutiny.
However, only a module that has successfully under-
gone the tests and analysis performed by the independent
laboratory—and then reviewed by the U.S. and Canadian
governments—can claim “FIPS 140-1 validation.” The
rating a module earns is the lowest of its rating across a
suite of validation criteria, which itself can vary depend-
ing on what the module is: e.g., software-only, or single-
chip, or embedded multi-chip, or embedded multi-chip
with on-board hostile code.

Delta The FIPS 140-1 process also allows for delta
validation for modules that build on a currently validated
module. Such scenarios might include when a mod-
ule’s original vendor ports the architecture onto follow-
on hardware, or when an OEM vendor adds functionality
to an existing module from someone else. In such cases,
the vendor can work with the laboratory that performed
the original validation and avoid repeating tests and doc-
umentation that were part of the original validation.

4. Our Experiences

Lurking in the validation process are several tasks not
easily visible in a high-level overview (such as the chart
on the NIST web site and distributed by the validation
laboratories). In this section, we review some of the
principal tasks and tests that we went through as part of
our Level 4 validation. Section 4.1 addresses hardware;
Section 4.2 addresses software; Section 4.3 addresses
algorithm validation; and Section 4.4 addresses some
additional documentation and testing requirements. (We
stress, however, that only a brief overview is possible in
the scope of this report. The full documentation we pre-
pared for the process approached 1000 pages; the com-
plexity and length of just the software formal validation
exceeded two Ph.D. theses.)

4.1. Hardware

The most fundamental hardware requirement for a device
at Level 4 is that it has to be basically impenetrable: no
physical attack can reveal internal secrets. Our defense
strategy consisted of two primary techniques: tamper
detection (ensuring that the device detects all attacks) and
tamper response (ensuring that the device responds to
detected attacks by zeroizing any internal secrets before
they are exposed). Our security architecture paper [13]
contains more details.

An attacker might use many strategies to attempt to pen-
etrate our package. In our design process, we had to
anticipate as many of those ways as we could—with the
knowledge that, for Level 4, the evaluation laboratory
would also test as many potential attacks as they could.

The most difficult issue was quantifying the largest al-
lowable hole that could be made in the package without
triggering the tamper detection system. “No undetected
penetration at Level 4” naively translates to “any hole
must be detected.” However, for this requirement (and
testing) to be feasible, it also has to address how such
holes can be made. After much discussion, negotiation
and work with both the evaluation laboratory and NIST,
we reached a specification regarding the state-of-the-art
in penetration technology that all parties could then work
with.

Once we had the tamper barrier design set, we next ap-
proached the zeroization circuitry. It is very difficult
to guarantee that, under any tamper scenario, sufficient
energy will be available to overwrite the data to be ze-
roized. Consequently, we used an approach of keeping
secret data in static RAM—which we can quickly zeroize
by de-powering and then shorting its power connection
to ground. Ensuring that this RAM is always kept in
a state that will permit its fast, reliable, and complete
erasure was a complex task—especially since (from a
security perspective) “always” should mean “always”:
at any point in the life of the device, whether or not it is
executing, or even has host power.

It is actually quite difficult to guarantee that the contents
of RAM are really gone. There are several actions or con-
ditions that will cause the contents of RAM to imprint—
so the contents will remain, and may be recovered, even
after the power has been removed. Furthermore, for
the zeroization circuitry to be useful, something has
to make sure that the prevailing conditions will sup-
port that zeroization. That task is part of the responsi-
bility of the Environmental Failure Protection (EFP)



circuitry required at Level 4. Although the valida-
tion process does not require EFP circuitry—a device
could instead undergo exhaustive Environmental Failure
Testing (EFT)—this was not feasible in the design of our
device, and would probably be impractical for any device
containing more than one complex component. (Again,
our architecture paper [13] contains more details of our
EFP design.) As with direct penetration, the EFP design
had to be thoroughly tested and proved to the satisfaction
of the evaluation laboratory.

Once the physical security design was completed, the re-
mainder of the electronic design was relatively straight-
forward; however, the documentation sufficient for vali-
dation needed to be more thorough than the documenta-
tion for a typical industrial project.

During the design process, specific FIPS 140-1 require-
ments raised several special considerations. We added a
serial port to the processor to allow for the ability to load
plaintext keys, since (for Level 3 and Level 4) deployed
devices may not load plaintext keys via the common
bus. (However, our security architecture does not cur-
rently require this feature.) Other requirements—such
as needing two independent hardware actions to allow
bypass—were design details that had to be explained to
circuit designers who would otherwise have saved those
extra components.

So far, this section has focused on the hardware de-
sign issues for Level 4 validation. This focus overlooks
a significant and very complex part of our validation
effort: developing manufacturing expertise to build a
secure physical package like this on a production line.
Manufacturing feasibility raised another set of tasks that
were at least as complex as developing the design.

4.2. Software

Validation requires that the vendor prepare a security
policy. However, vendors may be surprised that the pol-
icy required in the validation process must conform to
a specialized rubric, and as a result may differ from the
policy documents a vendor might have used throughout
development. The classic motivation for constructing
a security policy—particularly for modules with sizable
software components—-is to provide a much simpler
blueprint to guide and then verify the implementation.
During design and development of our module, we used
such a concise policy. But we then found that the detailed
access-control policy acceptable for validation grew to a
considerable complexity—even though each access con-

trol decision this validation-policy expressed followed
from our more concise design-policy. (Our concise pol-
icy survived as a discussion of security invariants main-
tained by the device.)

Another potential wrinkle comes from the NIST practice
of publishing the security policy document for a mod-
ule that earns validation. For some vendors, this may
comprise another instance of the awkward conflict be-
tween the research goal of sharing knowledge and the
business goal of protecting intellectual property (such as
implementation details). A common solution is, after
the vendor prepares the complete security policy and the
evaluation laboratory determines that it satisfies the nec-
essary requirements, to partition the policy into “public”
and “proprietary” parts.

Finite State Machine FIPS 140-1 validation re-
quires that the vendor prepare a finite state machine
(FSM) model of all software. In practice, the FSMs for
software are expected to be essentially flowcharts, care-
fully structured to make it easy for evaluators to carry
out two distinct tasks:

� analyzing how the software implements the security
policy and preserves security invariants, and

� understanding the source code.

These two goals are not always consistent. As a conse-
quence, we often needed to add structure to the FSMs
that made sense for one goal, but seemed completely
irrelevant for the other.

Additional confusion arose from the terminology used
in software FSMs. In many parts of the academic soft-
ware verification community, “state” is the configura-
tion of the system; exuection of code transforms state.
However, the 140-1 validation process as practiced in-
verts these terms: “state” corresponds to execution of a
portion of software, and another term must be invented
for the configuration of the system that is transformed
during these “states.”

The FSM requirements for FIPS requires annotated di-
agrams, documentation of the states, state transition ta-
bles, and annotation of source code according to the
FSM. Coordinating and cross-referencing these items
introduces a great deal of complexity—which can be re-
duced by (as [4] noted) investing some work in the proper
tools. (We built various custom tools based on LATEX.)



Formal Mathematical Model and Verification
Perhaps one of the most-feared requirements for Level 4
validation is formal mathematical analysis of module
software. This process consists of three basic vendor
tasks:

� building a formal mathematical model of how the
system behaves;

� building a formal specification of security invariants
(e.g., in terms of this model, what system behavior
or condition is “secure”);

� then proving that these security invariants remain
true under system behavior, as expressed in this
model.

The fact that no one had successfully completed this re-
quirement before added to the challenge; the process was
new not just to us, but also to the evaluation laboratory
and to NIST and CSE.

Even in describing the requirements, we stumble over the
above-noted problem with the FIPS FSM use of the term
“state.” Many software verification colleagues measure
verification complexity in terms of the number of system
configurations, which they term “states.” But the number
of possible system configurations is not a function of the
number of FSM-states; a system with 100 FSM-states
may only have 100 possible configurations, or 2100, or
more. (It all depends on the size of the system state
and how the FSM transitions change it). Consequently,
effectively communicating the complexity of verifying
software modeled with a FIPS FSM was a continual
problem.

Our Plan Initially, we planned a linear attack. First,
we would abstract the FSM to a mathematical model de-
scribing the relevant system conditions. Then, we would
abstract the security invariants that drove our policy into
statements within this model. We then would embed the
model in a mechanical theorem prover, and embed the
invariants as proposed assertions in the prover. Finally,
we would run the prover and obtain the proof of security
within the model. (A preliminary report [11] provides
details of our initial strategy in developing the mathe-
matical model and expressing the security solutions.)

Strictly speaking, the FIPS process does not require me-
chanical verification. Although (in retrospect) a hand-
proof would have been much easier, we were concerned
that a hand-proofhad too a high a chance of leaving flaws

undiscovered. Since it was designed and developed by
hand, the system appeared correct to a human eye. But
history is full of flawed systems that appear correct; the
impartiality and rigor of mechanical verification would
provide significantly more assurance.

Formal verification offers two main approaches: model
checkers search the space of reachable configurations
and report any counter-examples to a given assertion; me-
chanical theorem provers produce a formal (and lengthy)
proof that a given assertion about a model is true. We
opted for theorem-proving because we were fairly confi-
dant that our design and implementation were sound (so
we would not need any counter-examples to help debug
it), and because the existence of a checkable proof would
provide more assurance than a simple statement of “no
counter-examples were found.” Because we had access
to an existing knowledge base for it, we chose the ACL2
prover [6] (after clearing the choice with our evaluation
laboratory). A follow-on paper providing a fuller treat-
ment of this model, and its embedding in the mechanical
theorem prover, is in preparation.

Target Software and Security Properties As we
have discussed elsewhere [12], many subtle and not-
so-subtle security issues arise when designing a generic
secure coprocessor platform that must satisfy constraints
such as:

� an untampered device must always be able to prove
that it’s the real thing, doing the right thing;

� each device has multiple software layers—
security configuration/control, operating system,
application—which each may come from a different
developer;

� these software developers do not trust each other
any more than they have to;

� each rewritable software layer may be faulty, or
even malicious;

� the hardware vendor manufactures and ships
generic devices, and has no idea how any particular
instance of device will be configured and controlled.

We address these constraints with a security architec-
ture [13] that, besides the hardware protections against
physical attack, includes security configuration/control
and power-on self-test software, careful positioning of
this software within the lifecycle of the device, and spe-
cial security hardware added to the device. The security



configuration/control software evaluates commands sent
from various external, remote officers (or imposters),
which request configuration changes: to device software
(including the security configuration/control software),
to its officer set, to how its officers are authenticated.
This control software must also respond correctly to var-
ious non-software events—such as power interruptions,
hardware failures, and tamper response–which may oc-
cur at any point during execution. When appropriate, the
control software must pass control to officers’ programs.

The goal of the mechanical verification was to val-
idate that this architecture—hardware, software, and
lifecycle—achieved the security goals, over the threats,
failures, and other system behavior expressed in the
model.

What Happened When we actually carried out our
plan, the linear sequence of tasks became quite iterative
instead. The abstraction from the FSM to the mathe-
matical model turned out to be very difficult to manage,
so we reworked both in order to keep this abstraction
much closer to the identity function. Both mapping of
the security goals into invariants within the model, as
well as producing the mechanical proof proved more
challenging than expected, and required far more iter-
ations of FSM and model tuning than our naive linear
sequence. For example, establishing that certain invari-
ants held over hardware events such as power or FLASH
failure, or tamper response, required that these transi-
tions be explicitly present in the FSM—even though one
naively might think of the software FSM showing soft-
ware behavior only. (As one consequence, the time we
invested in building our documentationo tools proved
worthwhile, since these tools made it easy to keep every-
thing correlated despite the fluidity introduced by the
continual iterations.)

Results As we expected, formally specifying all de-
vice behavior—especially when the “behavior” includes
consistency enforcement across failures—proved a rig-
orous task. Nevertheless, we were somewhat surprised at
the way time and temporal sequences showed up when
formalizing the security invariants. In retrospect, this
makes sense: security bootstrap needs to insure not that
a state now is good, but that any state now is taken to
a good state by the time anyone (even an adversary, in-
cluding a program loaded by a mistrusted officer) can
notice.

The verification succeeded—in fact, we discovered many
instances where we had unnecessarily redundant tests.

4.3. Algorithms

For the FIPS 140-1 validation process, any “official
FIPS” cryptographic algorithms the module uses require
additional scrutiny. These algorithms include cryptosys-
tems such as DES, DSS/SHA-1 and (very recently) RSA;
and any random number generators: including routines
that provide random bits from hardware sources, as well
as algorithms (in hardware or software) that amplify
seeds into pseudorandom sequences.

This scrutiny falls into three categories. First, the vendor
must document every use of these algorithms, where the
code is, where the keys are, how the keys get generated,
and how they leave the boundary. Second, the vendor’s
implementation of any RNG, as well as each approved
cryptographic algorithm, must pass a suite of validation
tests administered by the evaluation laboratory. Finally,
each time the module runs, each algorithm in this cate-
gory must pass specific tests (distribution tests for RNG;
key consistency tests for public key generation; known-
answer tests for the others) before being used.

Experience with Algorithm Tests Complaints
about the cryptographic algorithm validation process ap-
pear popular among vendors (judging from anecdotes
at the FIPS 140 workshop in the spring of 1998). Our
experience confirms this impression. Overall, we lost
about a month of calendar time due to unnecessary itera-
tions between us and our evaluation laboratory trying to
debug—via long distance—our code, the testing tools,
and the test data. We failed at least one iteration of
DSS testing because of typographic errors in the data
formatting. The inexpressiveness of the DSS validation
tool also proved frustrating—we also failed one iteration
because, where the standard was ambiguous on some mi-
nor implementation point that was irrelevant from secu-
rity and usage perspectives, we chose an option different
from the option the test tool chose. (However, this latter
data—the reason the test failed—was unavailable.) We
revisit this issue in Section 5 below.

Experience with Randomness The FIPS 140-1
standard specifies that the output of a module’s random
number generator must satisfy a set of statistical tests
(showing good distribution), satisfy an on-going contin-
uous test (showing that the generator never gets stuck),
and must be filtered through an approved PRNG before
being used as key material.



Our device harnesses an internal source of thermal noise
as a source of random bits that easily satisfy the required
tests (and have the additional advantage of being unpre-
dictable, thanks to physics). We then filter this through
one of the approved PRNGs before using these bits as
key material. Much to our surprise, we found that (dur-
ing the validation process) the hardware noise was not
considered an RNG—so we needed to revise our soft-
ware to apply the statistical and continuous tests to the
PRNG as well.

4.4. Additional Tasks

The FIPS 140-1 standard was written for a traditional
cryptographic module: a box that provides cryptographic
services. As a consequence, much of the standard and
supporting documentation is written using terms and de-
finitions whose meanings are obvious for such a tradi-
tional module. However, fitting a module (such as ours)
that pushes beyond the traditional boundaries into this
rubric is not always an obvious task. For such modules,
a task that requires quite a bit of thought—but which
does not appear as an explicit work item in the standards
documents—is mapping the standards terminology into
the module terminology.

Decisions on this mapping must precede many subse-
quent validation and documentation tasks. For example,
the FIPS 140-1 documents establish many rules for the
documentation and handling of security-relevant data
items (SRDI). One of the above-mentioned mapping
tasks is: deciding what actually constitutes an SRDI,
in the context of a particular module. This decision then
drives subsequent work, such as documenting how each
SRDI is accessed and/or modified in the context of which
official module services.

The FIPS 140-1 process also defines various rules for
how officers and users get authenticated, and what hap-
pens in various scenarios, such as “user logs on, then
walks away.” The mapping needed to be complete be-
fore we could document each of these items, and how
authentication complied with the FIPS requirements.

Operational Testing An unexpectedly sizable vali-
dation task was operational testing. Planning and carry-
ing out this task required integrating knowledge of many
pieces of the design, including: the source code; the
above mapping from system to standard; the error docu-
mentation; the authentication documentation; the FSM;
and the applicable FIPS rules. In our case, this data

was not even stable until late in the validation process,
delaying the start of this task.

For each item in the lengthy set of testing requirements
from the evaluation laboratory, we then needed to:

� interpret what the test means for the device;

� verify that the device really satisfies the test;

� prepare a written plan for the evaluation laboratory
on how we propose to demonstrate that the device
satisfies that test;

� once the proposal is approved, build (and test) au-
tomated tools and scripts to perform this demon-
stration (including demonstrating every error con-
dition);

� then carry out this demonstration, live.

In theory, much of FIPS operational testing could merge
with the testing a vendor carries out anyway during the
course of product development. However, in practice,
the operational testing depends highly on the above map-
ping of standard to product—and this mapping may not
be clear until much of the product testing is already com-
plete.

5. Beyond FIPS 140-1

This development and validation work gave us a unique
exposure to the FIPS 140-1 standard and process. One
cannot go through such a process without analyzing the
process itself. In this section, we quickly present some
suggestions for possibly improving the standard and the
validation process in its next revision, FIPS 140-2.

Not Just Crypto Boxes As we have noted, secure
coprocessors are finally migrating from research proto-
types to commercial products. Besides our program-
mable device, recent examples include the new genera-
tion of postal meters [15, 16, 22], and various proposed
rights-management tokens. We suspect many more will
emerge. [10]

Work in this area has long cited the FIPS 140 standard
as a specification of tamper resistance—since nothing
else exists. However, FIPS 140-1 was clearly aimed at
only those tamper-resistant modules whose purpose was
to perform some suite of cryptographic services. But



in order to apply to these new generations of devices,
FIPS 140 needs to be broadened to tamper-resistant mod-
ules whose purpose is something else, such as “securely
load and execute various programs” or “maintain a mon-
etary balance and modify it only under appropriate con-
ditions.”

This aim, coupled with the direction of technology, leads
to a mismatch that may only grow worse. A revised
standard might avoid this mismatch by generalizing the
notion of what a secure module might do. For exam-
ple, the standard could generalize SRDI to be not just
cryptographic keys, but any data item critical to se-
cure and correct operation of the module, and gener-
alize the security properties that a module enforces for
its SRDI beyond “keep it secret.” (Natural examples al-
ready exist for integrity-only SRDIs—and requirements
for currently unforeseen SRDI properties will undoubt-
edly emerge with new modules.) The revised standard
might also generalize the notion of “users” and “officers”
beyond “someone in the same room as the module.” For
example, it is very natural to authenticate a module ser-
vice request using a public-key signature—but the signer
could very well be an organization (e.g., PKI certificate
authorities are usually not people) at some distant point
in space and time.

Context of Module FIPS 140 intends to specify
module security assurance levels. But in many cases,
the security of a module depends on the broader context
of its use—not just on the module itself.

For example, if a module M authenticates its officers
using public-key cryptography, then these officers have
private keys somewhere other than moduleM . The re-
vised standard might address how officers control and
store these private keys—since the security of M de-
pends on these issues.

For another example, if the assertion that the design of
some module is tamper-resistant is to be meaningful,
then means must exist to assure some relevant set of
users/officers that a particular instance of this module
genuinely meets this design, and has not been subject
to tamper. How does an officer know it’s really an un-
tampered module when he first opens up the box from
the factory? If a module is permitted to suspend certain
protections when it is returned to a secure factory vault,
how does the module itself determine when it is back in
the factory? How does the factory authenticate that this
is a real, untampered module?

A revised standard could address these issues by consid-
ering broader issues of the lifecycle of the device, and
its tamper-assurance goal. For example, it could require
that the vendor partition physical locations into “trusted”
and “untrusted” sets, and then document:

� that the tamper protections are enabled before a
module transitions from a trusted to an untrusted
place;

� that these protections remain enabled throughout
the module’s stay in the untrusted place;

� that methods exist to authenticate that a genuine
module is untampered whenever it transitions from
an untrusted place to a trusted place;

� and that methods exist for a “relevant party” to au-
thenticate an untampered module as such, even in
an untrusted place.

Although not required by the standard, our architecture
and our validation documentation explicitly addressed
these lifecycle issues.

Tamper Resistance for Software FIPS 140 pro-
vides various levels of assurance that a module can resist
tamper. Consequently, the FIPS 140-1 process specifies
various tests and rules regarding how the module hard-
ware resists penetration attempts.

However, FIPS 140-1 does not specify a similar set of
rules for resisting software penetration. Admittedly,
software penetration (offense and defense) is an ever-
evolving field. But (in addition to preserving the software
design and verification requirements of FIPS 140-1), per-
haps FIPS 140-2 might explicitly address some basic
principles. For example, validation might require that the
vendor demonstrate how maliciously malformed or out-
of-spec input cannot compromise module security; how
interruptions (such as maliciously timed power failures)
cannot compromise module security; and what precau-
tions exist to prevent compromise due to the unforeseen
bugs (such as wild pointers) that almost always exist in
complex software.

Since this level of implementation detail is largely or-
thogonal to the security architecture, it would make
more sense to require this level of analysis in addi-
tion to the formal verification. Perhaps the highest level
of FIPS 140-2 could also require resisting some degree
of free-form software tiger-team attack, as FIPS 140-1
Level 4 does for hardware.



(Our FIPS 140-1 Level 4 module was developed in con-
tinual consultation with our own software penetration
team; although not required, we included in our vali-
dation submission an explicit analysis documenting our
module’s resistance to this family of attacks.)

Software Engineering Practices History shows
that security vulnerabilities in software often result from
bugs, and that good software engineering practices can
reduce the chance for such bugs. Consequently, we rec-
ommend that FIPS 140-2 be broadened to include more
explicit assurance about software development and test-
ing practices not explicitly related to security.

For example, FIPS 140-2 might require the vendor to use
some subset of standard software engineering practices,
such as documented unit testing, along with a good test
harness and regression testing; code reviews; structure
charts and data flow diagrams; function-point analysis;
defect and resolution tracking; and source code config-
uration management. (We used many of these practices
in the development of our module anyway.)

Low-Level Languages FIPS 140-1 requires that
software be written in a high-level language, with rare
exceptions. However, these exceptions did not explic-
itly include several areas where engineering dictates that
using assembly language is the best approach.

In particular, consider module software that executes on
an internal embedded processor. For initial power-on
self tests, for transitions between software components
before an operating system has been established, and for
many components of standard operating systems, code
needs to work in CPU modes that high-level languages
have difficulty accommodating.

A revised standard might broaden the areas where low-
level language is permitted (e.g., to explicitly include
the above), but require that such portions of code be ade-
quately pseudo-coded in the accompanying documenta-
tion (to reconcile this broadening with the need to make
the code easy for the evaluation laboratory to analyze)

Random Number Generation We strongly recom-
mend that FIPS 140-2 reflect the fact that high-quality
hardware RNGs exist. If the output of a hardware RNG
is still to be filtered first through a PRNG, we recom-
mend that FIPS 140-2 at least encourage the PRNG to be

reseeded as often as possible from the hardware RNG (in
order to maximize the entropy). (We do this anyway.)

A “cryptographically secure RNG/PRNG” is the build-
ing block for many protocols, and users will assume that
a RNG/PRNG that meets the FIPS standard is indeed
cryptographically secure. A revised standard might take
more steps to ensure that this is true. For example, if
FIPS 140-2 broadens to include hardware RNGs and/or
additional (unspecified) PRNGs, we recommend the ad-
dition of a test or requirement that provides assurance re-
garding the unpredictability of these bits. If FIPS 140-2
preserves the current 140-1 interpretation that “the only
RNG is one of these three PRNGs,” we recommend dis-
pensing with the statistical tests. (In this context, the
statistical tests only measure the quality of the PRNG
algorithm, which makes no sense if one is constrained
to a set of approved algorithms.) Finally, a truly ran-
dom source of bits will fail some of the FIPS 140-1 tests
occasionally. We recommend broadening FIPS 140-2 to
explicitly address this fact.

Algorithm Testing We recommend that FIPS 140-2
revisit the test tools to eliminate the unnecessary iter-
ations that we and others have faced. Specifically, we
recommend that the test tools (with source code) be avail-
able to the vendors themselves, so that they can check
their own work before submitting to the validation lab.
(If that is not possible, then perhaps a FIPS 140-2 au-
thority can publish sufficient examples of all the tests in
the algorithm validation.)

Level 4 Penetration As we noted, the FIPS 140-1
Level 4, specification that “any physical penetration must
be detected” has proven to be impractical to assure and
test. We recommend that the FIPS 140-2 process estab-
lish a fixed printed specification for the maximum unde-
tected penetration that is allowed, and any special con-
ditions relevant to that penetration (i.e. conductive/non-
conductive drill or probe, etc).

Level 31

2
A vast difference exists between the phys-

ical security necessary for a multi-chip module to pass
FIPS 140-1 Level 3, and the physical security necessary
for FIPS 140-1 Level 4. We are concerned that Level 3 is
currently too soft, but Level 4 may be to difficult/costly
for applications of low to moderate value.

We recommend that FIPS 140-2 fill the gap between
Level 3, where simply potting the unit may fully suffice



as physical security, and Level 4, where the module must
detect and respond to virtually any penetration. To this
end, we propose a “Level 3 1

2
” tamper detection envelope

as in FIPS 140-1 Level 4, but with less stringent require-
ments. For example, if Level 4 ends up with a maxi-
mum sized penetration detection requirement ofX, then
Level 3 1

2
should have a maximum sized penetration de-

tection requirement of approximately 10X to 100X, and
a significant reduction of the stringency of testing. This
will permit designers to produce a good, full-featured,
design without the extreme manufacturing requirements
that FIPS 140-1 Level 4 now entails. (Rather than adding
a new level, another alternative might be to increase the
physical security requirements of FIPS 140-2 Level 3 to
those described here for Level 3 1

2
.)

Power Analysis One often encounters reluctance in
discussing power analysis due its rumored part of clas-
sified TEMPEST. However, since power analysis has
become a well-known public topic [7], a revised stan-
dard should have a clear specification about EM leakage
and how testing will be performed (as with the current
EMI requirements), or a statement that this is beyond
the scope of FIPS 140. (However, given the success of
power attacks, it seems that it should be included some-
where in the rubric.)

Terminology We also recommend that a revised stan-
dard clarify two areas of potentially confusing terminol-
ogy.

� As noted above, the use of “state” in FIPS FSMs
needs to be distinguished the use of “state” by the
software verification community.

� FIPS 140-1 requires role-based authentication at
the lower levels and identity-based authentication
at the upper levels. The relatively recent security re-
search area of role-based access control (RBAC) is
similar to the former in name. However, in content,
RBAC is sufficiently similar to the latter (basing ac-
cess control on both the identity and the role of the
subject) that colleagues familiar with RBAC would
sometimes transpose the FIPS 140-1 terms.

6. Conclusions and Future Work

For a long time, our group has believed that secure co-
processors could help solve many real security problems

in the real world. Our work in earning the first-ever FIPS
140-1 Level 4 certificate completes the foundation for
this vision: a mass-produced programmable coproces-
sor exists, whose trustworthinesshas been independently
established.

The next task, for ourselves and for our research part-
ners, is to develop application software that transforms
this platform into solutions for these problems. As we
address this task, the importance of the FIPS validation
becomes clearer: these solutions require a trusted plat-
form, and there is no more effective way to establish this
trust than by withstandingindependent validation against
the most stringent existing standard.

We are also using this experience as a springboard for
other validation work: exploring validation of other de-
vices and projects against additional security standards;
exploring the more fundamental problem of how to pre-
cisely express security requirements for complex, real-
world systems; and exploring FIPS 140 delta-validations
for variations of our platform, and for our platform in
conjunction with third-party applications.

As noted earlier, just as making it easier for third-party
developers to build and deploy secure coprocessor appli-
cations motivated our building a programmable secure
coprocessor, making it easier for these developers to ob-
tain validated applications motivated our validation of
this underlying platform. One measure of the success of
our effort will be how many follow-on applications come
into existence and earn FIPS 140 validation. It would be
gratifying to cite some significant fraction of FIPS 140
certificates as based on this work.
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