
Automatically Detecting Authentication Limitations in Commercial

Security Protocols

Stephen H. Brackin �

Arca Systems, Inc.

303 E. Yates St.

Ithaca, NY 14850

Abstract

Protocol failure, which occurs when an active wire-
tapper can obtain con�dential information or imper-
sonate a legitimate user, without performing cryptanal-
ysis, by blocking, replaying, or modifying messages, is
a surprisingly di�cult, and surprisingly common, prob-
lem. This paper describes how the Automatic Authenti-
cation Protocol Analyzer, 2nd Version (AAPA2), a fast
and completely automatic tool for �nding the vulnera-
bilities that give rise to protocol failure, reveals errors
in assumptions about the authentication capabilities of
two large commercial protocols.

1. Introduction

Cryptographic protocols, called simply protocols for
the remainder of this paper, are short sequences of mes-
sage exchanges, usually involving encryption, intended
to establish secure communication over insecure net-
works. A session is one execution of a protocol, and a
principal is a participant in a session. The basic goals
for protocols are nondisclosure (i.e., not revealing in-
formation to anyone not meant to receive it) and au-
thentication (i.e., con�rming the identities of principals
to each other).

Deciding whether protocols actually achieve these
goals, or can be subverted by an active wiretapper who
blocks, modi�es, replays, or mislabels messages, is a
notoriously di�cult problem [1]. Protocol failure [16]
occurs when an active wiretapper, or attacker, can ob-
tain restricted information or impersonate a legitimate
principal, from a correct implementation of the pro-
tocol and without performing rapid cryptanalysis, by
interfering in one or more sessions.

�This work was supportedby the AdvancedResearchProjects

Agency through Rome Laboratory contract F30602-97-C-0303.

Some tools for detecting protocol failure construct
possible attacks, using algebraic properties of the al-
gorithms used in a protocol [13, 15, 14]. Since the
number of possible attacks grows exponentially with
the number of messages in the protocol, the number of
�elds in these messages, the number of modeled alge-
braic properties of the algorithms, and the number of
possible simultaneous protocol runs, many protocol an-
alysts consider only simple protocols or leave out much
of protocols' detail. Lowe [12] has investigated per-
forming simpli�cations rigorously, so that they never
hide protocol failures.

The Automatic Authentication Protocol Analyzer,
2nd Version (AAPA2) takes a di�erent approach. It
addresses only part of the protocol failure problem,
though a large part | the AAPA2 gives correct results
for 44 to 46 of the 53 protocols in a library of protocols
analyzed in the literature [7] | and it addresses this
part quickly and automatically. The time the AAPA2
takes to analyze a protocol is only quadratic in the size
of the protocol, so it can analyze complicated proto-
cols in detail. By being able to consider these details,
an AAPA2 analysis can pick subtle errors out of huge
amounts of obscuring complexity.

The AAPA2 user begins by writing a speci�cation of
a protocol and its expected authentication properties
in the Interface Speci�cation Language, 2nd Version
(ISL2) [6]. The only hard part of the whole AAPA2
analysis process is extracting the information needed
for an ISL2 speci�cation from informal protocol doc-
umentation or sales material. ISL2 itself is so simple
that it can be explained in a few paragraphs; see Sec-
tion 2.

After the ISL2 speci�cation is written, the AAPA2
does the rest automatically. It translates the ISL2 into
Higher Order Logic (HOL) [11], uses the HOL98 theo-
rem prover [17] to automatically construct proofs [5] of
the protocol's desired properties in the BGNY2 iden-
ti�cation logic [4], and translates its proved and un-

proved results back into ISL2. The AAPA2 user does
not need to know HOL.

This paper describes using the AAPA2 to analyze
two complicated commercial protocols, the main- and
coin-sequence protocols from CyberCash, Inc. of Re-
ston, VA, a leading provider of secure internet commer-
cial services (see, for example, [10]). The AAPA2 shows
that these protocols do not authenticate customers to
merchants or merchants to customers; they just con-
�rm that someone with good credit bought or sold the
agreed product at the agreed price. This is adequate
for most, but not all, commercial purposes; see Section
5.4.

These results do not show problems in the protocols,
because the protocols were not intended to have these
authentication capabilities [9]. What these results do
show, though, are examples of how the AAPA2 reveals
speci�cation errors concealed by huge amounts of de-
tail, errors that could cause commercial or governmen-
tal users of commercial security software to accidentally
choose protocols inadequate for their needs.

The rest of this paper is organized as follows: Sec-
tion 2 introduces ISL2, giving enough information to
explain the ISL2 speci�cations of the main- and coin-
sequence protocols in Sections 5 and 6. Section 3 de-
scribes basic AAPA2 operation and the di�erent warn-
ing and failure messages that the AAPA2 produces.
Section 4 provides an overview of the main- and coin-
sequence protocols' ISL2 speci�cations, pointing out
properties of the various types of data used and in-
stances in which the speci�cations are written in par-
ticular ways to avoid AAPA2 limitations. Section 5 de-
scribes the main-sequence protocol and the AAPA2's
analysis of it, and Section 6 describes the coin-sequence
protocol and the AAPA2's analysis of it. Finally,
Section 7 summarizes the bene�ts of performing an
AAPA2 analysis for protocol designers and users.

2. Interface Speci�cation Language, 2nd
Version (ISL2)

The AAPA2's Interface Speci�cation Language, 2nd
Version (ISL2) [6] follows standard notation, uses intu-
itive terminology, and is largely self-explanatory.

An ISL2 speci�cation has six parts:

� An optional NAME string that the AAPA2 uses to
label its outputs.

� A DEFINITIONS section that names all the pieces
of plaintext and functions used in a correct pro-
tocol session, and gives all of the speci�cation's
assumptions about them.

� An optional ABBREVIATIONS section that de�nes
macros for simplifying the rest of the speci�cation.

� An INITIALCONDITIONS section that gives the pro-
tocol principals' assumed initial conditions.

� A PROTOCOL section that de�nes, on a stage by
stage basis, the messages exchanged in a correct
session | i.e., the pieces of data exchanged and
the statements that these exchanges are intended
to convey.

� A GOALS section that de�nes, on a stage by stage
basis, any authentication conditions that the mes-
sage transfer at that stage is intended to establish.

The user declares each piece of plaintext as having a
type that the user names. The AAPA2 takes these type
declarations as assumptions that the protocol's imple-
mentations can distinguish any two pieces of plaintext
of di�erent named types. The AAPA2's current imple-
mentation requires that all principal names (or equiv-
alently, network addresses) be of a type distinct from
that of all other pieces of plaintext, but these other
pieces of plaintext can be of any non-zero number of
types.

Functions in ISL2 can be declared as being of any
one of the following types:

� ENCRYPT | encryption function;

� HASH or KEYED HASH| hash or message authenti-
cation code function;

� KEYEXCHANGE| function for creating shared sym-
metric keys from public and private keys;

� PASSWORD | password table;

� PRIVKEY| private-key table or creation function;

� PUBKEY | public-key table or creation function;

� SYMKEY | symmetric-key table or creation func-
tion; or

� TYPEPRESERVING| function modifying a piece of
plaintext in a way that does not change its type,
e.g., a function that increments or decrements a
nonce or timestamp.

The DECLARATIONS section also gives the inverses of
any functions that the speci�cation assumes are invert-
ible. It gives inverses in three forms:

� f HASINVERSE g | neither f nor g uses a key and
g is the inverse of f ;

� f WITH ANYKEY HASINVERSE g WITH ANYKEY | f

and g are symmetric-key encryption/decryption
functions, and g used with any key is the inverse
of f used with the same key; or

� f WITH k1 HASINVERSE g WITH k2 | f and g are
public- or private-key encryption/decryption func-
tions, and g used with the key k2 is the inverse of
f used with the key k1.

After the DECLARATIONS section, {x}f(k) denotes x
encrypted with function f and key k.

ISL2 follows the notation convention that an initial
^ in a name means \not" or \opposite of", so that
if PKX is a public key then ^PKX is the corresponding
private key. The AAPA2 translates ^ to UN.

The speci�cations in Sections 5 and 6 also follow the
naming convention that abbreviations end with an un-
derscore, but that is just a convenience for the reader;
it is not part of the de�nition of ISL2.

The INITIALCONDITIONS, PROTOCOL, and GOALS sec-
tions use the following language for expressing as-
sumed, communicated, or established properties of pro-
tocol principals and the data they hold:

� Believes| the principal has adequate reason to
believe the statement.

� Conveyed | the principal was the true source of
the data item during the session.

� Fresh| the data item was created for the current
session, not taken from another session.

� PrivateKey| for the principal, using the decryp-
tion function, the data item is one of this princi-
pal's private keys.

� PublicKey | for the principal, using the encryp-
tion function, the date item is one of this princi-
pal's public keys;

� SharedSecret | for the two principals, the data
item is either known only to these principals, will
be known only to these principals, or will be known
only to these principals and other principals that
both of these principals trust.

See [4] for the formal de�nitions of all these constructs.
In the PROTOCOL section, the || operator binds a

statement to a data item. The protocol assumes that
the principal originating this data item will not send it
unless this principal believes this statement.

Finally, ISL2 accepts and ignores C-style comments.
The names following the �rst lines of all stages of both
protocols in Sections 5 and 6 are the names of the types
of messages being sent, as given in CyberCash's infor-
mal protocol speci�cations.

3. AAPA2 Operation

This section describes basic AAPA2 operation. The
AAPA2 asks whether the possibility of attacker inter-
ference makes it impossible for legitimate principals to
reach their desired authentication conclusions. Even if
things have gone perfectly, these principals do not know
that they have gone perfectly; every successful attack
creates the impression that nothing has gone wrong.

The BGNY2 logic that the AAPA2 uses to construct
its proofs departs from logics in the BAN [8] family by
not assuming that principals can always determine the
structure of the message �elds they receive and the
statements these �elds are intended to convey. Rather,
it models computationally feasible type and equality
checks that principals can perform to identify these
�elds, and imposes explicitness restrictions to guaran-
tee that the statements these �elds convey are well de-
�ned.

The identi�cations that can validly be made on the
basis of the type and equality checks that a principal
performs depend, of course, on exactly what those type
and equality checks are, but neither ISL2 nor BGNY2
model protocols in that detail. Instead, the BGNY2
logic assumes that principals perform all the type and
equality tests that they might reasonably be expected
to perform, assigning a computable type to every �eld.

As noted in Section 2, ISL2 allows the user to spec-
ify di�erent types of plaintext as being of types that
the protocol's implementations will distinguish. The
BGNY2 logic also assumes that all types of crypto-
text and hash codes are distinct from both each other
and all forms of plaintext; this makes the realistic as-
sumption that cryptotext and hash codes are produced
with headers that identify the algorithms used to pro-
duce them. An attacker could falsify these headers,
of course, but not expect legitimate principals to will-
ingly encrypt and send out information having a header
other than the expected one. Finally, the BGNY2 logic
assumes that tuples of di�erent lengths are of identi-
�ably di�erent types. This is realistic, since software
carrying out a protocol will malfunction if it does not
check that the data it is operating on is of roughly the
expected form.

In considering the possible �elds that could be con-
fused with an expected �eld, the BGNY2 logic only
considers �elds sent during a correct session. This ex-
cludes attacker-constructed �elds and �elds obtained
by oracle attacks; that level of attacker creativity is
too di�cult to model. This limitation is not so severe
as it might seem, though, because �elds whose sources
can be determined always involve secrets assumed un-
available to the attacker, and feasible type checks pre-

vent what would otherwise be most oracle attacks. The
BGNY2 logic also does two things that cover a broad
range of attack possibilities:

� It only allows a principal to identify �elds using
equality tests if this principal can be con�dent that
the values compared against are playing the roles
they play in a correct session. This models that
the attacker can change the values principals re-
ceive to cause subsequent tests using these values
to succeed when they should fail.

� It requires that �elds be identi�ably distinct from
�elds sent later in the session. This models that
the attacker can substitute �elds from later points
in earlier or parallel sessions if the tests that prin-
cipals perform to check freshness are inadequate.

The BGNY2 logic's explicitness rule only allows a
principal to believe the statement bound to a �eld if
every piece of plaintext in this statement is explicitly
contained in the �eld, treating encryption by a private
key as containing the name of the principal having this
private key and encryption by a shared-secret symmet-
ric key as containing the names of the principals shar-
ing it. This protects against the attacker sending the
�eld to a principal other than the one intended to re-
ceive it. Except for the possibilities raised by failed
explicitness checks, though, the BGNY2 logic makes
the fundamental, awed, assumption made by logics in
the BAN family that principals do not give away their
secrets, ignoring attacks that trick legitimate protocol
participants into giving away their secrets.

In constructing its proofs, the AAPA2 follows the
basic algorithm described in [2]. On a stage by stage
basis, where stage 0 gives the protocol's assumed ini-
tial conditions, it automatically constructs and proves,
where possible, a collection of default goals that express
the authentication properties of the protocol that are
likely to be of interest. The default goals for a stage
that begins with the receipt of a message include that
the message's sender was able to send it, that its re-
ceiver can decrypt any encrypted parts of it, that its
receiver can determine the source of each encrypted
or hashed part of it, and that its receiver can believe
any statements that the protocol binds to the sending
of these parts. Default goals are often false, since the
AAPA2 cannot tell what keys a principal is expected to
have in its possession at a particular stage. If a default
goal fails, the AAPA2 retries it at later stages.

After proving as many default goals as it can for a
stage, the AAPA2 checks whether the proved default
goals have the speci�ed authentication goals for that
stage, the user-set goals, as easy consequences. If not,

if signals a user-goal failure. The AAPA2 also signals
three additional types of failures:

� The BGNY2 logic allows a principal to infer the
source of an encrypted or hashed �eld only if this
principal can distinguish the �eld from other �elds
readily available to an attacker; if not, the AAPA2
signals an identi�cation failure.

� The BGNY2 logic allows a principal to determine
the statement conveyed by a �eld only if the pro-
tocol binds a unique statement to this �eld; if not,
the AAPA2 signals an ambiguity failure.

� The BGNY2 logic allows a principal to believe a
statement bound to a �eld only if every piece of
plaintext in this statement is explicitly contained
in the �eld itself; if not, the AAPA2 signals an
explicitness failure.

The AAPA2 gives a warning, but does not call it a fail-
ure, if it �nds that a protocol has principals do some-
thing to check for freshness | e.g., check timestamps
| other than look for information that they created
earlier in the session themselves. It has these \second-
class failures" as a convenience to users, since it would
otherwise label most protocols as failed [7]. Since
they can involve messages from di�erent sessions, the
AAPA2's identi�cation failures are particularly signif-
icant when they occur along with the AAPA2's warn-
ings.

The AAPA2 completes each analysis by making
properly labeled false assumptions as necessary [5].
This enables it to �nd more than one problem in an
ISL2 speci�cation in a single execution, and prevents
earlier vulnerabilities from hiding later ones.

The AAPA2's false assumptions also precisely iden-
tify the problem if the AAPA2 signals an explicitness
failure. In testing explicitness, the AAPA2 checks that
the set S of pieces of plaintext mentioned in a state-
ment is a subset of the set F of pieces of plaintext
contained in a message �eld. In testing whether one
set is a subset of another, the AAPA2 uses the equiv-
alence S � F () S [F = F , so a failed explicitness
check causes the AAPA2 to assume that a set equals
one of its proper subsets. Since the AAPA2 lists the
elements of a set so that the last elements added to
the set are listed �rst, reading from left to right, any
elements of S[F that are not also in F will be the left-
most elements, in a left-to-right list, of the elements of
S [F . This makes it easy to determine which pieces
of information needed to communicate a statement are
missing from a message �eld intended to communicate
this statement.

The AAPA2 produces terminal output describing its
progress in analyzing the protocol, any failures that it
encounters, and any false assumptions that it makes
to continue its analysis. After it �nishes the proto-
col's last stage, it produces terminal output stating
whether it raised warnings and/or found failures. If
it �nds one or more failures for an ISL2 speci�cation in
a �le foo.isl, it produces a �le foo.fail containing
ISL2 descriptions of all its unproved | usually par-
tially proved | default goals and a �le foo.prvd con-
taining ISL2 descriptions of all the theorems that it
did prove. Optional command-line ags cause it to
produce \failed" and \proved" �les even if it does not
�nd a failure.

4. Notes on the Speci�cations

This section describes basic attributes of the ISL2
speci�cations in Sections 5 and 6. It describes the
atomic pieces of data used in both speci�cations and
the assumptions the speci�cations make about them.
It also describes the simpli�cations, adaptations, and
potential inaccuracies in these speci�cations.

The three principals in both protocols, as they are
speci�ed in this paper, are Wallet, CashRegister, and
Gateway. These are collections of programs represent-
ing a customer, a merchant, and CyberCash, respec-
tively.

The main-sequence protocol uses both RSA public-
key encryption and DES symmetric-key encryption.
The coin-sequence protocol uses only DES encryption,
because it is computationally less expensive than RSA
encryption. Both protocols use the MD5 hash algo-
rithm.

The Date, MerchantDate, and ServerDate �elds
give not only the date, but also the time. They are
used as timestamps, and sometimes used to infer that
a message is fresh. The AAPA2 warns about these
inferences.

Gateway has public keys for each CashRegister and
Wallet in the main-sequence protocol. CashRegister
and Wallet use the indexes MerchantCyberKey and
CyberKey to tell Gateway that they are using the
keys PKMerchantCyberKey and PKCyberKey, respec-
tively. CashRegister and Wallet have the public keys
PKCashRegister and PKWallet, but only Gateway uses
these keys.

There are symmetric keys that are used as shared se-
crets between Gateway and CashRegister or Gateway
and Wallet in both protocols. In the main-sequence
protocol, these keys are conveyed to Gateway by en-
crypting them with appropriately chosen Gateway pub-
lic keys.

In both protocols, all secure communication is with
Gateway, though encrypted messages from Gateway

to Wallet are sent through CashRegister. Both
CashRegister and Wallet trust Gateway, but neither
trusts the other and Gateway trusts neither of them.

The other data items in the protocols, typically irrel-
evant to protocol failure, involve things such as credit
card data, price and currency-exchange data, response
codes, and error messages. Their names describe them
as well as they need to be understood in this paper.

The ISL2 models make the following simpli�cations:
Both models are inaccurate in that they identify

types of data elements with data elements, treat-
ing the types as if there were only one element of
each type. The item Type, for instance, in the
main- sequence speci�cation, assumed to originate with
CashRegister, is actually one of several message-type
identi�ers known to all principals. This inaccuracy
could be removed by complicating the model slightly.
The coin-sequence speci�cation makes more accurate
use of type and version identi�ers, having di�erent ones
for di�erent message types.

Prices used by the Wallet and CashRegister are
the same; there is no disagreement over price.

The coin-sequence speci�cation is for only one payer-
payee pair; lists are one element long.

ISL2 does not have an \X is involved in the same
transaction as Y and agrees with Y about its details"
predicate. Both speci�cations use assertions that X
conveyed particular messages it was expected to convey
in lieu of assertions using such a predicate.

The coin-sequence speci�cation puts session IDs and
session indexes together, in order, at the end of lists
containing them so that the AAPA2 will be able to
show that the pair is fresh. The AAPA2's BGNY2 logic
is not complete enough to deduce that a list must be
fresh if a pair of things in that list is fresh, regardless of
where or in what order the two parts of the pair occur.
This possibility extends to any tuple of elements of any
list considered in any order. It would be expensive to
check for these possibilities, since there are so many
of them, and this case does not arise often enough to
make doing so worthwhile.

MerchantAmount is a single single piece of data, with
functions to extract the currency and numerical value,
in the coin-sequence protocol.

5. Main-Sequence Protocol

This section describes the main-sequence protocol,
gives an ISL2 speci�cation for it that turns out to
accidentally assert authentication properties for this
protocol that it is not intended to have, gives the

AAPA2's analysis of this speci�cation, and shows how
the AAPA2's analysis picks the error out of a huge
amount of detail.

5.1. Informal Description

The main-sequence protocol handles credit card pur-
chases by Wallet from CashRegister. The following
stage descriptions informally de�ne the protocol as it
is speci�ed here | i.e., plausibly, but partially incor-
rectly. Note that although CashRegister and Wallet

both need to trust Gateway, neither needs to trust the
other.

1. CashRegister sends Wallet a payment request in-
cluding a price and a signed hash of data including
this price and other transaction details to be for-
warded to Gateway.

2. Wallet sends CashRegister information includ-
ing an unsigned copy of the hash CashRegister

sent Wallet, which CashRegister can use for in-
tegrity checks, a symmetric-key session key en-
crypted with one of Gateway's public keys, and
an opaque section encrypted with this session key.
CashRegister cannot decrypt either the session
key or the opaque section, but forwards them to
Gateway. The opaque section includes a signa-
ture by Wallet and a copy of the hash signed by
CashRegister that Wallet received in the stage-1
payment request.

3. CashRegister sends Gateway information includ-
ing the encrypted Wallet session key and opaque
section from stage 2, its own symmetric-key ses-
sion key encrypted with another of Gateway's pub-
lic keys, and a new merchant opaque section en-
crypted with the CashRegister session key that
includes a signature by CashRegister and con-
�rms that CashRegister and Wallet are involved
in the same transaction.

4. Gateway veri�es that Wallet and CashRegister

are both involved in the same transaction, pre-
pares replies for both of them, \opaque" and \mer-
chant opaque" sections encrypted with their re-
spective session keys, and sends CashRegister

both of these replies. CashRegister decrypts
the \merchant opaque" section and con�rms that
Gateway has con�rmed that it and Wallet are in-
volved in the same transaction and agree about its
details, particularly the price.

5. CashRegister forwards the opaque section from
stage 4 to Wallet. Wallet decrypts this section

and con�rms that Gateway has con�rmed that it
and Wallet are involved in the same transaction
and agree about its details.

5.2. ISL2 Speci�cation

The protocol's ISL2 speci�cation follows.

/*===

Main-sequence ISL2 specification

Stephen H. Brackin

===*/

NAME: "CyberCash main-sequence";

DEFINITIONS:

Name: CashRegister, Gateway, Wallet;

Data:

Accepts, AcquirerRefDataOptional,

ActionCode, AddnlResponseDataOptional,

Amount, AuthorizationCode,

AvsInfoOptional, BeginTransaction,

CardCIdOptional, CardCityOptional,

CardCountryOptional, CardExpirationDate,

CardName, CardNumber,

CardOtherFieldsOptional,

CardPostalCodeOptional,

CardPrefixOptional, CardSalt,

CardStateOptional, CardStreetOptional,

CardType, CyberKey, Date,

DebuggingInfoOptional,

DescriptionListOptional, EndTransaction,

Id, MerchantAmount,

MerchantAmount2Optional, MerchantCcId,

MerchantCyberKey, MerchantDate,

MerchantDba, MerchantLocationOptional,

MerchantMessage, MerchantOrderId,

MerchantResponseCode,

MerchantSwMessageOptional,

MerchantSwSeverityOptional,

MerchantSwVersion, MerchantTransaction,

MerchantUrlOptional, Message, Note,

OrderId, Payload, PayloadNote,

ProcessorErrorCodeFuture, ReportFeeOptional,

ResponseCode, ResponseDetailCodeFuture,

RetrievalReferenceNumberOptional,

ServerDate, ServerDateMerchantOptional,

ServiceCategory, SwMessageOptional,

SwSeverityOptional, SwVersion,

TerminalIdFuture, Transaction,

TransactionDescriptionOptional,

TransactionOriginal,

TransactionStatusOriginal, Type,

TypeOriginalOptional, UrlCancel, UrlFail,

UrlPayTo, UrlSuccess;

ENCRYPT FUNCTIONS: Des,Rsa;

HASH FUNCTIONS: MD5;

PRIVKEY FUNCTIONS: ^PK,^PKC,^PKW;

PUBKEY FUNCTIONS: PK,PKC,PKW;

SYMKEY FUNCTIONS: SKC,SKW;

Des WITH ANYKEY HASINVERSE Des WITH ANYKEY;

Rsa WITH PK(MerchantCcId) HASINVERSE

Rsa WITH ^PK(MerchantCcId);

Rsa WITH ^PK(MerchantCcId) HASINVERSE

Rsa WITH PK(MerchantCcId);

Rsa WITH PK(Id) HASINVERSE Rsa WITH ^PK(Id);

Rsa WITH ^PK(Id) HASINVERSE Rsa WITH PK(Id);

Rsa WITH PKW(Gateway) HASINVERSE

Rsa WITH ^PKW(Gateway);

Rsa WITH ^PKW(Gateway) HASINVERSE

Rsa WITH PKW(Gateway);

Rsa WITH PKC(Gateway) HASINVERSE

Rsa WITH ^PKC(Gateway);

Rsa WITH ^PKC(Gateway) HASINVERSE

Rsa WITH PKC(Gateway);

ABBREVIATIONS:

^CyberKey_ = ^PKW(Gateway);

^MerchantCyberKey_ = ^PKC(Gateway);

CyberKey_ = PKW(Gateway);

MerchantCyberKey_ = PKC(Gateway);

^PKCashRegister_ = ^PK(MerchantCcId);

^PKWallet_ = ^PK(Id);

PKCashRegister_ = PK(MerchantCcId);

PKWallet_ = PK(Id);

CashRegisterSessionKey_ = SKC(CashRegister);

WalletSessionKey_ = SKW(Wallet);

CardExpirationDateOptional_ =

CardExpirationDate;

CardNameOptional_ = CardName;

CardNumberOptional_ = CardNumber;

CardSaltOptional_ = CardSalt;

CardTypeOptional_ = CardType;

DatePR1_ = MerchantDate;

KeyCH1_ = MD5(PKWallet_);

MerchantDateOptional_ = MerchantDate;

MerchantKey_ = MD5(MerchantCyberKey_);

MerchantOpaqPrefixCM1_ =

{CashRegisterSessionKey_}

Rsa(MerchantCyberKey_);

MerchantSignedHashKey_ =

MD5(PKCashRegister_);

OpaqPrefixCH1_ =

{WalletSessionKey_}Rsa(CyberKey_);

PayloadHash_ = MD5(Payload);

ServiceCategoryOptional_ = ServiceCategory;

MerchantSignedHash_ =

{MD5(Accepts, DatePR1_, MerchantAmount,

MerchantCcId, MerchantOrderId,

MerchantSignedHashKey_, Note, Type,

UrlCancel, UrlFail, UrlPayTo,

UrlSuccess)

}Rsa(^PKCashRegister_);

PrHash_ =

MD5(Accepts, Date, MerchantAmount,

MerchantCcId, MerchantOrderId,

MerchantSignedHashKey_, Note, Type,

UrlCancel, UrlFail, UrlPayTo,

UrlSuccess);

PrSignedHash_ = MerchantSignedHash_;

MerchantSignatureCM1_ =

{MD5(CyberKey, Date, Id, MerchantAmount,

MerchantCcId, MerchantCyberKey,

MerchantDate, MerchantTransaction,

OrderId, PrHash_, PrSignedHash_,

ServerDateMerchantOptional,

Transaction, Type)

}Rsa(^PKCashRegister_);

SignatureCH1_ =

{MD5(Amount, CardCIdOptional,

CardCityOptional, CardCountryOptional,

CardExpirationDate, CardName,

CardNumber, CardOtherFieldsOptional,

CardPostalCodeOptional,

CardPrefixOptional, CardSalt,

CardStateOptional, CardStreetOptional,

CardType, CyberKey, Date, Id,

MerchantCcId, MerchantSignedHashKey_,

OrderId, PrHash_, PrSignedHash_,

SwVersion, Transaction, Type)

}Rsa(^PKWallet_);

MerchantOpaqueCM1_ =

{Date, DescriptionListOptional, Id,

MerchantAmount, MerchantDba,

MerchantLocationOptional, MerchantMessage,

MerchantSignedHashKey_,

MerchantSwMessageOptional,

MerchantSwSeverityOptional,

MerchantSwVersion, MerchantUrlOptional,

OrderId, PrHash_, PrSignedHash_,

RetrievalReferenceNumberOptional,

ServerDateMerchantOptional,

TerminalIdFuture, Transaction,

TransactionDescriptionOptional, Type,

MerchantKey_, MerchantSignatureCM1_

}Des(CashRegisterSessionKey_);

MerchantOpaqueCM6_ =

{AcquirerRefDataOptional, ActionCode,

AddnlResponseDataOptional,

AuthorizationCode, AvsInfoOptional,

CardCIdOptional, CardCityOptional,

CardCountryOptional,

CardExpirationDateOptional_,

CardNameOptional_, CardNumberOptional_,

CardPostalCodeOptional, CardPrefixOptional,

CardStateOptional, CardStreetOptional,

CardTypeOptional_, Date,

DebuggingInfoOptional, Id, MerchantMessage,

MerchantSignedHashKey_,

MerchantSwMessageOptional,

MerchantSwSeverityOptional, OrderId,

ProcessorErrorCodeFuture, PrHash_,

PrSignedHash_, MerchantResponseCode,

ResponseDetailCodeFuture,

RetrievalReferenceNumberOptional,

ServerDate, TerminalIdFuture, Transaction,

Type

}Des(CashRegisterSessionKey_);

OpaqueCH1_ =

{Amount, CardCIdOptional, CardCityOptional,

CardCountryOptional, CardExpirationDate,

CardName, CardNumber,

CardOtherFieldsOptional,

CardPostalCodeOptional, CardPrefixOptional,

CardSalt, CardStateOptional,

CardStreetOptional, CardType, SwVersion,

KeyCH1_, SignatureCH1_

}Des(WalletSessionKey_);

OpaqueCM6_ =

{Amount, AuthorizationCode, CardCIdOptional,

CardCityOptional, CardCountryOptional,

CardExpirationDateOptional_,

CardNameOptional_, CardNumberOptional_,

CardOtherFieldsOptional,

CardPostalCodeOptional, CardPrefixOptional,

CardSaltOptional_, CardStateOptional,

CardStreetOptional, CardTypeOptional_,

MerchantDba, MerchantLocationOptional,

MerchantUrlOptional, Message, OrderId,

ResponseCode, ServerDate,

SwMessageOptional, SwSeverityOptional,

TransactionDescriptionOptional

}Des(WalletSessionKey_);

INITIALCONDITIONS:

CashRegister Received /* functions */

Des,Rsa,MD5,PK,SKC;

CashRegister Received /* keys */

^PKCashRegister_,

MerchantCyberKey_;

CashRegister Believes /* key beliefs */

(PrivateKey CashRegister Rsa

^PKCashRegister_;

PublicKey Gateway Rsa MerchantCyberKey_;

SharedSecret CashRegister Gateway

CashRegisterSessionKey_);

CashRegister Received /* other data */

Accepts, DescriptionListOptional, Gateway,

MerchantAmount, MerchantAmount2Optional,

MerchantCcId, MerchantCyberKey,

MerchantDate, MerchantDba,

MerchantLocationOptional, MerchantMessage,

MerchantOrderId, MerchantSwMessageOptional,

MerchantSwSeverityOptional,

MerchantSwVersion, MerchantTransaction,

MerchantUrlOptional, Note, Payload,

PayloadNote,

RetrievalReferenceNumberOptional,

ServerDateMerchantOptional,

TerminalIdFuture,

TransactionDescriptionOptional, Type,

UrlCancel, UrlFail, UrlPayTo, UrlSuccess,

Wallet;

CashRegister Believes /* other beliefs */

(Fresh MerchantDate; Trustworthy Gateway);

Gateway Received /* functions */

Des,Rsa,MD5,^PKC,^PKW,PK,PKC,PKW;

Gateway Believes /* key beliefs */

(PrivateKey Gateway Rsa ^CyberKey_;

PrivateKey Gateway Rsa ^MerchantCyberKey_;

PublicKey CashRegister Rsa PKCashRegister_;

PublicKey Wallet Rsa PKWallet_);

Gateway Received /* other data */

AcquirerRefDataOptional, ActionCode,

AddnlResponseDataOptional,

AuthorizationCode, AvsInfoOptional,

DebuggingInfoOptional, MerchantResponseCode,

Message, ProcessorErrorCodeFuture,

ResponseCode, ResponseDetailCodeFuture,

ServerDate, SwMessageOptional,

SwSeverityOptional;

Gateway Believes /* other beliefs */

(Fresh Date; Fresh MerchantDate);

Wallet Received /* functions */

Des,Rsa,MD5,PK,SKW;

Wallet Received /* keys */

^PKWallet_, CyberKey_;

Wallet Believes /* key beliefs */

(PrivateKey Wallet Rsa ^PKWallet_;

PublicKey Gateway Rsa CyberKey_;

SharedSecret Wallet Gateway

WalletSessionKey_);

Wallet Received /* other data */

Amount, CardCIdOptional, CardCityOptional,

CardCountryOptional, CardExpirationDate,

CardName, CardNumber,

CardOtherFieldsOptional,

CardPostalCodeOptional, CardPrefixOptional,

CardSalt, CardStateOptional,

CardStreetOptional, CardType, CyberKey,

Date, Id, OrderId, ServiceCategory,

SwVersion, Transaction;

Wallet Believes /* other beliefs */

(Fresh Date; Fresh ServerDate;

Trustworthy Gateway);

PROTOCOL:

1. CashRegister -> Wallet: /* PR1 */

Accepts, MerchantAmount,

MerchantAmount2Optional, MerchantCcId,

MerchantOrderId, MerchantDate,

MerchantSwVersion, Note, Payload,

PayloadNote, Type, UrlCancel, UrlFail,

UrlPayTo, UrlSuccess,

MerchantSignedHashKey_, PayloadHash_,

MerchantSignedHash_;

2. Wallet -> CashRegister: /* CH1 */

CyberKey, Date, Id, MerchantCcId,

MerchantDateOptional_,

MerchantSignedHashKey_, OrderId,

ServiceCategoryOptional_, Transaction,

Type, PrHash_, PrSignedHash_,

OpaqPrefixCH1_, OpaqueCH1_;

3. CashRegister -> Gateway: /* CM1 */

CyberKey, MerchantCcId, MerchantCyberKey,

MerchantDate, MerchantTransaction,

ServiceCategory, OpaqPrefixCH1_,

OpaqueCH1_, MerchantOpaqPrefixCM1_,

MerchantOpaqueCM1_;

4. Gateway -> CashRegister: /* CM6 */

MerchantCcId, MerchantTransaction,

MerchantDate, ServiceCategoryOptional_,

MerchantOpaqueCM6_

||(Wallet Conveyed SignatureCH1_),

OpaqueCM6_

||(CashRegister Conveyed

MerchantSignatureCM1_);

5. CashRegister -> Wallet: /* CH2 */

Date, MerchantCcId, MerchantDate,

MerchantMessage, MerchantResponseCode,

MerchantSignedHashKey_, MerchantSwVersion,

Id, PrHash_, PrSignedHash_,

ServiceCategoryOptional_, Transaction,

Type, OpaqueCM6_;

GOALS:

3. Gateway Believes Wallet Conveyed

SignatureCH1_;

Gateway Believes CashRegister Conveyed

MerchantSignatureCM1_;

4. CashRegister Believes Gateway Conveyed

MerchantOpaqueCM6_;

CashRegister Believes Wallet Conveyed

SignatureCH1_;

5. Wallet Believes Gateway Conveyed

OpaqueCM6_;

Wallet Believes CashRegister Conveyed

MerchantSignatureCM1_;

5.3. AAPA2 Response

The AAPA2's response to this speci�cation, edited
to �t IEEE article format, follows. The AAPA2 pro-
duces this response, on a 128-meg Ultra 1, in 1 hour,
48 minutes, and 13 seconds.

Beginning CyberCash main-sequence proofs

Warning! Principal Gateway believes term

Date

is fresh, but it does not create this term

Warning! Principal Gateway believes term

MerchantDate

is fresh, but it does not create this term

Warning! Principal Wallet believes term

ServerDate

is fresh, but it does not create this term

Proving default goals, stage 1

Retrying failed default goals, stage 1

Proving user goals, stage 1

Proving default goals, stage 2

Retrying failed default goals, stage 2

Proving user goals, stage 2

Proving default goals, stage 3

Retrying failed default goals, stage 3

Proving user goals, stage 3

Proving default goals, stage 4

Explicitness failure, stage: 4! Term

{AcquirerRefDataOptional, ActionCode,

AddnlResponseDataOptional,

AuthorizationCode, AvsInfoOptional,

CardCIdOptional, CardCityOptional,

CardCountryOptional, CardExpirationDate,

CardName, CardNumber,

CardPostalCodeOptional,

CardPrefixOptional, CardStateOptional,

CardStreetOptional, CardType, Date,

DebuggingInfoOptional, Id,

MerchantMessage, MD5(PK(MerchantCcId)),

MerchantSwMessageOptional,

MerchantSwSeverityOptional, OrderId,

ProcessorErrorCodeFuture,

MD5(Accepts, Date, MerchantAmount,

MerchantCcId, MerchantOrderId,

MD5(PK(MerchantCcId)), Note, Type,

UrlCancel, UrlFail, UrlPayTo, UrlSuccess),

{MD5(Accepts, MerchantDate,

MerchantAmount, MerchantCcId,

MerchantOrderId, MD5(PK(MerchantCcId)),

Note, Type, UrlCancel, UrlFail, UrlPayTo,

UrlSuccess)}Rsa(UNPK(MerchantCcId)),

MerchantResponseCode,

ResponseDetailCodeFuture,

RetrievalReferenceNumberOptional,

ServerDate, TerminalIdFuture, Transaction,

Type}Des(SKC(CashRegister))

does not contain the data needed to

communicate statement

Wallet Conveyed {MD5(Amount,

CardCIdOptional, CardCityOptional,

CardCountryOptional, CardExpirationDate,

CardName, CardNumber,

CardOtherFieldsOptional,

CardPostalCodeOptional, CardPrefixOptional,

CardSalt, CardStateOptional,

CardStreetOptional, CardType, CyberKey,

Date, Id, MerchantCcId,

MD5(PK(MerchantCcId)), OrderId,

MD5(Accepts, Date, MerchantAmount,

MerchantCcId, MerchantOrderId,

MD5(PK(MerchantCcId)), Note, Type,

UrlCancel, UrlFail, UrlPayTo, UrlSuccess),

{MD5(Accepts, MerchantDate, MerchantAmount,

MerchantCcId, MerchantOrderId,

MD5(PK(MerchantCcId)), Note, Type,

UrlCancel, UrlFail, UrlPayTo,

UrlSuccess)}Rsa(UNPK(MerchantCcId)),

SwVersion, Transaction, Type)}Rsa(UNPK(Id))

Making the false assumption

AX1: {Wallet, CashRegister, Gateway,

AcquirerRefDataOptional, ActionCode,

AddnlResponseDataOptional,

AuthorizationCode, AvsInfoOptional,

CardCIdOptional, CardCityOptional,

CardCountryOptional, CardExpirationDate,

CardName, CardNumber,

CardPostalCodeOptional, CardPrefixOptional,

CardStateOptional, CardStreetOptional,

CardType, DebuggingInfoOptional, Id,

MerchantMessage, MerchantSwMessageOptional,

MerchantSwSeverityOptional, OrderId,

ProcessorErrorCodeFuture, Date, Accepts,

MerchantDate, MerchantAmount, MerchantCcId,

MerchantOrderId, Note, UrlCancel, UrlFail,

UrlPayTo, UrlSuccess, MerchantResponseCode,

ResponseDetailCodeFuture,

RetrievalReferenceNumberOptional,

ServerDate, TerminalIdFuture, Transaction,

Type} =

{CashRegister, Gateway,

AcquirerRefDataOptional, ActionCode,

AddnlResponseDataOptional,

AuthorizationCode, AvsInfoOptional,

CardCIdOptional, CardCityOptional,

CardCountryOptional, CardExpirationDate,

CardName, CardNumber,

CardPostalCodeOptional, CardPrefixOptional,

CardStateOptional, CardStreetOptional,

CardType, DebuggingInfoOptional, Id,

MerchantMessage, MerchantSwMessageOptional,

MerchantSwSeverityOptional, OrderId,

ProcessorErrorCodeFuture, Date, Accepts,

MerchantDate, MerchantAmount, MerchantCcId,

MerchantOrderId, Note, UrlCancel, UrlFail,

UrlPayTo, UrlSuccess, MerchantResponseCode,

ResponseDetailCodeFuture,

RetrievalReferenceNumberOptional,

ServerDate, TerminalIdFuture, Transaction,

Type};

and continuing analysis of protocol

Retrying failed default goals, stage 4

Proving user goals, stage 4

Proving default goals, stage 5

Explicitness failure, stage: 5! Term

{Amount, AuthorizationCode,

CardCIdOptional, CardCityOptional,

CardCountryOptional, CardExpirationDate,

CardName, CardNumber,

CardOtherFieldsOptional,

CardPostalCodeOptional,

CardPrefixOptional, CardSalt,

CardStateOptional, CardStreetOptional,

CardType, MerchantDba,

MerchantLocationOptional,

MerchantUrlOptional, Message, OrderId,

ResponseCode, ServerDate,

SwMessageOptional, SwSeverityOptional,

TransactionDescriptionOptional}

Des(SKW(Wallet))

does not contain the data needed to

communicate statement

CashRegister Conveyed {MD5(CyberKey, Date,

Id, MerchantAmount, MerchantCcId,

MerchantCyberKey, MerchantDate,

MerchantTransaction, OrderId,

MD5(Accepts, Date, MerchantAmount,

MerchantCcId, MerchantOrderId,

MD5(PK(MerchantCcId)), Note, Type,

UrlCancel, UrlFail, UrlPayTo, UrlSuccess),

{MD5(Accepts, MerchantDate, MerchantAmount,

MerchantCcId, MerchantOrderId,

MD5(PK(MerchantCcId)), Note, Type,

UrlCancel, UrlFail, UrlPayTo,

UrlSuccess)}Rsa(UNPK(MerchantCcId)),

ServerDateMerchantOptional, Transaction,

Type)}Rsa(UNPK(MerchantCcId))

Making the false assumption

AX2: {CashRegister, Wallet, Gateway,

Amount, AuthorizationCode, CardCIdOptional,

CardCityOptional, CardCountryOptional,

CardExpirationDate, CardName, CardNumber,

CardOtherFieldsOptional,

CardPostalCodeOptional, CardPrefixOptional,

CardSalt, CardStateOptional,

CardStreetOptional, CardType, MerchantDba,

MerchantLocationOptional,

MerchantUrlOptional, Message, OrderId,

ResponseCode, ServerDate,

SwMessageOptional, SwSeverityOptional,

TransactionDescriptionOptional} =

{Wallet, Gateway,

Amount, AuthorizationCode, CardCIdOptional,

CardCityOptional, CardCountryOptional,

CardExpirationDate, CardName, CardNumber,

CardOtherFieldsOptional,

CardPostalCodeOptional, CardPrefixOptional,

CardSalt, CardStateOptional,

CardStreetOptional, CardType, MerchantDba,

MerchantLocationOptional,

MerchantUrlOptional, Message, OrderId,

ResponseCode, ServerDate,

SwMessageOptional, SwSeverityOptional,

TransactionDescriptionOptional};

and continuing analysis of protocol

Retrying failed default goals, stage 5

Proving user goals, stage 5

Warning(s) and failure(s):

CyberCash main-sequence

5.4. Interpretation

Note in each of the explicitness failures that the
AAPA2 raises for this speci�cation that despite the
huge amount of protected information that is trans-
mitted, one critical item, the name of the customer or
merchant, is missing. This makes possible the following
scenario:

Bill Clinton to Tony Blair: \How would you like to
buy a nice Trident submarine? Your choice of uphol-
stery colors! Only $1 billion."

[Saddam Hussein intercepts message]
Saddam Hussein to Bill Clinton, falsifying address

labels to pretend to be Tony Blair: \Sure. Make the
upholstery red. Here's my CyberCash ID and the data
that CyberCash can use to con�rmmy identity and the
details of the trade."

Bill Clinton to CyberCash: \Here is my information
and my customer's information for making a trade."

CyberCash to Bill Clinton: \Here is your con�rma-
tion that the purchaser's ID was valid and that a Tri-
dent submarine with red upholstery was sold for $1
billion. Here also is a package that you can send your
customer to con�rm the trade.".

Bill Clinton to Tony Blair: \Here is your trade con-
�rmation from CyberCash."

[Saddam Hussein blocks message]
Later:
\How do you like your new submarine?"
\What submarine?"
The level of authentication provided by the main-

sequence protocol is thus not adequate for military
purposes or for commercial purposes in which the mer-
chant must know the identity of the customer or the

customer must know the identity of the merchant.
This authentication limitation of the protocol is not

noted in [12], which is interesting because that e�ort
uses techniques intended to be more thorough than an
AAPA2 analysis.

The AAPA2's objections to this protocol can be
eliminated by removing all statements bound to mes-
sage �elds and changing the GOALS section to simply:

3. Gateway Believes Wallet Conveyed

SignatureCH1_;

Gateway Believes CashRegister Conveyed

MerchantSignatureCM1_;

4. CashRegister Believes Gateway Conveyed

MerchantOpaqueCM6_;

5. Wallet Believes Gateway Conveyed

OpaqueCM6_;

The AAPA2 still outputs warnings because the pro-
tocol takes the timestamps Date, MerchantDate, and
ServerDate as adequate evidence of freshness, but it
signals no failures. This time the AAPA2 completes
its analysis on a 128-meg Ultra 1 in 43 minutes, 35
seconds.

6. Coin-Sequence Protocol

This section describes the coin-sequence protocol,
gives an ISL2 speci�cation for it that turns out to
accidentally assert authentication properties for this
protocol that it is not intended to have, gives the
AAPA2's analysis of this speci�cation, and shows how
the AAPA2's analysis picks the error out of a huge
amount of detail.

6.1. Informal Description

As noted in Section 4, for simplicity the ISL2 speci�-
cation given here shows only the case of a single Wallet
making purchases from a single CashRegister. The
generalization to many Wallets making purchases from
a single CashRegister is straightforward. The ISL2
speci�cation also assumes that all optional �elds are
present.

The coin-sequence protocol is in many ways simi-
lar to the main-sequence protocol. In both protocols,
Wallet sends information to CashRegister, which for-
wards it to Gateway. Gateway debits Wallet's account
and credits CashRegister's account, then sends in-
formation back to CashRegister to be forwarded to
Wallet. The following are the main di�erences be-
tween the two protocols:

Instead of sending session keys encrypted with
Gateway's public keys, Wallet and CashRegister use
session keys computed from PayerSessionMasterKey

and PayeeSessionMasterKey, respectively. These
master keys are distributed using a di�erent proto-
col, not shown here. Wallet uses the main-sequence
protocol to initialize its account with Gateway. As
explained in Section 4, the ISL2 speci�cation models
the computation of the session keys by assuming that
the computed session keys PayerTransactionKey and
PayeeTransactionKey are initially held shared se-
crets between Wallet and Gateway and CashRegister

and Gateway, respectively.
Instead of constructing signatures by comput-

ing private-key RSA encryptions of hashes, Wallet,
CashRegister and Gateway construct signatures by
computing ordinary MD5 hashes of information includ-
ing shared secrets. The secret shared for this purpose
by Wallet and Gateway is PayerSessionSalt and the
secret shared for this purpose by CashRegister and
Gateway is PayeeSessionSalt.

CashRegister does not give a signature to Wallet,
and Wallet does not incorporate this signature into the
information it signs for Gateway. For the sorts of small
purchases made with the coin protocol, it is presum-
ably not important that the initial request for payment
came from the merchant from whom the purchase was
actually made.

The following stage descriptions give an informal
de�nition of the coin-sequence protocol as it is spec-
i�ed here | i.e., plausibly, but partially incorrectly.

1. CashRegister sends Wallet a request for pay-
ment, including a price.

2. Wallet sends CashRegister a message, encrypted
with PayerTransactionKey , to be forwarded to
Gateway. This message includes the price Wallet
has agreed to pay and a signature produced with
PayerSessionSalt.

3. CashRegister sends Gateway the encrypted mes-
sage from Wallet, as one of a list of such mes-
sages, along with its own message, encrypted with
PayeeTransactionKey , giving the prices it has
agreed to accept. Gateway con�rms that all the
Wallet messages are for transactions with this
CashRegister, and that they agree on the details,
including the price, of the transactions.

4. Gateway sends CashRegister a reply containing
a hash of data including PayeeSessionSalt, con-
�rming that it has accepted the list of coin pur-
chases from CashRegister, encrypting this re-
ply with PayeeTransactionKey . It also sends

CashRegister a list of replies, encrypted with ap-
propriate PayerTransactionKey values and con-
taining signatures that are hashes of data includ-
ing appropriate PayerSessionSalt values, to be
forwarded to the various Wallets.

5. CashRegister forwards a list of Gateway replies to
a particular Wallet, from stage 4, to that Wallet,
which can con�rm Gateway's billing of its pur-
chases to its account.

6.2. ISL2 Speci�cation

This protocol's ISL2 speci�cation follows:

/*===

Coin-sequence ISL2 specification

Stephen H. Brackin

===*/

NAME: "CyberCash coin-sequence";

DEFINITIONS:

Name: CashRegister, Gateway, Wallet;

Data:

Accepts, CollectedAmount, Fee,

ForeignExchangeOptional, MerchantAmount,

MerchantAmount2Optional, MerchantCcId,

MerchantDate, MerchantMessageOptional,

MerchantOrderId,

MerchantResponseCodeOptional,

MerchantSwVersion, MessageOptional, Note,

OrderIdOptional, PayeeIndex, PayeeSessionId,

PayerIndex, PayerSessionId, Payload,

PayloadNote, ProblemOptional,

RequestVersion, ResponseCode,

ServiceCategory, SubType, SubVersion,

TypeCA1, TypeCA2, TypeCA3, TypeCA4, TypePR1,

UrlCancel, UrlFail, UrlPayTo, UrlSuccess,

VersionCA1, VersionCA2, VersionCA3,

VersionCA4;

ENCRYPT FUNCTIONS: Des;

HASH FUNCTIONS: MD5;

SYMKEY FUNCTIONS:

GenerateKey,SMaster,SPayload,SSalt;

TYPEPRESERVING FUNCTIONS: ExtractCurrency;

Des WITH ANYKEY HASINVERSE Des WITH ANYKEY;

ABBREVIATIONS:

PayeeSessionMasterKey_ = SMaster(PayeeIndex);

PayeeSessionSalt_ = SSalt(PayeeIndex);

PayerSessionMasterKey_ = SMaster(PayerIndex);

PayerSessionSalt_ = SSalt(PayerIndex);

PayloadKey_ = SPayload(Wallet);

Amount_ = MerchantAmount;

CollectedAmountList_ = CollectedAmount;

IndexList_ = PayeeIndex;

MerchantAmountList_ = MerchantAmount;

MessageOptionalList_ = MessageOptional;

NoteHash_ = MD5(Note);

OrderIdOptionalList_ = OrderIdOptional;

PayeeCurrency_ =

ExtractCurrency(MerchantAmount);

PayeeId_ = MerchantCcId;

PayeeTransactionKey_ =

GenerateKey

(PayeeIndex,PayeeSessionMasterKey_,TypeCA2,

VersionCA2);

PayerIndexList_ = PayerIndex;

PayerSessionIdList_ = PayerSessionId;

PayerTransactionKey_ =

GenerateKey

(PayerIndex,PayerSessionMasterKey_,TypeCA1,

VersionCA1);

PayloadHash_ = MD5(Payload);

PayloadKeyOptional_ = PayloadKey_;

PayloadKeyOptionalList_ = PayloadKey_;

ResponseCodeList_ = ResponseCode;

ServiceCategoryOptional_ = ServiceCategory;

SessionIdList_ = PayeeSessionId;

SubTypeList_ = SubType;

SubVersionList_ = SubVersion;

NoteHashList_ = NoteHash_;

PayloadHashOptional_ = PayloadHash_;

ServerSignatureCA3_ =

MD5(Fee, MessageOptional, PayeeSessionSalt_,

ProblemOptional, RequestVersion,

ResponseCode, ServiceCategory, SubType,

SubVersion, TypeCA3, VersionCA3,

CollectedAmountList_, IndexList_,

MessageOptionalList_,

OrderIdOptionalList_, ResponseCodeList_,

SessionIdList_, SubTypeList_,

SubVersionList_,

PayeeSessionId, /* Shows pair fresh */

PayeeIndex);

ServerSignatureCA4_ =

MD5(Amount_, ForeignExchangeOptional,

MessageOptional, OrderIdOptional,

PayloadHashOptional_,

PayloadKeyOptional_, PayerSessionSalt_,

RequestVersion, ResponseCode, TypeCA3,

VersionCA3,

PayerSessionId, /* Shows pair fresh */

PayerIndex);

SignatureCA1_ =

MD5(Amount_, NoteHash_, OrderIdOptional,

PayeeCurrency_, PayeeId_,

PayerSessionSalt_, PayloadHashOptional_,

TypeCA1, VersionCA1,

PayerSessionId, /* Shows pair fresh */

PayerIndex);

OpaqueCA1_ =

{Amount_, SignatureCA1_

}Des(PayerTransactionKey_);

OpaqueCA3_ =

{Fee, MessageOptional, ProblemOptional,

RequestVersion, ResponseCode, SubType,

SubVersion, CollectedAmountList_,

OrderIdOptionalList_, IndexList_,

MessageOptionalList_, ResponseCodeList_,

SessionIdList_, SubTypeList_,

SubVersionList_, ServerSignatureCA3_

}Des(PayeeTransactionKey_);

OpaqueListCA2_ = OpaqueCA1_;

OpaqueListCA3_ =

{Amount_, ForeignExchangeOptional,

MessageOptional, OrderIdOptional,

PayloadHashOptional_, PayloadKeyOptional_,

RequestVersion, ResponseCode,

ServerSignatureCA4_

}Des(PayerTransactionKey_);

PayloadHashOptionalList_ =

PayloadHashOptional_;

OpaqueCA4_ = OpaqueListCA3_;

SignatureCA2_ =

MD5(PayeeSessionSalt_, ServiceCategory,

SubType, SubVersion, TypeCA2,

VersionCA2, MerchantAmountList_,

NoteHashList_, OrderIdOptionalList_,

PayerIndexList_, PayerSessionIdList_,

PayloadHashOptionalList_, SubTypeList_,

SubVersionList_, PayeeSessionId,

PayeeIndex);

OpaqueCA2_ =

{SubType, SubVersion, MerchantAmountList_,

NoteHashList_, OrderIdOptionalList_,

PayerIndexList_, PayerSessionIdList_,

PayloadHashOptionalList_,

PayloadKeyOptionalList_,

SubTypeList_, SubVersionList_,

SignatureCA2_

}Des(PayeeTransactionKey_);

INITIALCONDITIONS:

CashRegister Received /* functions */

Des,GenerateKey,MD5,SPayload;

CashRegister Received /* keys */

PayeeSessionMasterKey_, PayeeSessionSalt_;

CashRegister Believes /* key beliefs */

(SharedSecret CashRegister Gateway

PayeeSessionMasterKey_;

SharedSecret CashRegister Gateway

PayeeSessionSalt_;

SharedSecret CashRegister Wallet

PayloadKey_);

CashRegister Received /* other data */

Accepts, Gateway, MerchantAmount,

MerchantAmount2Optional, MerchantCcId,

MerchantDate, MerchantMessageOptional,

MerchantOrderId,

MerchantResponseCodeOptional,

MerchantSwVersion, Note, PayeeIndex,

PayeeSessionId, Payload, PayloadNote,

SubType, SubVersion, TypeCA2, TypeCA4,

TypePR1, UrlCancel, UrlFail, UrlPayTo,

UrlSuccess, VersionCA2, VersionCA4, Wallet;

CashRegister Believes

(Fresh PayeeSessionId,PayeeIndex;

Trustworthy Gateway;

SharedSecret CashRegister Gateway

PayeeTransactionKey_);

Gateway Received /* functions */

Des,ExtractCurrency,GenerateKey,MD5,SMaster,

SSalt;

Gateway Believes /* key beliefs */

(SharedSecret Gateway CashRegister

PayeeSessionMasterKey_;

SharedSecret Gateway CashRegister

PayeeSessionSalt_;

SharedSecret Gateway Wallet

PayerSessionMasterKey_;

SharedSecret Gateway Wallet

PayerSessionSalt_);

Gateway Received /* other data */

CollectedAmount, Fee,

ForeignExchangeOptional, MerchantCcId,

MessageOptional, ProblemOptional,

ResponseCode, RequestVersion, TypeCA1,

TypeCA3, VersionCA1, VersionCA3;

Gateway Believes

(Fresh PayeeSessionId,PayeeIndex;

Fresh PayerSessionId,PayerIndex;

SharedSecret Gateway CashRegister

PayeeTransactionKey_;

SharedSecret Gateway Wallet

PayerTransactionKey_);

Wallet Received /* functions */

Des,ExtractCurrency,GenerateKey,MD5;

Wallet Received /* keys */

PayerSessionMasterKey_, PayerSessionSalt_;

Wallet Believes /* key beliefs */

(SharedSecret Wallet Gateway

PayerSessionMasterKey_;

SharedSecret Wallet Gateway

PayerSessionSalt_);

Wallet Received /* other data */

OrderIdOptional, PayerIndex, PayerSessionId,

ServiceCategory, TypeCA1, TypeCA3,

VersionCA1, VersionCA3;

Wallet Believes

(Fresh PayerSessionId,PayerIndex;

Trustworthy Gateway;

SharedSecret Wallet Gateway

PayerTransactionKey_);

PROTOCOL:

1. CashRegister -> Wallet: /* PR1 */

Accepts, MerchantAmount,

MerchantAmount2Optional, MerchantCcId,

MerchantOrderId, MerchantDate,

MerchantSwVersion, Note, PayloadNote,

TypePR1, UrlCancel, UrlFail, UrlPayTo,

UrlSuccess, PayloadHash_,

{Payload}Des(PayloadKey_);

2. Wallet -> CashRegister: /* CA1 */

NoteHash_, OrderIdOptional,

PayeeCurrency_, PayeeId_, PayerIndex,

PayerSessionId, PayloadHashOptional_,

ServiceCategory, TypeCA1, VersionCA1,

OpaqueCA1_;

3. CashRegister -> Gateway: /* CA2 */

PayeeIndex, ServiceCategory,

PayeeSessionId, TypeCA2, VersionCA2,

OpaqueCA2_, OpaqueListCA2_;

4. Gateway -> CashRegister: /* CA3 */

PayeeIndex, ServiceCategory,

PayeeSessionId, TypeCA3, VersionCA3,

OpaqueCA3_

||(Wallet Conveyed SignatureCA1_),

OpaqueListCA3_

||(CashRegister Conveyed SignatureCA2_);

5. CashRegister -> Wallet: /* CA4 */

MerchantMessageOptional,

MerchantResponseCodeOptional,

OrderIdOptional, PayerIndex,

ServiceCategoryOptional_, PayerSessionId,

TypeCA4, VersionCA4, OpaqueCA4_;

GOALS:

3. Gateway Believes CashRegister Conveyed

OpaqueCA2_;

Gateway Believes CashRegister Conveyed

SignatureCA2_;

Gateway Believes Wallet Conveyed

OpaqueCA1_;

Gateway Believes Wallet Conveyed

SignatureCA1_;

4. CashRegister Believes Gateway Conveyed

OpaqueCA3_;

CashRegister Believes Gateway Conveyed

ServerSignatureCA3_;

CashRegister Believes Wallet Conveyed

SignatureCA1_;

5. Wallet Believes Gateway Conveyed

OpaqueListCA3_;

Wallet Believes Gateway Conveyed

ServerSignatureCA4_;

Wallet Believes CashRegister Conveyed

SignatureCA2_;

Wallet Possesses PayloadKey_;

6.3. AAPA2 Response

The AAPA2's response to this speci�cation, edited
to �t IEEE article format, follows. The AAPA2 pro-
duces this response, on a 128-meg Ultra 1, in 28 min-
utes and 27 seconds.

Beginning CyberCash coin-sequence proofs

Warning! Principal CashRegister believes

term PayeeSessionId,PayeeIndex

is fresh, but it does not create this term

Warning! Principal Gateway believes term

PayeeSessionId,PayeeIndex

is fresh, but it does not create this term

Warning! Principal Gateway believes term

PayerSessionId,PayerIndex

is fresh, but it does not create this term

Warning! Principal Wallet believes term

PayerSessionId,PayerIndex

is fresh, but it does not create this term

Proving default goals, stage 1

Retrying failed default goals, stage 1

Proving user goals, stage 1

Proving default goals, stage 2

Retrying failed default goals, stage 2

Proving user goals, stage 2

Proving default goals, stage 3

Retrying failed default goals, stage 3

Proving user goals, stage 3

Proving default goals, stage 4

Explicitness failure, stage: 4! Term

{Fee, MessageOptional, ProblemOptional,

RequestVersion, ResponseCode, SubType,

SubVersion, CollectedAmount,

OrderIdOptional, PayeeIndex,

MessageOptional, ResponseCode,

PayeeSessionId, SubType, SubVersion,

MD5(Fee, MessageOptional,

SSalt(PayeeIndex), ProblemOptional,

RequestVersion, ResponseCode,

ServiceCategory, SubType, SubVersion,

TypeCA3, VersionCA3, CollectedAmount,

PayeeIndex, MessageOptional,

OrderIdOptional, ResponseCode,

PayeeSessionId, SubType, SubVersion,

PayeeSessionId, PayeeIndex)}

Des(GenerateKey(PayeeIndex,

SMaster(PayeeIndex), TypeCA2, VersionCA2))

does not contain the data needed to

communicate statement

Wallet Conveyed MD5(MerchantAmount,

MD5(Note), OrderIdOptional,

ExtractCurrency(MerchantAmount),

MerchantCcId, SSalt(PayerIndex),

MD5(Payload), TypeCA1, VersionCA1,

PayerSessionId, PayerIndex)

Making the false assumption

AX1: {Wallet, CashRegister, Gateway, Fee,

ProblemOptional, RequestVersion,

ServiceCategory, TypeCA3, VersionCA3,

CollectedAmount, MessageOptional,

OrderIdOptional, ResponseCode, SubType,

SubVersion, PayeeSessionId, PayeeIndex} =

{CashRegister, Gateway, Fee,

ProblemOptional, RequestVersion,

ServiceCategory, TypeCA3, VersionCA3,

CollectedAmount, MessageOptional,

OrderIdOptional, ResponseCode, SubType,

SubVersion, PayeeSessionId, PayeeIndex};

and continuing analysis of protocol

Retrying failed default goals, stage 4

Proving user goals, stage 4

Proving default goals, stage 5

Explicitness failure, stage: 5! Term

{MerchantAmount, ForeignExchangeOptional,

MessageOptional, OrderIdOptional,

MD5(Payload), SPayload(Wallet),

RequestVersion, ResponseCode,

MD5(MerchantAmount,

ForeignExchangeOptional, MessageOptional,

OrderIdOptional, MD5(Payload),

SPayload(Wallet), SSalt(PayerIndex),

RequestVersion, ResponseCode, TypeCA3,

VersionCA3, PayerSessionId, PayerIndex)}

Des(GenerateKey(PayerIndex,

SMaster(PayerIndex), TypeCA1, VersionCA1))

does not contain the data needed to

communicate statement

CashRegister Conveyed

MD5(SSalt(PayeeIndex), ServiceCategory,

SubType, SubVersion, TypeCA2, VersionCA2,

MerchantAmount, MD5(Note), OrderIdOptional,

PayerIndex, PayerSessionId, MD5(Payload),

SubType, SubVersion, PayeeSessionId,

PayeeIndex)

Making the false assumption

AX2: {CashRegister, Wallet, Gateway,

MerchantAmount, ForeignExchangeOptional,

MessageOptional, OrderIdOptional,

RequestVersion, ResponseCode, TypeCA3,

VersionCA3, PayerSessionId, PayerIndex} =

{Wallet, Gateway,

MerchantAmount, ForeignExchangeOptional,

MessageOptional, OrderIdOptional,

RequestVersion, ResponseCode, TypeCA3,

VersionCA3, PayerSessionId, PayerIndex};

and continuing analysis of protocol

Retrying failed default goals, stage 5

Proving user goals, stage 5

Warning(s) and failure(s):

CyberCash coin-sequence

6.4. Interpretation

The results of the AAPA2 analysis of the coin-
sequence protocol are very similar to the results of the
AAPA2 analysis of the main-sequence protocol, and
they have similar interpretations. Despite the huge
amount of protected information that is transmitted,
the names of the customer and merchant are missing.

The big di�erence in this case is that the protocol's
authentication limitation is of less commercial interest.
The coin-sequence protocol is used to make large num-
bers of small purchases | e.g., to buy candy bars. No
one would be concerned if Saddam Hussein pretended
to be Tony Blair to buy a candy bar, though they might
be if he did so to buy thousands of candy bars.

As in the main-sequence case, the AAPA2's objec-
tions to this protocol can be eliminated by removing
all statements bound to message �elds and changing
the GOALS section to simply:

3. Gateway Believes CashRegister Conveyed

OpaqueCA2_;

Gateway Believes CashRegister Conveyed

SignatureCA2_;

Gateway Believes Wallet Conveyed

OpaqueCA1_;

Gateway Believes Wallet Conveyed

SignatureCA1_;

4. CashRegister Believes Gateway Conveyed

OpaqueCA3_;

CashRegister Believes Gateway Conveyed

ServerSignatureCA3_;

5. Wallet Believes Gateway Conveyed

OpaqueListCA3_;

Wallet Believes Gateway Conveyed

ServerSignatureCA4_;

Wallet Possesses PayloadKey_;

The AAPA2 still outputs warnings because the pro-
tocol takes the pairs

PayeeSessionId,PayeeIndex

and

PayerSessionId,PayerIndex

as adequate evidence of freshness, but it signals no fail-
ures. This time the AAPA2 completes its analysis on
a 128-meg Ultra 1 in 23 minutes, 16 seconds.

7. Bene�ts of the AAPA2 Analysis

This section notes the bene�ts of performing an
AAPA2 analysis for designers, commercial customers,
and government customers of commercial protocols.

7.1. Finding False Assumptions

The AAPA2 reveals errors in speci�cations of the
expected authentication properties of protocols. In the
case of the CyberCash main- and coin-sequence pro-
tocols, the author produced essentially identical spec-
i�cations of these protocols two years ago, as part of
another analysis [3], and did not �nd the errors re-
ported in this paper despite spending months studying
informal protocol documentation, asking many ques-
tions to CyberCash designers, showing the speci�ca-
tions as part of a project review, and formally analyz-
ing the speci�cations with a predecessor to the AAPA2.
The AAPA2's explicitness failures for these protocols
came as a surprise to everyone involved in the earlier
e�ort.

This experience with the CyberCash protocols is a
realistic example of how the AAPA2 can help designers,
commercial users, or government users of commercial
protocols. Protocol documentation or sales material
is almost always informal, protocols frequently involve
large amounts of information, and getting a false im-
pression of intended protocol properties is easy. The
AAPA2 can quickly pick these errors out of masses of
detail, and let designers or users of protocols deal with
them before they a�ect the design or choice of software
used for security-critical applications.

7.2. Providing Protocol-Failure Assurance

Although the AAPA2 does not detect all types of
protocol failure, or all instances of failure for failure
types that it does detect, the AAPA2 does detect most
instances of protocol failure [7]. Performing an AAPA2
analysis is, for protocol designers, a quick and easy
protection against common errors.

7.3. Raising Basic Issues

Writing and debugging an ISL2 speci�cation natu-
rally leads the AAPA2 user to ask and answer critical

questions such as which parties communicate, which
pieces of information do they exchange, where do these
pieces of information come from and go, and which par-
ties can be trusted.

7.4. Providing a Design Review

The process of formally modeling a protocol from
the protocol's design speci�cations gives the bene�ts
of a detailed external review of these speci�cations for
clarity, completeness, and consistency.

7.5. Providing Sound Documentation

An ISL2 speci�cation serves as a succinct, precise
summary of a protocol. The AAPA2's formal-proof
process forces this summary to be complete and con-
sistent. This speci�cation can then become a highly
useful part of the documentation for a protocol or for
a product or tool that uses this protocol.

References

[1] R. Anderson and R. Needham. Programming satan's
computer. In J. van Leeuwen, editor, Computer Sci-
ence Today, number 1000 in Lecture Notes in Com-
puter Science. Springer-Verlag, 1995.

[2] S. Brackin. Deciding cryptographic protocol adequacy
with HOL: The implementation. In Theorem Proving
in Higher Order Logics, number 1125 in Lecture Notes
in Computer Science, pages 61{76, Turku, Finland,
August 1996. Springer-Verlag.

[3] S. Brackin. Automatic formal analyses of two large
commercial protocols. In Proceedings of the 1997
DIMACS Workshop on Design and Formal Veri�ca-
tion of Security Protocols, Piscataway, NJ, September
1997.

[4] S. Brackin. A highly e�ective logic for automatically
analyzing cryptographic protocols. In Proceedings of
Computer Security Foundations Workshop XII, Mor-
dano, Italy, June 1999. IEEE. Submitted for publica-
tion.

[5] S. Brackin. Implementing thorough and convenient
automatic cryptographic protocol analysis in HOL98.
In Theorem Proving in Higher Order Logics, Lecture
Notes in Computer Science, Nice, France, September
1999. Springer-Verlag. To be submitted.

[6] S. Brackin. Using computably checkable types in auto-
matic protocol analysis. In 1999 Workshop on Formal
Methods and Security Protocols, Trento, Italy, July
1999. To be submitted.

[7] S. Brackin. Automatically detecting most vulnerabil-
ities in cryptographic protocols. IEEE Journal on Se-
lected Areas in Communications (JSAC), Special Is-
sue on Network Security, January 2000. Submitted
for publication.

[8] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. Technical Report 39, Digital Equip-
ment Corporation, Systems Research Center, Palo
Alto, CA, February 1990.

[9] S. Crocker. Personal communication. Dr. Crocker is a
former CyberCash executive, January 1999.

[10] J. Gleick. Here come the cyber dollars. Reader's Di-
gest, December 1996. From New York Times Maga-
zine.

[11] M. Gordon and T. Melham. Introduction to HOL:
A Theorem Proving Environment for Higher Order
Logic. Cambridge University Press, Cambridge, 1993.

[12] M. L. Hui and G. Lowe. Safe simplifying transforma-
tions for security protocols. Technical report, Univer-
sity of Leicester, Leicester, UK, December 1998.

[13] G. Lowe. Breaking and �xing the Needham-Schroeder
public-key protocol using FDR. In Proceedings of
TACAS, number 1055 in Lecture Notes in Computer
Science, pages 147{166, New York, 1996. Springer-
Verlag.

[14] C. Meadows. The NRL Protocol Analyzer: An
overview. Journal of Logic Programming, 26(2):113{
131, 1996.

[15] J. Millen, S. Clark, and S. Freedman. The Interroga-
tor: Protocol security analysis. IEEE Trans. on Soft-
ware Engineering, SE-13(2):274{288, February 1987.

[16] J. Moore. Protocol failure in crypto systems. Proceed-
ings of the IEEE, 76(5):594{602, May 1988.

[17] K. Slind. HOL98. At www.cl.cam.ac.uk/Research

/HVG/FTP, 1998.

	Automatically Detecting Authentication Limitations in Commercial Security Protocols
	Introduction
	Interface Specification Language, 2nd Version (ISL2)
	AAPA2 Operation
	Notes on the Specifications
	Main-Sequence Protocol
	Coin-Sequence Protocol
	Benefits of the AAPA2 Analysis
	References

	Table of Contents

