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Abstract

This paper demonstrates thatcompositionand refinement
techniques are a promising solution for performing rigor-
ous, security architecture trade-off analysis. Such analysis
typically occurs in one of two forms: comparing two archi-
tectures for implementation and determining the impact of
change to an implemented architecture. Composition and
refinement techniques reduce the overhead of such analysis
significantly over traditional formal methods by facilitat-
ing specification and proof reuse and by providing powerful
reasoning tools.

In this paper, we propose an approach for applying com-
position and refinement techniques to trade-off analysis.
Our approach relies on a formal composition and refine-
ment framework, which is not described here. We describe
the approach and apply it to a simple example. We conclude
with lessons learned and future work.

1 Introduction

Security engineers routinely face the following questions:

� Given two or more candidate security architectures,
which is better?

� How will modifying subsystem x affect my system’s
security posture?

Both questions require some sort of trade-off analysis. In
the first case, the engineer compares two proposed archi-
tectures and trades off the strengths and weaknesses of one
against the other. In the second case, the engineer trades
off the strengths and weaknesses of the proposed changes
against the strengths and weaknesses of the existing imple-
mentation. The winner in both cases offers the best overall
balance of concerns.

Several factors weigh into a security architecture trade-
off analysis. A critical factor is the security vulnerability

assessment. To make a competent decision, the engineer
must identify and understand the potential vulnerabilities
of the proposed architecture. Another factor is the way
in which the architecture satisfies its security obligations.
This contributes to the determination of assurability. Other
factors include cost, ease of maintenance, etc.

Most factors are established informally, but others, such
as the vulnerability assessment, require a rigorous investi-
gation. Payne, Froscher and Landwehr [6] propose an ap-
proach based on assumptions and assertions that offers an in-
formal, systematic exploration for vulnerabilities. For each
system component, assertions specify how the component
will behave, and assumptions specify what the component
expects from its environment. Vulnerabilities occur within
a component when environmental assertions fail to validate
the component’s assumptions. The approach extends the
investigation beyond the technical boundary of a computer
system to include assumptions and assertions about phys-
ical security, personnel security, communications security
and so on. The engineer can use the assumptions/assertions
approach to answer questions such as how does each candi-
date rely on the rest of the system? and what are the effects
of change?

Although the process of matching assumptions against
assertions is systematic, the assumptions/assertions ap-
proach does not attempt to verify the accuracy of the as-
sertions and assumptions themselves. In other words, it
cannot answer with certainty the question: does the compo-
nent satisfy its security obligations? If the trade-off analy-
sis demands that level of rigor, then we must rely on other
tools. Formal methods are a natural choice, but traditional
tools require significant reasoning support to be practical for
trade-off analysis. In particular, the analysis of two similar
architectures demands support for specification and proof
reuse.

This paper demonstrates that formal composition and re-
finement techniques, such as described by Abadi and Lam-
port [1, 4] and by Shankar [8], can support cost-efficient,



rigorous security architecture trade-off analysis.1 The tech-
niques facilitate reuse of specifications and proof, which
reduces the overhead of evaluating similar candidates. They
are component-based, that is all reasoning occurs at the gran-
ularity of the component. A component can be “swapped
out” as long as its replacement satisfies the same require-
ments. This supports ease of change. The techniques offer
powerful reasoning tools for reducing a problem to manage-
able pieces. Finally, their formal foundation lets the impact
of change be realized quickly, i.e., proofs break.

We propose an approach for applying composition and
refinement techniques to security architecture trade-off anal-
ysis. The success of our approach relies on a formal compo-
sitionand refinement framework, which we will not describe
in detail here. The framework is derived from Fine [2] and
is based heavily on the work of Abadi-Lamport [1, 4] and
Shankar [8]. It is implemented in PVS [5] and consists of
about two dozen theories.

Section 2 describes the primary reasoning tools provided
by composition and refinement. Section 3 discusses how
these tools are used in our approach. Section 4 demonstrates
the approach on a simple example.

2 Composition and refinement

Composition and refinement are complementary ap-
proaches for demonstrating that a system satisfies its critical
properties.

Composition supports bottom-up reasoning about the
system in the same way that modular software design sup-
ports its bottom-up construction. Composition techniques
let us model the system by combining the models of its
components. To reason about the system, we show that the
component properties together imply the property desired
for the system. The technique supports “plug-and-play”:
each component can be replaced as long as its replacement
satisfies the component’s properties. In addition, since the
component analysis depends only on that component, the
analysis is reusable when the component is used in a new
context.

Refinement, on the other hand, supports top-down rea-
soning. We start by defining an abstract model of the system
and demonstrating that it satisfies certain properties. We
then refine the abstract model — by adding more detail —
until we reach a model that corresponds more closely to the
implementation. It is usually easier to prove desired system
properties of the abstract model than for a more detailed
one; on the other hand, it is easier to relate the more detailed
model to the implementation since it includes more design
details. Refinement techniques let us show that properties

1This research was supported by the Maryland Procurement Office
under Contract MDA904-97-C-3047.

demonstrated for the abstract model are preserved in its re-
finements. Thus, we only need to analyze the property at
the abstract level where the analysis is easiest.

Combining composition and refinement, then, provides
a powerful reasoning tool for complex systems.

The following sections describe the basic building block,
the component, and tools for reasoning about composition,
property satisfaction and refinement.

2.1 Component

Abadi-Lamport specify a component using the following
normal form

9x : I ^2[N ]v ^F (1)

where

� x denotes variables that are internal to the component.

� I is a state predicate characterizing the initial state,

� N is an action predicate characterizing valid state
transitions,

� v characterizes the “protected” state information that
may be changed only byN -transitions,

� [N ]v denotes the set of transitions that are either anN -
transition or in which the state described by v remains
unchanged,

� 2[N ]v means all state transitions are in [N ]v, and

� F is a fairness condition that is the conjunction of
“weak” and “strong” fairness conditions on steps com-
prisingN .

In order to reason about their composition or refinement,
all components must be defined on a common state. The
preferred approach is to define a state structure that includes
an access function for each component’s state. The com-
ponent is then defined in terms of its access function. This
approach is preferred because it allows new components to
be added to the common state without affecting the analysis
of existing components.

2.2 Composition

The basic idea of composition is

� the composed components start in a common state
that is acceptable to all of them,

� the components take turns performing transitions, and

� the fairness conditions of all the components are sat-
isfied.



Abadi-Lamport define composition as simply conjunc-
tion. Ignoring quantification, the composition of compo-
nents 1 through n is defined as

n\

i=1

Ii ^2[
n[

i=1

Ni]hv1;:::;vni ^
n\

i=1

Fi (2)

under the assumptions that Ni ) v0
j = vj ; 8i; j : i 6= j.

That is, each Ni must guarantee that the protected informa-
tion of other components is unchanged. When defining a
component, an analyst is not — and should not be — con-
cerned with protecting the state information of components
with which it might later be composed. Thus, a typical N
may not satisfy these assumptions. In other words, it is pos-
sible to specify a composite in which some vj is explicitly
violated by Ni. So N must be augmented by hand during
composition.2

We use compose(S) to denote the composition of com-
ponents in set S. A composite system is itself considered a
component.

2.3 Satisfaction

A component specification defines a set of behaviors, or
sequences of transitions [1]. The term mprop(c) denotes the
set of behaviors for component c such that each behavior
starts in an initial state for c, engages in transitions for c and
satisfies the fairness conditions. The mprop of a composite
is the intersection of the mprops of its components.

A property is merely a set of behaviors. We say that
component c satisfies some desired property P , written
satisfies(c; P ), if all of the behaviors in mprop(c) occur
in P . This is called unconditional satisfaction. If c is a
composite, we can break the proof into a subproof for each
of the components.

We can also perform conditional satisfaction: a compo-
nent satisfies P only if certain assumptions hold, written
assum satisfies(c; P ). In this case, we prove that c satis-
fies P given the its assumptions. If c is a composite, we
can reduce the proof to showing that one of c’s components
conditionally satisfies P and that the assumptions of that
component are justified by all components with which it
is composed. Conditional satisfaction results can be reused
when the component is composed with different peers. Only
the justification of assumptions must be redone.

2.4 Refinement

Component a is a refinement of, or implements, compo-
nent b (written implements(a; b)) if mprop(a) � mprop(b).
Refinement preserves satisfaction. If satisfies(b; P ) and

2The framework we used overcomes this limitation.

implements(a; b) then satisfies(a; P ). implements is also
transitive.

Typically, either a or b (or both) is a composite, so tools
are provided to decompose the proof of implements(a; b)
into manageable pieces. There are four cases of refinement
decomposition:

1. 1 – 1 — In the simplest case, where neither a nor b is
a composite, we can reduce the proof to three cases:

� every initial state of a is an initial state of b,

� every transition for a is allowed by b, and

� every behavior in mprop(a) satisfies the fairness
conditions for b.

2. many – 1 — If a is a composite but b is not, then
we treat like the 1 – 1 case, except that the sec-
ond step is rewritten as: the transition must be per-
formed by some component in compose(S) and al-
lowed by all other components in compose(S), where
a = compose(S).

3. many – many — If both are composites, the proof
should be decomposed into subproofs of types 1 – 1
and many – 1. This is done by defining a set of com-
ponent pairs — each pair consisting of a specification
component and an (possibly composite) implemen-
tation component — and reducing the main imple-
mentation proof to a subproof for each component
pair. If each subproof depends entirely on its own
component pair (a pure decomposition), we isolate
each subproof for quick resolution. If a subproof re-
lies on other components (an impure decomposition),
we break the main implementation proof into a set
of basic obligations, which are derived from Abadi-
Lamport’s Decomposition Theorem [1]. An impure
decomposition is sometimes necessary if the granu-
larity of transitions changes from one specification
level to the next.

4. 1 – many — This is an unusual case, but if the refine-
ment is correct, it may be treated as a pure decompo-
sition.

It is beneficial to combine refinement analysis and com-
positional analysis. For example, if the abstract component
is a composite for which conditional analysis has been per-
formed, we can demonstrate that the conditional properties
are satisfied by the composite and that the composite satis-
fies some critical property. Since the property is true of the
abstract component, it will also be true of any refinement.
Furthermore, if one component is swapped out for another,
the affected analysis is very localized. Much of the critical
property proof and refinement proof can be reused.



3 Approach

Our approach for applying composition and refinement
techniques to security architecture trade-off analysis is very
simple. We consider each trade-off scenario from Section 1
in turn.

Given two or more candidate architectures, which can-
didate is better? Our goal is to expose the security assump-
tions and assertions for each candidate by trying to prove that
the candidate satisfies the security obligations imposed on
it. Proving this of each candidate would be time-consuming
and possibly redundant, since the candidates may be similar.
Also, depending on the level of detail, the proof may be very
difficult.

Instead we propose an abstract model that represents all
candidates and prove that the model satisfies the require-
ments. Then we prove that each candidate is a refinement
of the abstract model. If we are unable to complete a re-
finement proof, it may be that the abstract model does not
reflect that candidate, or it may be that the candidate will
not satisfy the security requirements. Only further analysis
will tell. However, for each candidate successfully refined,
refinement theory lets us claim that the candidate therefore
satisfies the security requirements. The differences between
candidates, then, exist in the assumptions and assertions for
each candidate that are necessary to demonstrate refinement.
At this point, the engineer can weigh the assumptions and
assertions against some other criteria (e.g., ease of change).

Our approach has several benefits. Refinement proofs are
usually easier than satisfaction proofs, and if the candidates
are similar, part of the refinement proof may be reused. If a
new candidate is later proposed, we need only prove that it
is a refinement of the abstract model. If a candidate is later
modified, only the refinement proof must be redone.

If a candidate is complex, we may use composition tools
to build it up from its parts. Similarly, we can use de-
composition tools to break a candidate into smaller pieces
that reflect its intended implementation. The decomposition
proof will distribute the requirements on the candidate to
requirements on each component of the candidate.

How will modifying subsystem x affect my system’s se-
curity posture? If x was previously analyzed as described
above, we only need to introduce the changes to x and see
if its refinement proofs are still valid. If it was not, or if
the modifications introduce new security requirements, we
will follow the approach described above, i.e., propose an
abstract model, prove the security requirements, prove re-
finement, etc.

Composition and refinement techniques help us rigor-
ously identify the security assumptions and assertions that
will be used in the trade-off analysis. Reasoning tools let
us quickly — and we suspect, automatically — reduce a
refinement proof in a way that corresponds to our intuitive

view of refinement, i.e., that the requirements of a more de-
tailed component imply the requirements of a more abstract
component. In addition, once the reduction occurs, the re-
quirements of the more detailed component can be modified
as necessary to complete the refinement — with little impact
to previous analysis. This supports rapid change.

4 Example

Now we will demonstrate our approach on a simple ex-
ample. In the interest of space, our demonstration considers
only unconditional satisfaction3 and pure refinement de-
composition. In addition, we reduce the scope of our effort
by ignoring fairness conditions. For convenience, we de-
note I and [N ]v in the component state as init and steps,
respectively.

Our example is drawn from the research of secure,
microkernel-based, operating system architectures, such as
Fluke [3]. Consider a simple, generic (i.e., non-security-
relevant) system consisting of three object managers (ignore
the kernel): a file server, a process manager and a memory
manager. The system is illustrated in Figure 1.
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Figure 1. Simple system

The file server manages the file system and handles file
requests from the process manager and the memory man-
ager. The process manager maintains all running processes.
The memory manager provides address spaces to the pro-
cess manager for storing process executables. The interfaces
provided in Figure 1 are simple to reflect the critical security
property that we will introduce below. When the process
manager needs a new executable for a process, it queries
the file server using the name of the file that it (the process

3Some satisfaction proofs described below (e.g., the obligations on
pm comp) are actually conditional; however, we make the assumptions
explicit in the theorem to be proved, e.g., satisfies(c; (A ) P )) where A
is an assumption. This tactic does not support reuse, but it simplifies the
demonstration!



manager) knows contains the executable. The file server re-
sponds with a file handle fhandle. The process manager
then queries the memory manager for an address space con-
taining the contents of the file referenced by fhandle. If
necessary, the memory manager queries the file server with
fhandle, and the file server responds with data, which
represents the contents of the file. The memory manager
creates a new address space, dumps the contents in it, and
returns a pointer to the address space, addr, to the process
manager. The process manager then assigns the value of
addr to the new process.

Followinga strategy of specifying as little as possible, we
model communication in one direction only (noted by the
arrows in Figure 1). Thus, for example, it appears that the
file server randomly places a fhandle and its correspond-
ing name on the interface with the process manager. This
strategy simplifies the requirements and lets us isolate the
file server from the memory manager and the process man-
ager since, according to its interface, the file server depends
on no other component. This fact will prove useful in the
refinement, because we can isolate the file server analysis
and reuse it.

Now we modify the architecture to support the following
critical property:

(Critical Property) All trusted processes have
assured executables.

In other words, all processes that are trusted to perform
critical functions in the system run with executables that
have been examined against some rigorous standard for cor-
rectness and security. Two candidates are proposed. Both
candidates trust the file server to provide assured executa-
bles upon request. The difference between the candidates
is whether the process manager or the memory manager
is more highly trusted to assign executables to processes
correctly.

In the first candidate architecture, illustrated in Figure 2,
the process manager knows which processes are trusted.
When it needs to assign a new executable to an existing
trusted process, it prompts the file server with the name
as described above. The file server responds with the file
handle fhandle. The file server also notes, by setting
the trusted? flag, whether the contents of the file are
considered assured.

The rest of the operation is performed like in the generic
system above. Note that while the memory manager handles
assured data, it does not know the data is assured. Assured
data could become unassured by changing it. To ensure that
the process manager assigns the same contents that the file
server intended, we add the requirement that the memory
manager cannot change the contents of an address space.

In the second candidate architecture, illustrated in Fig-
ure 3, the process manager does not know about trusted
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Figure 2. Candidate 1

processes. It makes the same request of the file server, but
this time the file server responds like in the generic system,
i.e., only with the file handle fhandle. The file server
does not indicate whether that file handle represents assured
file contents. The process manager’s query to the memory
manager is also the same, and the memory manager makes
the same query to the file server. This time, however, the file
server indicates for the memory manager, via trusted?,
whether assured contents are stored indata. If data is as-
sured, the memory manager creates a trusted address space,
places the contents of data in it, and returns the pointer to
it, addr, to the process manager. Trusted processes, then,
correspond to trusted address spaces.
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Figure 3. Candidate 2

To prove that each candidate satisfies the critical property
would be time-consuming and would result in a duplication
of effort since the obligations on the file server do not change.
So we propose an abstract model (see Figure 4) that retains
the file server but combines the process manager and mem-
ory manager into a single process manager. We can abstract
away file handles and address spaces without loss of reason-



ing. We specify the file server componentfs comp and the
process manager componentpm comp.
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Figure 4. Abstract model

The first step in the proof that the abstract model satisfies
the critical property is to identify the proof obligations for
each component. In keeping with the strategy for specifying
component communication, only fs comp can change the
interface. Therefore,pm comp relies on the interface being
set correctly.

We have not yet discussed how fs comp knows which
file contents are assured. The meaning of “assured” is not
specified — it could be a tag assigned by some external user.
fs comp can only recognize assured data by where the data
is stored. It knows about two types of files: ordinary files
and trusted files. Trusted files are assigned only assured
contents. When fs comp sets the trusted? flag on the
interface, it is indicating that data came from a trusted file.
Therefore, we claim the followingobligations forfs comp:

� All trusted files always have assured contents.

� Whenever the trusted? flag is set, the value of
data is assured.

The obligations for pm comp follows:

� Given that the obligations for fs comp are met, all
trusted processes always have assured executables.

We compose fs comp and pm comp into a single com-
ponent called top level and assert

satisfies(top level;Critical property);

then we demonstrate that the obligations for fs comp and
pm comp are sufficient to satisfy this expression. Next we
assert and prove component requirements to satisfy each
obligation. We verify that the following requirements are
sufficient to satisfy the fs comp obligation:

1. (init) In the initial state,

(a) name is a valid file, and data is its contents.

(b) If the trusted? flag is set, name is a trusted
file.

2. (steps) For every state transition,

(a) If the interface changes, 1a holds.

(b) If the interface changes, 1b holds.

(c) If a trusted file is created, its contents are as-
sured.

(d) If a trusted file is modified, the new contents are
assured.

We verify that the following requirements are sufficient to
prove the pm comp obligation:

1. (init) In the initial state,

(a) All trusted processes have an assured exe-
cutable. (This is a “bootstrapping” require-
ment.)

2. (steps) For every state transition,

(a) If the executable for a process changes, the new
executable is assigned from data as long as
name denotes the appropriate executable file-
name for this process.

(b) If the executable for a trusted process changes,
the above holds and the trusted? flag must
have been set.

(c) If a new process is created, it is copied from an
existing process.

(d) If a new trusted process is created, it is copied
from an existing trusted process.

Any implementation that satisfies these requirements will
also satisfy the critical property.

Now we consider each refinement in turn. For
the first candidate, we specify the refined file server
R1 fs comp, the refined process manager R1 pm comp
and the memory manager R1 mm comp. Then we com-
pose R1 pm comp and R1 mm comp into a single compo-
nent called R1 mm pm, and then compose R1 mm pm with
R1 fs comp to form the component R1 level. We assert

implements(R1 level;top level)

and use the pure decomposition tools to reduce the above
expression to:

� implements(R1 fs comp;fs comp), and

� implements(R1 mm pm;pm comp)

We reduce each of these to obligations for R1 fs comp
and obligations for R1 mm pm, respectively. We show that
given a refinement mapping,



� init(R1 fs comp) ) init(fs comp)

� steps(R1 fs comp) ) steps(fs comp)

and

� init(R1 mm comp) ^ init(R1 pm comp) )
init(pm comp)

� steps(R1 mm comp) ^ steps(R1 pm comp) )
steps(pm comp)

where init(c) and steps(c) are sets of requirements defining
the allowed initial state and the allowed transitions for com-
ponent c, respectively. In the interest of space, we will not
list those requirements or the refinement mapping here. The
complete specification is available in [7]. The result is a set
of requirements that represents assumptions and assertions
for R1 fs comp, R1 pm comp and R1 mm comp. An in-
teresting side effect is that we can modify these requirements
and the associated refinement mapping as necessary to com-
plete the obligation proof without affecting the refinement
proof reduction to this point, because the refinement reduc-
tion does not rely on those requirements.

The refinement for the second candidate is very similar.
The main difference is that it shares R1 fs comp from the
first refinement. As a result, we get for free all proof results
for R1 fs comp.

5 Summary

We have described an approach for applying composition
and refinement techniques in support of rigorous, security
architecture trade-off analysis, and we have demonstrated
the approach on a simple example.

We actually performed the analysis described in the
example using a composition and refinement framework
that we developed in PVS.4 We successfully proved
implements(R1 fs comp;fs comp), which applies to
both candidates. We also completed the refinement reduc-
tion proof for both candidates. Unfortunately, we ran out of
time before confirming that the assertions and assumptions
that we proposed for the process manager and the mem-
ory manager in each candidate are sufficient. However, as
we noted, the requirements can be manipulated to complete
these proofs without affecting earlier analysis.
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