A Comparison of CDSA to Cryptoki

Ruth Taylor (ct@epoch.ncsc.mil), National Security Agency
February 16, 1999

Keywords: CDSA, Cryptoki, CAPI, port General Introduction: CDSA and Cryptoki

Abstract The CSSM API and Cryptoki both define low-level
The Common Data Security Architecture (CDSA)interfaces to cryptographic functionality; they require
applications to specify cryptographic algorithms and

is a general security service architecture which ha®FF] - -
been standardized by the Open Group. This papEattrlbutes when requesting a cryptographic operation.
However, these CAPIs have several differences.

compares the CDSA CAPI to another well known
low-level CAPI, RSA's PKCS #11 (Cryptoki). First, the CDSA specification defines interfaces to

Both CDSA and Cryptoki are low-level interfaces cryptographic, data storage, certificate, and trust policy
which satisfy criteria established by the NSA's CAPI libraries. In contrast, Cryptoki defines only an interface to
Team. However, CDSA provides a security service<cryptographic functionality. Therefore, CDSA is necessar-

infrastructure to several categories of security serllY richer in auxiliary services (like module management),

vices, and therefore provides more auxiliary servicePecause more auxiliary services are needed to manage its
more complex architecture.

to manage this more complex architecture. Addition:
ally, Cryptoki provides a more direct interface to ~ Second, CDSAs CSSM APl is designed to use either
hardware cryptographic tokens. This paper maps calsoftware or hardware Cryptographic Service Providers
in the APIs, describes differences between the tw(CSPs§. However, Cryptoki was originally designed to
and how these may be handled, and considers portirdirectly interface with a hardware cryptographic token
issues. (although it can interface to a software cryptographic mod-
1 Introduction ule as well), and allows the application programmer more

direct interaction with hardware tokens. “API Differences”
What Is a CAPI and Why Is It Useful? on page 7 explores these differences further.

A Cryptographic Application Programmer Inter- Introduction to CDSA

face, or CAPI, is a set of calls which allow an applica- L L .
ton programmer to access cryptographic The CDSA specification was initially defined by Intel

functionality. A high-level CAPI allows a program- Architecture Labs, and has received the support of many

mer with little cryptographic knowledge to request aninfluéntial_companies including IBM, Netscape, TIS,
operation (e.g. encrypt) without requiring the pro_Motorola, Sun, and Hewlett-Packard [4]. In October 1997,

grammer to supply details on how the operation Wi”the CSSM API was added to the CAPI suite recommended
be performed, whereas a low-level CAPI allows aby the NSA Cross Organizational CAPI Team [3], and

more cryptographically-aware programmer to specif)CDSA was recommended for use in the Defense

cryptographic details (e.g. algorithm and mode) by~dvanced Research Projects Agency's (DARPAS)

passing them as parameters to the CAPI call. ThAdvanced Information Technology Services Reference

NSA CAPI Team has established CAPI evaluatior”\chitecture (AITS RA)[2]. In January 1998, CDSA was
criteria, and recommended a suite of CAPIs [3]. adopted as a commercial standard by the Open Group.

CAPIs are advantageous for several reasons. Firs /\ complete description of the Common Data Security
a correct, readily-available cryptographic library may”\rchitecture (CDSA) is given in [1]. CDSA provides a
be used by any application which conforms to thelayered infrastructure which allows applications to access
CAPI. Second, cryptographic software or hardwaresecurity functionality, and allows system administrators to

may be modified without changing any application
code. Third, placing cryptographic code in a separati.Vulnerabilities still exist if the cryptographic code is in a

library decreases the likelihood that application bugsseparate library. E.g., the Cryptoki GetFunctionList

will illegally access sensitive cryptographic data (e.gcall returns function pointers which point directly to mem-

keys) or cryptographic codeEven stronger protec- Ory in the cryptographic library. The Cryptoki specifica-

tion is provided if the application and cryptographiction states that this memory should not be written to, but
code are run by separate processes. The strongest pmodification is possible if the library is writable. [5]

tection guarantees are provided if the system uses2.“CSP” refers to a cryptographic module implemented by

secure operating system, as described in “Operatinrany vendor and plugged into CDSA. This should not be
System Importance” on page 3. confused with Microsoft's use of “CSP” as a module

which provides cryptographic services for the Microsoft
Cryptographic API package.

“add-in” modules of their choice which implement the SPI Specification [1]. CSPs can be implemented in hard-
security functionality. The Common Security Servicesware or software, and perform cryptographic operations
Manager (CSSM) manages the add-in modules. Théike encryption, decryption, digital signing, key genera-

introduction below progresses downward, describingtion, random number generation, or computing message
first the application programmer interfaces (APIs), thendigests for data. CSPs plug into the Cryptographic Ser-
the CSSM, and finally the service provider interfaces.vices Manager. CSPs can optionally support login/
Figure 1, extracted from [1], shows the CDSA architec-logout capability and privileged operations for CSP

ture. administrators. Because the model for administration

The CSSM API Specification [1] defines interfaces can vary widely among CSPs, any such functions can be
by which app”ca’[ion programmers can access CryptoprOVided as PaSSThrough functions and are not part of
graphic Service Provider (CSP) libraries, trust policy the normal interface.

Figure 1: CDSA Architecture Applications using the CSSM APl may either pre-
pr—— i allocate output memory buffers, or request that the CSP
—— —— M allocate this memory (in application memory-space) for
. the application. In the former case, an API call
Fami : ' i b (CSSM_QuerySize) allows the application to obtain the
: necessary size for an output buffer given a particular
vl nsnn e function call; the application can then allocate this space
[il == and call the function. In the latter case, when the appli-
s - T e | [o] [g] cation establishes a session with the CSP (using the API
T T T T call CSSM_ModuleAttach), it passes the CSP a table of
] = basic memory management function pointers, and a
- 1 B T e |’ i n Tt heap pointer for the memory-space of the application.
: . m . i The CSP will then allocate memory in the application
('TP) !lbrar|es, certificate Ilbrarles'(CL),and da'lta Storagememory-space, but the application is responsible for
libraries (DL). CDSA also defines an optional key freeing this memory. (The CSSM API includes the calls
recovery API. Applications can access calls not definedsssy Freeinfo, CSSM Freelist, CSSM Free,

by the CSSM API, but implemented by a service pro-cssm_getAPIMemoryFunctions, CSSM_FreeKey,
vider, watheCSSM_PassThrough mechanism. - CSSM_Free*Context 3 and CSSM_FreeMod-
;he .C.SSM (rjnqnage; adcfi—ln m_odules.dlt Iverlfles thejeinfo for memory deallocation.)
authenticity and integrity of service module sources . .
before adding them to the CDSA environment, main-IntrOdUCtlon to Cryptoki
tains a registry of the current add-in modules and their RSAs Public Key Cryptography Standard (PKCS)
capabilities, caches user security contexts (which con#11, also known as Cryptoki, is described in the PKCS
tain parameters to calls and possibly sensitive informa#11 Cryptographic Token Interface Standard, Version
tion), and responds to application queries concerning thé-01 [5]. NSAs Cross Organizational CAPI Team rec-
availability and functionality of service provider mod- ©mmended Cryptoki to meet the present and future
ules. System administrators install and uninstall theneeds of NSA in October 1997 [3]. Cryptoki is used in

security service modules using the CSSM Module Man-Products such as Netscape Navigator. Cryptoki is an
agement Functions. API to cryptography devices, and defines a single inter-

face which applications and cryptomodules must con-
If1orm to. Because it is simpler than CDSA, it does not

The CSSM includes Cryptographic, Trust Policy,
Certificate, and Data Storage Service Managers, whicl hy . .
map application service request calls to the lower Ievefncorporate as many auxiliary services to manage its
service provider calls, thus providing applications with Infrastructure as CDSA.
service. These managers perform built-in security ~ Cryptoki has its own terminology. A “mechanism” is
checks as well. Additional “Elective Module Managers” @ cryptographic algorithm; a “token” is a module which
can be created to dynamically extend the system by add{Ses @ mechanism to perform cryptographic functions;

ing new types of services, which are also managed byand a “slot” is an abstract adaptor which holds a token.
the CSSM. (The Cryptoki specification defines a basic set of mech-
The add-in CSPs, certificate libraries, trust libraries, 21SMS: although a compliant Cryptoki implementation

’ ! 'is not required to support all of these.) A “session” is a

data storage libraries, or elective add-in libraries mus{” " | tion bet licati d a tok
conform to the service provider interfaces which are ogical connection between an application and a token.

lower-level than the CSSM APIl. CDSAs Service Pro-

vider Interface (SPI) for CSPs is defined in the CSSM3.CSSM_Free*Context refers to the family of calls
where *' equalsMAC, Signature, KeyGen

Tokens can support one or more sessions. Cryptokgraphic libraries create the context or object, and return
mechanisms include many newly added official algo-only a handle to the application, so that the application
rithms in NSAs MISSI suite. Token vendors can also cannot directly manipulate the object or context.

defipe their own .mecha.nism.s for use with Cryptoki, putz Comments on CDSA and Cryptoki

for interoperability, registration with RSA's PKCS is .

preferable. Tokens may define objects (defined belowpperat'ng System Importance

and functions as “public”, so that any user may access Clearly, it is important to ensure that cryptomodules
them, or “private”, so that only authenticated, logged-inand infrastructure components (e.g. CDSA's CSSM) are
users may access them. written correctly and securely. For example, it must be

An application using Cryptoki must perform its own verified that sens!tive information is sufficiently pro- .
memory management. After making a Cryptoki call to tgcted (e.g. that private keys are tagged as “always sensi-
determine the required output buffer size, the applicafivé", or that CSSM Module Managers do not share state
tion must allocate this space before calling the functioninformation which results in confidentiality breaches).
Note that this is different from CDSA, which provides Additionally, an application programmer using CDSA
the application with the option of having memory allo- OF Cryptoki must be sufficiently knowledgeable of secu-

cated (in the application memory-space) by the cryptority to use the correct services and configurations to
module. meet his security requirements.

CSSM API Contexts Vs. Cryptoki Objects Even if the above concerns are addressed, a crypto-
J graphic system may still be vulnerable if the operating

CSSM API contextzontain all the information system upon which it is running is not secure. [6][7] A

needed to perform a cryptographic operation, like CON%rusted operating system can provide user level code

text type (e.g. key exchange, signature, or digest), algo- ith confidentiality. intearity. authentication. and
rithm (e.g. RSA, KEA, or MD5), and applicable W I ality, negry, au cation,

tribut kev data. initializati ¢ laorith assured delivery of the inter-process communication
attributes (e.g. key data, initialization vector, algorithm ;5“2 4 confidentiality and integrity for memory and

mode, padding, dates of_validity for object, or pa.ss'long—term storage. (Though many examples below relate
phrase). A context handle is passed as a parameter in the ~ps o cryptoki may use either hardware or software

'zilgi)r(;thfr_n-independent E.SS'\I/I C_AhPI qglls._;’he Cﬁ_S'r\]/ltokens, and therefore depends on the operating system
efines cryptographic algorithm identifiers which ; "W o Lonner as CDSA)

be impl ted b dd-i t hi d-
may be implemented by an add-in cryptographic mo Secure IPC can provide confidentiality and integrity

ule. - . . . of data passed via IPC, identification and authentication
Cryptoki objeqts:qntaln s_ecret keys, public apq pri- (I&A) of the sender and receiver of IPC, and guaranteed
vatg keys, app[lc_:at|on-def!ned data, or Ce.rt'flcatesdelivery and invocation. Vulnerabilities may result if the
Ob!ects_ are SpeCIfIC't.O algorithm and function (i.e. Cryp'(:ryptographic library and the application are in separate
toki defines a specific structure for a DES3 secret keyaddress spaces, and the system’s IPC is insecure. For

?bjecc';), ang thf;]'r deflnlttlogstm fthe Ctrypt(()jk|_ sfpeC|f|$a— example, misuse or spoofing of cryptographic compo-
lon describe the exact dala format and Information,q g can occur; a hardware cryptomodule which

negded to r'epresent .that object. Attributes IndICatesecurely creates and stores keys, as well as a software
which operation the objects are to be used for (encryptcryptomodule, may be subject to unauthorized use. Or,

dg_crytpt, sigbn,l veritfy, v;/rip, gnwrrz?ph or dg:ive). An the CSSM or cryptomodule could be spoofed to its
object may belong o a token, In which case It may per'(:aller, and the application can be spoofed to the CSSM
sist from session to session. Or, the object may be cre-

ated for a session, and then destroyed upon closin o?r cryptomodule.
the session ’ y P g The possibility of spoofing is reduced with CDSA,

.) L because the CSSM must provide signed manifest cre-
Cryptok|. programmers set a mechamsrrT V."’mabl.edentials to applications. An application may use these
to th? algorithm they wish to use (g.g. DES); t.h's Var- credentials to authenticate the CSSM using EISL func-
able is then passc_ad as a parameter in the algonthm-md(?rons_ Additionally, if the application itself has a signed
pendent Cryptok| calls. Wher.]. heeded, a meChan'_S%anifest credential, it may use an EISL library to per-
parameter is used to pass additional data (like an Inltlalform a self check, and the CSSM may check this appli-
ization Vector (IV) for an encryption algorithm). cation. However,’ there is a trade-off between threat

Cryptoki objects and mechanisms together containyitigation (frequency of EISL checks) and performance
the same information held by a CDSA co_ntext. Both osts. In Cryptoki, the legitimacy of a token may be
CSSM API context handles and Cryptoki object handlessstaplished by authentication using certificates. How-
are passed as parameters to a cryptographic call in theyer, if the Cryptoki cryptomodule is in user space, its

CAPI, and specify details about the requested Cryptogode and certificates may be modified, weakening the
graphic operation. Both the CDSA and Cryptoki crypto- ;gnfidence in the authentication.

Additionally, data passed via IPC could be subject toindependence (the CAPI refers to a wide variety of cryp-
unauthorized interception and modification. For exam-tomodules); MISSI support; modularity and auxiliary
ple, key data (raw or wrapped), pointers to key data, andervices; safe programming and degree of cryptographic
passphrases for key access, may be passed via IPC whawareness (the CAPI uses consistent naming conven-
building a CDSA context, or when requesting an opera-+ions, minimizes complexity of language features to pre-
tion. This data could be copied and reused, or modifiedzent unintentional programming errors, and minimizes
by malicious parties. (Both CDSA and Cryptoki allow the amount of cryptographic expertise required of the
keys to be protected from this threat by identifying themapplication programmer); and security perimeter (the
as sensitive or unextractable from the cryptomodule.XCAPI controls access to sensitive data, and does not
Or, a passphrase controlling cryptomodule accessllow movement of sensitive data beyond the security
passed via insecure IPC may be obtained by applicaperimeter).[3]
tions or other devices monitoring the communication Both the CSSM API and Cryptoki were found to be
lines. [5] Plaintext could be intercepted and copied, oralgorithm independent. Calls in both APIs specify the
modified; and Ciphertext could be modified, so that thetype of Operation (eg encrypt, Sign' Verify) rather than
corresponding plaintext cannot be retrieved from it.the specific algorithm to be used (e.g. DES, RSA), and
Cryptographic operation requests and contexts could bgoth CAPIs allow a system administrator or user to add
modified or deleted in route to the CSSM or cryptomod-software or hardware modules which implement the
ule. And, if the CSSM Module Managers execute in dif- desired Cryptographic a|gorithm5_ [1][3][5]
ferent address spaces, then messages sharing internal Similarly, both the CSSM API and Cryptoki were

state would be sent via IPC, and these could be eavess, g to be application independent, because they offer
dropped upon, modified, or deleted. a low-level interface to cryptographic operations, which
Finally, applications and supporting infrastructure can be used by different applications. Both were found
components depend upon the OS to prevent unauthqop be cryptomodule independent; Cryptoki uses the
rized access to data and executables in memory or lonfhken concept to abstract the cryptomodule, and CDSA
term storage. In CDSA, malicious code or data modifi-yses the CSP to abstract the cryptomodule, and contexts
cation can be detected, but not prevented, by ElSlio abstract module-specific data.
checks. These integrity checks may be performed atany The NSA CAPI Team found that both Cryptoki and

time (e.g. before each code execution or data accessppsa provide sufficient MISSI support. [3] The CSSM
However, there is a trade-off between threat mitigationgp |ists over seventy algorithms which may be imple-

and performance costs. (More frequent EISL check§nented by add-in cryptographic service providers,
decrease the likelihood that maliciously modified COdeincIuding KEA (MISSI's Key Exchange Algorithm)
will be executed before the modifications are detected.)gaToN~ JUNIPER. and SKIPJACK @ll MISSI blocl,<
CDSA assumes that keys and other sensitive securit¥jphers). In addition, the CSSM API is extensible; any
context information will be protected either by the CSP functionality provided by the module but not in the
(e.g. if the keys are “never extractable” from the CSP),CSSM SPI is accessible to applications as a
or by the application (e.g. if the keys are raw and“passThrough” function call. [1] Similarly, Cryptoki’s
extractable from the CSP). However, both applicationsyersion 2.01 defines key objects and mechanisms for
and software CSPs run in user space, and rely on thREA, BATON, JUNIPER, and SKIPJACK (all MISSI
operating system to protect this data from unauthorizedygorithms). Additionally, token vendors using Cryptoki
reading, writing, or execution. Similarly, the software may define their own mechanisms, but for inter-opera-
cryptographic modules could be modified by unautho-ility, registration with PKCS is preferable. [5]
rized parties, and this code could be used before the 1o NSA CAPI Team found that CDSA was modu-
changes are detected by the EISL. The keys used 10 Ve[5; ang provided sufficient auxiliary services.[3] CDSA
ify signatures qf the E'ISL or 'Integrl|ty Verlflcgnc.)n. Ker- g very modular by design; all cryptographic, trust pol-
nels (IVKs, which verify the mte_g_nty of an |nd|V'dU<.'le icy, data storage, or certificate service modules are
software module) could be modified. And, the applica-|55qeqd as separate, add-in modules. The CSSM is com-
tIOI’l' galls to CDSA could be modified or deleted by posed of the Cryptographic, Trust Policy, Data Store, or
maI|C|ous_agents.[6]. o Certificate Services Managers. Auxiliary services pro-
Comparison Against NSA CAPI Criteria vided by the CSSM include dynamic module installa-

The NSA CAPI Team established several criteria fortion, attachment, and detachment; maintenance of a
evaluating CAPIs. These include algorithm indepen-registry of the current modules and their capabilities
dence (the CAPI allows an application programmer to(this registry may be queried by applications); module
specify a wide range of cryptographic algorithms); integrity checks; memory management; cryptographic
application independence (the CAPI offers servicescontext management; key generation; login/logout capa-
needed by a wide variety of applications); cryptomodulebility; password changing capability; callback capabil-

ity; unique ID generation; and a tamperproof counter. Acontext through calls which return a handle to the con-

“callback” function can be defined when attaching atext. (A context may contain sensitive information like

CSP; this function is executed when a predefined evenpointers to key structures, which are in turn obtained

occurs. Additionally, the CSSM checks the currentfrom the CSSM_GenerateKey and

CSSM and CSP versions against the version needed hySSM_GenerateKeyPair calls.) Once the context has

applications. been created, the application can only identify the con-
Cryptoki also generally satisfies the modularity andtext and keys through the context handle (which is

auxiliary services criteria. [3] Auxiliary services pro- passed to the CSSM when requesting cryptographic

vided by Cryptoki include login/logout capability, call- operations).

back capability, key generation, and random data Third, the CSP is responsible for secure storage of

generation. Although Cryptoki does not provide explicit private keys; theCSSM_CSP_CreateSignatureCon-

calls for cryptomodule verification, token authenticity text, CSSM_CSP_CreateAsymmetricContext,

can be achieved by distributing the token with a built-in,and CSSM_CSP_CreateKeyGenContext functions all

certified private/public key pair, by which the token can require a “passphrase” parameter to unlock private keys,

prove its identity. Users can obtain information on avail-and theCSSM_CSP_CreateDeriveKeyContext call

able mechanisms, objects, and slots. [5] requires a passphrase for signature operations. The CSP

The NSA CAPI Team found that both CDSA and May optionally be responsible for storage of other
Cryptoki required a cryptographically aware program_objects, like certificates. Persistent storage can be imple-
mer, but both were rated as requiring fairly “unsafe” mented using a data storage library module, or be imple-
programming. [3] CDSA and Cryptoki both use consis- mented within the CSP. Lastly, the CSSM environment
tent naming conventions. CDSA precedes all SPI funciS protected through module source verification using
tions with the ‘CSP_" prefix, and all API functions with ~ certificates, and module code integrity checks using a
the “CssM” prefix. Aside from the prefixes, functions signed hash.
from the APl and SPI with similar functionality have Cryptoki provides features which may enforce the
equivalent names. Cryptoki uses unique prefixes to dissecurity perimeter as well. First, a token can define pri-
tinguish data types, objects, attributes, functions, returivate objects and functions, which can only be accessed
values, and other unique features. Cryptoki objects ar@fter an authenticated user login. (A token may also
always initialized to default values (which may be mod- define public objects and functions, which may be
ified at creation time), and always contain a set ofaccessed without login.) Second, additional protection
required attributes. can be given to private or secret keys by marking them

With respect to complexity of language features,@s “sensitive” or “unextractable”. Sensitive keys must be
CDSA describes its intended audiences as experiencafrapped if they are exported from the token, and unex-
security and software architects, advanced programUactable keys may not be exported from the token. The
mers, and sophisticated users, who are familiar with netCryptoki Specification [S] notes that if protected mem-
work operating systems and high-end cryptography, an@'Y is not available to store sensitive objects, then they
familiar with the basic capabilities and features of theMay be encrypted using some derivation of a user's PIN;
protocols they are considering. CDSA requiresbut this PIN may itself be compromised through weak-
advanced knowledge of the cryptographic algorithms to"€SSes in the operating system IPC channels.

be used. Similarly, Cryptoki uses C in an advanced,3 Mapping the Calls
object-oriented way, requiring advanced C program- This mapping considers all calls from the CSSM SPI

ming skills. It requires in-depth knowledge of the algo- 5,4 Cryptoki drafts, but only calls from the Core Ser-

rithms used, and of the underlying token. Both require,;;ces API and Cryptographic Services API from the

the programmer to know the correct sequence in whichrggm API. For a complete mapping between calls in
cryptographic calls should be made. [1][3][5] these interfaces, please see [9].

The NSA CAPI Team found that both CDSA and Generally, while CDSA and Cryptoki's crypto-
Cryptoki sufficiently enforce the security perimeter. [3] graphic operation calls map one-to-one, other types of

CDSA provides several features which may enforce the.51s have one-to-many mappings from CDSA to Cryp-
security perimeter. First, key data generated by th§gyi pecause the CSSM API is a slightly higher-level
CSSM_Generatekey and CSSM_GenerateKeyPair interface than Cryptoki. For example, preparing for a
calls can be wrapped and/or encoded, or a refere_n_ce to_cf?‘yptographic operation in CDSA requires one context
key. They may be labeled permanent or modifiable;; eation call, while preparing for this operation in Cryp-

extractable or non-extractable from the CSP; and priyoy requires several object creation calls. Another

vate, sensitive or always sen.sitiv.e. ~ example of a one-to-many CDSA to Cryptoki mapping
Second, the CDSA application can only obtain ajs cssm_GetModulelnfo , described below.

Mapping the CSSM API to the CSSM SPI requires two additional parameters: a handle to the add-
The Core Functions and Utility Functions from the " €SP, and a pointer to the cryptographic context.
CSSM Core Services API (which initialize the CSSM, Mapping the CDSA Calls to Cryptoki.

load and verify modules, handle application queries The CSSM Core Functions map to the Cryptoki
about add-in modules, and do memory managementfzeneral Purpose Functions because both deal with ini-
and the Cryptographic Context Operations from thetializing, closing, or obtaining information about the

CSSM CAPI (which create, retrieve, update, and freeCAP| itself, and not the cryptomodules behind it. Cryp-
security contexts associated with an operation) have ngpki's C_GetFunctionList call is mapped to

analogues in the CSSM SPI. However, the CSSM APIcssm_RegisterServices from the CSSM Add-In
calls CSSM_CSP_Create*Context, Module Interface Function Category, but it is important
CSSM_CSP_DeleteContext, CSSM_ModuleAttach , to note their differencesC_GetFunctionList allows
and CSSM_ModuleDetach may cause the CSSM to an application to obtain a list of function pointers pro-
generate a call to CSBventNotify in the SPI, to vided by a Cryptoki library when the library is first
inform a CSP that an event has occurred. loaded, whereaSSSM_RegisterServices allows a
However, the cryptographic calls in the CSSM API CSP to make an upcall to the CSSM to register its func-
are basically equivalent to those in the CSSM SPI. Sevtion table with the CSSM (but not to provide this func-
eral of the CSSM APl and CSSM SPI cryptographiction table to the application). The CDSA application
calls are available in two forms: either a single call canthen uses a module handle to indicate to the CSSM
perform the operation, or a set of staged calls can bevhich function table it should useCSSM_Verify-
used. Aside from the API'sCSSM” versus the SPI's Components has no analog in the Cryptoki API, but
“CSP_" prefix, the cryptographic function names are token verification is possible through other methods, as
equivalent, as are their functional descriptions. described in “Handling Unique APIs” on page 10.

Typically, cryptographic calls in the CSSM SPI are The CSSM Utility Functions did not map to Cryp-
passed two extra parameters, when compared to thteki, because the Cryptoki interface does not incorporate
CSSM API: a handle to the add-in CSP which will be memory management. (The Cryptoki designers pur-
used to perform “upcalls” to the CSSM for memory posely avoided allocating memory on behalf of the
management, andpointerto the cryptographic context caller.)

describing the cryptographic operation. (Contesin- The CDSA Cryptographic Context Operations are
dlesare required parameters for most APl and SPI crypmapped to the Cryptoki Object Management Functions,
tographic calls.) because both handle parameters to cryptographic calls.

A small number of error values returned by the As described above, the CDSA context defines all con-
CSSM SPI and the CSSM API differ. In general, if an text information for the current operation (aside from
error has the CSP_" prefix, then it can be returned by data), while Cryptoki objects define parts of the security
either the CSSM or the CSP, but if the error does notcontext. However, since both sets of functions provide
have ‘CSP_" prefix, it will only be returned by the interfaces to functionality which manage the structures
CSSM. For example,CSSM_CSP_STAGED_OPERA- which define cryptographic operations, they are mapped
TION_UNSUPPORTEDnay be returned by the CSSM to each other. For exampl€SSM_CSP_Create*Con-

API if it finds no pointer to this function, or by a CSP if text maps toC_CreateObject; CSSM_GetCon-
the CSSM invokes a CSP function which does not supiextAttribute maps to C_GetAttributeValue
port the form of staging requested. However,and C_GetObjectSize; and CSSM_FreeContext,
CSSM_INVALID_CONTEXT_HANDLE will only be CSSM_DeleteContextAttributes, andCSSM_Del-
returned by the CSSM, as the CSP does not manageteContext map toC_DestroyObject.[9]

context handles. CDSA's cryptographic calls map to Cryptoki's cryp-

The cryptographic sessions and logon functionstographic calls in a straightforward, simple manner;
(logging in, logging out, and changing passwords) aremany calls correspond in name and functionality. The
equivalent in the CSSM API and CSSM SPI, and expecinterfaces to cryptographic functionality defined by the
equivalent parameters. The module management fun&zSSM API and Cryptoki are very similar; [9] found that
tions of the API only roughly correspond to those in the 88% of cryptographic calls mapped were either “equiva-
SPI; the API calls are at a higher level. lent” or “roughly equivalent”. Both CDSA and Cryptoki

The extensibility function of the CSSM AP| provide calls to perform cryptographic operations in
(CSSM_PassThrough) is mapped to the extensibility €ither a single call or in several staged calls. Differences
function in the CSSM SPI. Like the cryptographic oper- in the cryptographic APIs, as well as methods for imple-
ations, the function name is equivalent (with a differentmenting calls unique to one API in the other API, are
prefix), as is the operational description. But, the SPidescribed in "API Differences” on page 7.

CDSA's Module Management Functions are mappedadministration, and no calls are defined for this. In
to Cryptoki’'s Slot and Token Management FunctionsCryptoki, tokens may optionally define private objects
and Cryptoki's Session Management Functions, becausand functions which require an authenticated login, and
CDSA's CSP is roughly equivalent to the combination before a normal user can login, a security officer (SO)
of Cryptoki's slot and token. Although CDSAs mustinitialize tokens and set a user’s PIN. Thus, CDSA
CSSM_Modulelnstall and Cryptoki'sC_InitToken has no analog for C_InitPIN , but CSSM-
both perform off-line administrative initializations _CSP_ChangeLoginPassword maps taC_SetPIN.
needed prior to using the token in a runtime environ- CDSA defines the€SSM_PassThrough extensibil-
ment, they were not mapped to each other because thely function. While no extensibility functions are explic-
perform different set-up services due to the differentitly defined in Cryptoki, calls may be added to the
runtime environments of CDSA and Cryptoki. Cryptoki interface. (Cryptoki does not have a complex
CSSM_ModuleAttach is mapped taC_OpenSession , infrastructure, and thus does not require a call to allow
because both establish a connection between the applianctionality to “pass through” the infrastructure.)
cation and the cryptographic module before a crypto- ot cDSA and Cryptoki provide “callback func-

graphic request is made. Simi!arly;SSM_Module- tions”. Callback functions allow the application devel-
Detach is mapped taC_CloseSession , because both oper to pass a function pointer to the

close a session between the application and the CryptQ<ssym ModuleAttach and C OpenSession function,
graphic module. respectively. The callback function is called by the CSP
CSSM_Modulelnstall is not mapped to or token when particular events occur. At first glance a
C_InitToken, because the former simply registers the callback function seems similar to the CSSM SPI's
module in the CSSM registry, whereas the latter initia|-CSP_EventNotify ; both notify system components
izes a token by destroying all temporary objects (permathat a particular event has occurred. However, a callback
nent objects like keys built into the token will not be function passes a message from the cryptomodule to the
destroyed), and disabling normal user access until theigpplication (up from the cryptomodule), while
PIN is set. (HoweverAddinAuthenticate from the csp EventNotify —passes a message from the CSSM
Add-In Module Interface Function Category of the SPI, tg the cryptomodule (down to the cryptomodule).
which is invoked by the CSSM after a module is Ioaded4 API| Differences

and authenticates the CSSM to an add-in service mod- .))
ule, is mapped to Cryptoki's_InitToken .) Similarly, As discussed above, CDSA and Cryptoki provide

CSSM_ModuleUninstall is not mapped t&_Close- many similar calls to cryptographic functionality. (See
Session , because the former simply removes the mod-[9] for @ complete mapping.) However, recall the two
ule from the CSSM registry, while the latter closes a sesmajor differences between CDSA and Cryptoki. First,
sion, automatically destroys all temporary objects, andcDSA defines application interfaces to several different
optionally ejects the token. (A Cryptoki application can- security services, whereas Cryptoki was designed as an

not specify whether the token will be ejected; the driverinterface to (solely) cryptographic functionality. Thus,
writer chooses if the token will be ejected.) CDSA necessarily includes more auxiliary services,

; because more services are needed to manage its more
thengscMsgl\P/ll’QFS’IPs%S;gIa_p(ZEmguIeInfoam;n gpietvo_ complex architecturg. Second, CDSA's CSSM API is
eral Cryptoki functions €_GetSessioninfo designed to use either .spftware or hardware CSPS’
C GetSlotinfo , C GetTokeninfo . C_GetMech- wherea§ Cryptoki was originally designed to_prowde a
anisminfo c GetMechanismList , C GetSlot- direct mtgrface to hardware cryptographic tokens
List, andC Getinfo) becausecSSM GetModule- (although it can handle software tokeqs as well). Thus,
Info returns in one call information which Cryptoki the Cryptokl interface aI_Iows the_appllcatlon program-
returns in several separate calls. The CDSA functiond"®" t9 interact more directly W'th hardwg re crypto-
CSSM_GetHandleUsage , CSSM_GetGUIDUsage, graphic modules. I_:or gxample, if a Cryptoki tgken has a
CSSM_GetModuIeGUIDFromHandIe, TandCSSM Get- protecteq authentication path, t_he Cryptolq interface
SubserviceUIDFromHandle are examples of utiliies M&Y optionally allow the user to interface this path for

specific to the CDSA architecture, which are not presenﬁuthenticatiorﬁl.This section further explores the differ-
in the Cryptoki interface. ences between the APIs.

CDSA's Logon Functions are mapped to Cryptoki's Cryptographic Calls
logon calls from the Session Management Function Cat- Generally, CDSA and Cryptoki provide similar calls
egory. Both CDSA and Cryptoki have sessions ando cryptographic functionality.Tables 1 and 2 list the

optional authenticated login sequences. However, ircryptographic calls unique to the CSSM API and Cryp-
CDSA the CSP may set up its own model for CSPtoki, respectively. Note, the unique cryptographic calls

Table 1: Cryptographic Functionality Unique to (one-step or staged) cryptographic requests. (Prior to
Cryptoki making a cryptographic call, both CDSA and Cryptoki

require calls to the interface for context or object cre-
ation. Cryptoki typically requires parameters (e.qg.
mechanisms) to be set as well.

e C_Digestkey: continues a multi-part digesting
operation by digesting a key
e C_*Update , where ** equal®igestEncrypt,

DecryptDigest, SignEncrypt, or It is important to note that cryptographic modules
DecryptVerify . These are the “Dual-Function are not required to implement all functionality defined
Cryptographic Functions”, which perform two by these APIs, and both interfaces are potentially exten-

cryptographic operations simultaneously by one ¢allsible.
to avoid unnecessary passing data back and forth tParameters to Cryptographic Calls
and from a token. Another way in which CDSA differs from Cryptoki

. _ . . is the method by which application programmers spec-
Table 2: Cryptographic Functionality Unique to the fy the parameters for cryptographic operations (e.g. the

CSSM API algorithm, mode, and keys). In CDSA, the only informa-

+ CSSM_ObtainPrivateKeyFromPublicKey :given| tion passed to CSSM API cryptographic calls, aside
a public key, returns a reference to a private key] Adrom the cryptographic context, is the data to be oper-
alternate implementation method for Cryptoki ated on (e.g. plaintext or encrypted data, a signature, or
implementations is described in Table 6: Alternate @ MAC). Operations on CDSA contexts (creating, modi-
Implementations for CDSA Calls. fying, retrieving, or deleting a context) are performed by

+ CSSM_GenerateAlgorithmParams ~ : generates making calls to the CSSM API. For example, an appli-
parameters for a context. cation programmer must create a separate context (using

the CSSM_CSP_Create*Context call) for each type
. of operation (e.g. signature or symmetric encryption).

do not interface to significant cryptographic functiona
ity, and some may be implemented through other means.© change any part of a context, the programmer needs

The interfaces to cryptographic functionality defined by {0 S€t values in theSSMContextAttribute structure,
the CSSM API and Cryptoki are very similar; the full @nd then callcSSM_UpdateContextAttributes to
set of mappings found that 88% of cryptographic callsUPdate individual attributes.

mapped were either “equivalent” or “roughly equiva- In contrast, parameters to Cryptoki cryptographic
lent”[9]. initialization calls include not only the appropriate

Another difference between the CSSM API and oPiect for the mechanism chosen, but also a session han-
Cryptoki interfaces is the set-up required for crypto-dle’ a mechanism pointer, and material to be operated on

graphic calls. Cryptoki always requires a one-step cryp{€-9- Plaintext data, a signature, or a MAC). An applica-
tographic call to be preceeded by*Init , because the 10N Programmer using Cryptoki must set values in a
c it call specifies algorithm, mode, and attributes Mechanism. A session handle is returned from the API

to the token. CDSA, on the other hand, does not requird/N€NC_OpenSession is called. But, similar to CDSA,
a one-step cryptographic call to be preceeded by an iniS"YPoki requires the programmer to use the Cryptoki

tialization call. The algorithm, mode, and attributes areAP! 0 manipulate objects; the programmer creates

held in the context, which is passed to the CSP for aIIObJ:eCtS using thﬂ‘-:_CreateObject. call, and modifies
objects by calling theC_SetAttributeValue call.

Cryptoki calls also exist for retrieving a Cryptoki object,

4.Although CDSA does not directly interface to hard- o tribut f a Crvptoki obiect deleti
ware devices, login using a protected authenticatiorf€'tnd atlroutes ot a .ryptoki object, or deleting a

path may be implemented as follows: Cryptoki ?bJeCt']
1. CallCSSM_GetModulelnfo to determine whether CDSAs more packaged context could prevent unin-

the token supports a protected authentication path_tentional errors by less experienced programmers, but
2. If so, prompt the user to use the token'scould also cause performance degradation when using

authentication device. the API as a result of the greater interaction with the
3. cCallcsP_Login with a NULL password. CDSA system required. Furthermore, Cryptoki's inter-

4. Upon receiving a NULL login password, the csp face allows thg more experiencgd programmer to “mi>.<
should retrieve the password entered in step 2 fronnd match” objects and mechanisms, rather than requir-
the token’s authentication device. This method wasnd the programmer to call the API to reformat these as
adapted from the PKCS #11 specification and used context when they are to be used in the same crypto-
by Intel's PKCS #11 CSPs. (See “Porting Betweendraphic request.
the CAPIs” on page 10.)

Auxiliary Functionality

A third way in which CDSA and Cryptoki can be

compared is the auxiliary functionality offered. Tables

and 4 list the auxiliary functionality unique to Cryptoki
and the CSSM API, respectively. Unlike the APIs tg
cryptographic functionality, many calls to auxiliary
functionality are unique to one API, and cannot b
implemented in the other API. This results from the dift

ferent architectures of CDSA and Cryptoki; much of th
auxiliary functionality provided by CDSA, like memory

Table 3: Auxiliary Functionality Unique to Cryptoki

C_GetFunctionStatus : A legacy function which
usually return€KR_FUNCTION_NOT_PARALLEL
C_CancelFunction : A legacy function which
usually return€KR_FUNCTION_NOT_PARALLEL.

C_CopyObject : Given an object handle and a sesgi(
handle, this function creates a new object which is

copy of a given object.
C_Finalize
with Cryptoki library. As of 11/12/98, a proposal tp
the Open Group suggested adding the
CSSM_Terminate call to the CSSM API.
CSSM_Terminate would shutdown CSSM service
for the calling application, cleaning up the CSSM
state associated with the application, and storing
persistent application state. If accepted, this call
would map to Cryptoki'<C_Finalize , because if th

12

1%

CSSM is running in-process (rather than running ja

server to many applications), a call to
CSSM_Terminate would clean-up and exit the
CSSM itself.

C_InitToken, which initializes a token by

destroying objects and denying access to normal (i

until their PIN is set. CDSA8ddInAuthenticate

call verifies the integrity and identity of applications

when application verification is required, but it do
not erase objects on the token as part of the
initialization, because CDSA does not handle tok
administration.

C_InitPIN : initializes a normal user’s PIN, which
may be entered through the Cryptoki library or
manually on a PINpad on the token.
C_WaitForSlotEvent:
as token insertion or removal, to occur. CDSA
provides callback functions for this purpose, whic

are invoked in the case of token insertion or remav

C_GetOperationState and
C_SetOperationState : respectively save the
information necessary to restart a cryptographic

operation already underway, and restore the operation.

C_CloseAllSessions: closes all sessions an

application has with a token, automatically destroy|

all objects, and optionally ejects the token.

Table 4: Auxiliary Functionality Unique to CSSM API

: Applications should call when finisheg

D

waits for a slot event, sugh

=

3

D

|4
°

« D Se

S a

L4
ers

o

CSSM_Getinfo , which returns version informatio
for all CSSM instances installed or registered on
local system to the applicatiod. Getinfo maps tg
CSSM_GetModuleinfo , in the CSSM Module
Management Function Category, because
C_Getinfo returns cryptomodule-specific
information.
CSSM_RetrieveCounter
of a tamperproof clock.
CSSM_VerifyDevice , which causes a
cryptographic module to do self-verification and
integrity testing.
CSP_EventNotify
CSP of an important event. (Included in the CSS
SPI only.)

CSSM_Load which loads the specified CSSM
instance.

CSSM_Modulelnstall and
CSSM_ModuleUninstall, which (respectively)
register or delete modules from the CSSM Regig
CDSA provides a registry of the modules availabl
the application programmer, but Cryptoki does n
CSSM_RequestCSSMExemption , which allows an
application to request exemption from a standar
built-in check performed by a CSSM component
CSSM_Freelnfo, CSSM_Freelist, CSSM_Free,
CSSM_GetAPIMemoryFunctions,CSSM_FreeKey

, and CSSM_FreeModulelnfo , the CSSM memor
management functions. The designers of Crypto
deliberately avoided adding calls which allocated
memory on behalf of the user, and thus Cryptoki
no memory management calls.
CSSM_VerifyComponents, which authenticates
CSSM components and verifies their integrity.
Although Cryptoki tokens may be authenticated
using certificates and challenge response, Crypt
does not provide integrity checking.
CSSM_GetHandleUsage , and
CSSM_GetGUIDUsage, which return a bitmask
describing services provided by the module spec
by a given handle or GUID (respectively).
CSSM_GetModuleGUIDFromHandle and
CSSM_GetSubserviceUIDFromHandle , which
return the module GUID or subservice unique 1D
(respectively) of the module identified by a given
handle.
CSSM_SetModulelnfo
describing a module.
CSSM_ListModules , which lists all currently
registered service provider modules in selected
categories.

, Which sets information

, Which returns the value

, allows the CSSM to notify the

the

M

try.
e to

has

oki

fied

and module management, is necessary to support isorting an application from Cryptoki to CDSA, the

more complex infrastructure. (See“General Introduc-direct hardware interfaces available in Cryptoki (e.g.
tion; CDSA and Cryptoki” on page 1 for a discussion on waiting for token removal, or login through a protected
the different memory management interfaces providedauthentication path on the token) would need to be
by CDSA and Cryptoki.)While both CDSA and Cryp- implemented in CDSA through other methods or
toki provide optional login/logout capabilities, CDSA accessed as@SSM_PassThrough function.
An alternative to porting an application is to build an

tration, while Cryptoki simply requires that tokens be adaptation layer which maps calls from one API to calls
initialized by the security officer and requires that usersin the other API, as shown by Figures 2 and 3. Figure 2

login with a PIN before accessing private objects storedy, s an adaptation layer which maps a Cryptoki

allows CSPs to set up their own model for CSP adminis-

on the token.

As noted earlier, Cryptoki optionally allows a user toTable 5: Alternate Implementations for Cryptoki Calls

interface more directly with a hardware token. or exarJ:;
ple, if Cryptoki had a protected authentication path, the
C_InitToken , C_Login , C_InitPIN , and C_SetPIN
calls may optionally interface with a PINPad on thg
token, or another protected authentication path, on a
token-specific basis. (While th& CloseAllSessions .
call optionally allows a token to be ejected after closirlg
all sessions with it, an application cannot specily
whether the token is ejected; this is determined by the
token driver code.)

Handling Unique APIs .

Tables 5 and 6 describe some methods for imple-
menting functionality unique to one API, when using
the other API. These methods may be useful when paqrt-
ing an application from one API to the other, or when
building adaptation layers between the CAPIs.

5 Porting Between the CAPIs

What steps would be involved when porting an.
application from one CAPI to the other? The differences
discussed in Section “API Differences” on page 7 mujst
be addressed. Necessary code modifications wolld
include converting function names and parameter lists,
for those calls that map directly, and using different call
sequences when needed. For example, the CSSM must
be loaded and initialized, but a Cryptoki library can only,
be initialized. Similarly, different function call
sequences would be needed when calling cryptographic
functions; Cryptoki require€_*Init calls to proceed
any cryptographic call, but the CSSM API only requirgs
the CSSM_*Init to be called for multi-staged crypto-|

C_SignRecover: Signs data in one operation, where

the data can be recovered from the signature.
C_SignRecover encrypts data with a private key, a
this can be accomplished in CDSA by calling
CSSM_EncryptData with a private key.

Similarly, C_VerifyRecover verifies a signature i

nd

n

one operation, where the data is recovered from the

signatureC_VerifyRecover decrypts data with a
public key, and this can be accomplished in CDSA

calling CSSM_DecryptData with a public key?
C_SeedRandont Mixes additional seed material int
the token’s random number generator. An applicg
using CDSA may provide a seed for random num
generation (either by providing a seed value, or b
passing a callback function which generates a seg
CSSM_CSP_Create-RandomGenContext . This
function builds the context passed to
CSSM_GenerateRandom.

C_CloseAllSessions: Closes all sessions betwe
an application and token, destroying all session
objects. CDSA has no function closes all session
one application. However, when a call to
CSSM_ModuleDetach closes the last session an
application has with a module, all transient object

associated with this application should be remdve
C_InitPIN : Initializes a normal user’s PIN, which
may be entered through the Cryptoki library or
manually on a PINpad on the token. CDSA allows
this, like other security administration tasks, to be|
defined as a PassThrough function.

by

(o]
tion
ber

y
d)to

en

5 for

O

graphic calls.

Other porting issues are memory management, CSP
verification, and direct hardware interfaces. An applica-
tion using CDSA may use the CSSM’s memory man-
agement functions or perform its own memory
management, but an application using Cryptoki must
perform its own memory management. When using
CDSA, cryptomodule verification and built-in security
checks are performed by the CSSM or via the CSSM
API interface, but when using Cryptoki, these must be
implemented independently of the Cryptoki API. When

a. The method described to adapt Cryptoki's
C_SignRecover andC_VerifyRecover tothe
CDSA interface was implemented in Intel’'s Cryptoki
adaptation layer (see “Porting Between the CAPIs”
on page 10).

b. Additionally, if theCSSM_Terminate call is
added to CDSA, then this call would perform
CSSM_ModuleDetach several times, closing all
sessions with the calling application, and removing
all transient objects for this application. Thus
CSSM_Terminate would map to Cryptoki’s
C_CloseAllSessions

Table 6: Alternate Implementations for CDSA Calls

CSSM_VerifyComponents: Verifies all CSSM
components, checking for tampering. Cryptoki

tokens may be authenticated if it is distributed with a

built-in certificate; the application can verify the
certificate and then challenge the token to sign 4

time-varying message with its secret key. However

Cryptoki doesNOT perform integrity checks on
tokens.

CSSM_QuerySize: Returns sizes of output data
blocks for selected cryptographic operations. Theg
output size (in bytes) of Cryptoki functions which

library to the CSSM SPI; Figure 3 shows an adaptation
layer built above CDSA which allows a Cryptoki-com-
pliant application to use CDSA-compliant cryptomod-
ules. Intel has publicly announced their development of
an adaptation layer above a Cryptoki library to make it
accessible via the CSSM SPI (the approach shown in
Figure 2). This work was demonstrated by Intel's Mat-
"thew Wood at the PKCS#11 and PKCS#15 Workshop
on October8-10, 1998.

Both approaches allow an application which con-
forms to one interface to use cryptographic libraries
which conform to both interfaces. The approach in Fig-

return output from a cryptographic mechanism can Uré 2 supports cryptographic token developers, allowing

be obtained by calling the cryptographic function,
and passing a NULL pointer to the output buffer.
CSSM_QueryKeySizelnBits : Returns actual and

effective size of a cryptographic key in bits. The dize
of Cryptoki key objects may be obtained by calling

C_GetObjectSize.
CSSM_ObtainPrivateKeyFromPublicKey :given
a public key, returns a reference to a private key.
application using Cryptoki could associate a value
related to the public key with the private key, and
this value to search for the private key when
necessary.

CSSM_DigestDataClone: Clones a given staged
message digest context with its attributes and

them to continue building Cryptoki-compliant tokens;
and CSSM vendors, allowing them to use Cryptoki-
compliant tokens as cryptomodules. This approach is
intuitively preferable for two reasons: first, Cryptoki's
direct hardware interfaces make it a lower-level inter-
face than the CSSM API. Second, because Cryptoki
interfaces solely to cryptographic functionality, and

AreDSA interfaces to several security services, adapting

Cryptoki-compliant cryptographic modules to the

LsdCSSM SPI fits into the CDSA model. (However,

attempting to extend the Cryptoki interface to provide
CDSA's non-cryptographic security services is entirely
outside the scope of Cryptoki. Cryptoki-compliant
applications which require CDSA’s trust policy, data

intermediate result. This call may be implementef irStorage, certificate, or optional libraries should be ported

Cryptoki using the following steps: (1) Clone the
state of a staged digest operation using
C_GetOperationState; (2) Create a new

session; (3) Set the state of the new session using

C_SetOperationState.

CSSM_GenerateMac, CSSM_GenerateMac

{Init, Update, Final}, CSSM_VerifyMac,

and CSSM_VerifyMac {Init, Update, Final }:
The single and multi-staged MAC generation angd
verification functions. Cryptoki's signature

operations (using a symmetric key) are equivalent to

CDSA's MAC calls.

CSSM_RetrieveUniqueld: Returns a unique

identifier to uniquely identify a cryptographic devige.

Cryptoki's C_GetTokenInfo returns a pointer to a

CK_TOKEN_INFGstructure, which contains the serjal

number of the token. This number is analogous {o

CDSA's unique identifier for cryptographic devices.

CSSM_PassThrough : Given an operation ID and

parameters, executes any type of operation exported
by a CSP. In Cryptoki, new calls may be added (at
the expense of interoperability provided by CAPIs).

Cryptoki token vendors can also define their owr
mechanisms, but for interoperability, registration
with PKCS is preferable.

to CDSA.) The approach in Figure 3 benefits application
developers with legacy Cryptoki-compliant code, which

do not require security services beyond cryptographic
services, and application developers who prefer the
Cryptoki programming style.

Figure 2: CDSA with a Cryptoki adaptation layer

application
CSSM CSSM API
Cryptol|<i adaptation CSSM SPI
2l Cryptoki API

Cryptoki library
Cryptoki driver
Token

Figure 3: Cryptoki with a mapper to CDSA

application Crvotoki AP
Cryptoki to CSSM Mapper ryptoki
CSSM CSSM API
CSSM SPI

Any CSSM-compliant cryptq
module. This module may
comply with another API
(e.g. Cryptoki), but use an
adaptation layer.

Note: Information in Tables 5 and 6 was received from Note: Figures 2 and 3 were received from corres-
correspondences with D. Ecklund and M. Wood at Intel. pondences with D. Ecklund and M. Wood at Intel.

6 Conclusion needed in a networked environment with data sharing.
These capabilities provide greater functionality for

CDSA and Cryptoki are both low-level crypto- . .
graphic APIs which allow application programmers to present work and future expansions. However, Cryptoki

specify algorithms, modes, and attributes when requesqancorporates more capability to directly interface to
ing a cryptographi,c opera’tion Both have been recom! ardware cryptographic tokens. The choice between the

. CAPIs may be further influenced by licensing, cost, cur-
mended by the NSA Cross Organizational CAPI Team.rent softw;/re and svstems. or erf)(;rmance ?ssues
Although CDSA is a fairly new architecture, it has been c ‘ yld ; I, q P dvi : .
recommended by DARPA, has been accepted as a com- Future work could include studying sequences 0
mercial standard by the Open Group, and has gained thedlls involved in making specific cryptographic
recent support of several influential companies. requests.

To generally compare the CSSM API calls to Cryp- 7/ Acknowledgments

toki's API calls, the functionality accessed by each call Denise Ecklund and Matt Wood from Intel (who led
in CSSM API and Cryptoki was compared, and callsintel's work on the PKCS #11 adaptation layer for
were rated as equivalent, roughly equivalent, or noiCDSA) provided significant input on the APl mappings,
equivalent. (A roughly equivalent rating was given whenand on implementation methods when API calls did not
functionality was “Implemented differently”, or when directly correspond. Amy Reiss, Neal Ziring, Bill Kutz,
due to the difference in architecture the calls had S|ight|yand Steve Sma”ey of the National Security Agency also
different purposes. ~ For example, = CDSAS provided valuable input and review of this document.
CSSM_CSP_Create*Context was rated roughly

equivalent to Cryptoki’'s C_CreateObject .) With [81] Sefeerencif)SA Specificati 207 1SBN 1
respect to cryptographic calls alone, 65% of crypto- pen Group pecifications c707, -
graphic calls were equivalent, and 23% were roughly 85912-194-2, 2 December 1997.

equivalent, and only 13% of the cryptographic calls had hutp://www.opengroup.org/pubs/catalog/c707.htm

; : . [2] Security Architecture for the AITS Reference
no analogue in the other APIl. When this rating was Architecture, Draft Revision 0.62. DARPA, June

applied toall CSSM API and Cryptoki calls mapped, 1997.

33% of the calls were rated as equwalgnt, 25% wer 3] Security Service API: Cryptographic API

rated as roughly equivalent, and 41% did not have ar ~ Recommendation, Updated and Abridged Edition.
analogue the other API. [9] It is important to note that NSA Cross Organizational CAPI Team, NSA.
service providers are not required to provide all func- October 1997MILCOM 97.

tionality accessible through the API calls, and both[4] “New Security Standard from the Open Group
CDSA and Cryptoki interfaces are extensible (at the Brings the Realization of High-Value E-Commerce

expense of interoperability). Igélgggéyggﬁ L?arsytgplglégher"' Open Group Press
The latter set of percentages (which show the simi- http:/IWV\}w.opengrdup.oré/press/Gjangs.htm

larity betweenall of the calls mapped) reflect the fact 5] PKCS #11: Cryptographic Token Interface
that the CDSA has a much more comprehensive securitg/ Standard, An RSA Laboratories Technical Note,

infrastructure, and therefore provides more auxiliary Version 2.01. December 22, 1997.

services to manage this infrastructure. While Cryptokiisig] “The Inevitability of Failure: The Flawed

simply a CAPI, CDSA also defines APIs to certificate, Assumption of Security in Modern Computing
data storage, and trust policy modules managed by the Environments.” P. Loscocco et al, National Security
CSSM. Auxiliary services provided by CDSA (and not ~ Agency. November 199Proceedings of the 21st
Cryptoki) include: CSSM self-checking, add-in module National Information Systems Security Conference

registration, user security context caching, and highl7] “Codes, Keys and Conflicts: Issues in U.S. Crypto
Policy.” Report of a Special Panel of the ACM U.S.
level CSSM memory management. Both CDSA and Public Policy Committee (USACM), June 1994.

Cryptoki provide some protection for sensitive objects . .
: : - 2 [8] “Secure Computing Threats and Safeguards”. Rita
e Jeys, However uhen protecng securly crta) . C. Stmmers NeGrawil, 1967,

P g sy ’] “A Comparison of CDSA to Cryptoki”. Ruth

security of the operating system must be considere Taylor, National Security Agency. February 1999.
when assessing the security of the overall system, as dis- R%3 Technote #R23-TECH-001-99.

cussed in [6][7] and “Operating System Importance” on
page 3.

Of the two APIs, CDSA may be preferred because of
the additional service interfaces and auxiliary services it
provides. For example, the trust, certificate, and data
storage libraries could provide the security services

	A Comparison of CDSA to Cryptoki
	Introduction
	Comments on CDSA and Cryptoki
	Mapping the Calls
	API Differences
	Porting Between the CAPIs
	Conclusion
	Acknowledgments
	References

	Table of Contents

