Tutorial: Security Engineering Best Practices

Instructor: Karen Ferraiolo,
Arca Systems, Inc.
8229 Boone Blvd., Suite 750
Vienna, VA 22182
703-734-5611
ferraiolo@arca.com

Topics:

This tutorial will discuss the need to have defined practices that can help organizations focus their investments in work processes for developing and maintaining secure systems and trusted products and in providing security consulting services. In addition to defined practices for security engineering itself, measures can help organizations determine their capability and improve. The Systems Security Engineering Capability Maturity Model (SSE-CMM) defines both security engineering base practices as well as capability measures for enabling organizations to discover and define best practices to support their needs. The following topics will be addressed:

- Why define best practices for security engineering?
- How can they best be defined?
- What is security engineering?
- How does the SSE-CMM define best practices for security engineering?

Biography:

Karen Ferraiolo has sixteen years of experience in the acquisition, specification, design, development, documentation, and verification of secure systems. She is Director of Corporate Processes at Arca Systems, Inc., leading their efforts related to the SSE-CMM and process improvement. She led the initial research into the development of a CMM for security engineering and served for two years as the Leader of the SSE-CMM Author Group for the community-based SSE-CMM Project which resulted in publication of SSE-CMM Versions 1.0 and 1.1. She is an experienced facilitator for SSE-CMM organizational appraisals. Ms. Ferraiolo has a B.S. in Mathematics and Computer Science.
Security Engineering

Best Practices

Karen Ferraiolo
Director, Corporate Processes
Arca Systems, Inc.
8229 Boone Blvd., Suite 750
Vienna, VA 22182
ferraiolo@arca.com
703-734-5611
Topics

• Why define best practices?
• How can they best be defined?
• What is security engineering?
• How does the SSE-CMM* define best practices for security engineering?

* SSE-CMM = Systems Security Engineering Capability Maturity Model
Where are we now?

- Security needs are changing
 - global interconnection
 - massive complexity
 - release of beta versions of software
 - evolutionary development
Where are we now? (cont.)

- **Security products/systems**
 - come to market through:
 - lengthy and expensive evaluation
 - no evaluation
 - results:
 - technology growth more rapid than its assimilation
 - unsubstantiated security claims

- **Security services**
 - viewed as an art
 - relies on individual expertise

- **Secure system operation and maintenance**
 - everyone has security concerns
 - improved practices are needed today
What is needed?

• Continuity
• Repeatability
• Efficiency
• Assurance
What tools are currently available to address the problem?

<table>
<thead>
<tr>
<th>Tool</th>
<th>Target</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO-9000</td>
<td>Quality Assurance Process for Software</td>
<td>Defined Software QA Process</td>
</tr>
<tr>
<td>CMMs</td>
<td>Engineering/Organizational Processes</td>
<td>Continuously Improved Processes</td>
</tr>
<tr>
<td>CISSP</td>
<td>Security Engineering Professionals</td>
<td>Individual Certification</td>
</tr>
</tbody>
</table>

CMM = Capability Maturity Model
CISSP = Certification of Information Systems Security Professionals
Why use the CMM approach?

• Accepted way of defining practices and improving capability

• Increasing use in acquisition as an indicator of capability

• Return on Investment for software indicates success
 – productivity gains per year: 9 - 67%
 – yearly reduction in time to market: 15 - 23%
 – yearly reduction in post-release defect reports: 10 - 94%
 – value returned on each dollar invested: 4 - 8.8%

Why was the SSE-CMM developed?

• Objective:
 – advance security engineering as a defined, mature, and measurable discipline

• Project Goal:
 – Develop a mechanism to enable:
 • selection of appropriately qualified security engineering providers
 • focused investments in security engineering practices
 • capability-based assurance
What is Security Engineering?

• Definition: No precise definition exists today!

• Goals:
 – Understand Security Risks
 – Establish Security Needs
 – Develop Security Guidance
 – Determine Acceptable Risks
 – Establish Assurance
Who practices security engineering?

- Developers
- Product vendors
- Integrators
- Buyers
- Security evaluation organizations
- System administrators
- Consulting/service organizations
When is security engineering practiced?

- Pre-concept
- Concept exploration and definition
- Demonstration and validation
- Engineering, development, and manufacturing
- Production and deployment
- Operations and support
- Disposal
Who needs to know about security?

- Enterprise Engineering
- Systems Engineering
- Software Engineering
- Human Factors Engineering
- Communications Engineering
- Hardware Engineering
- Test Engineering
- Systems Administration
What do security engineering activities encompass?

- Operations Security
- Information Security
- Network Security
- Physical Security
- Personnel Security
- Administrative Security
- Communications Security
- Emanations Security
- Computer Security
How does the SSE-CMM define best practices?

- **Domain Aspect**
 - process areas
 - base practices

- **Organizational Capability Aspect**
 - implementation of process areas
 - institutionalization of process areas
SSE-CMM Process Categories

Organizational Processes

Project Processes

Engineering Processes
SSE-CMM Organizational Process Areas

- Define Organization’s Security Engineering Process
- Improve Organization’s Security Engineering Process
- Manage Security Product Line Evolution
- Manage Security Engineering Support Environment
- Provide Ongoing Skills and Knowledge
- Coordinate with Suppliers
SSE-CMM Project Process Areas

• Ensure Quality
• Manage Configurations
• Manage Program Risk
• Monitor and Control Technical Effort
• Plan Technical Effort
SSE-CMM Engineering
Process Areas

• Administer Security Controls
• Assess Impact
• Assess Security Risk
• Assess Threat
• Assess Vulnerability
• Build Assurance Argument
• Coordinate Security
• Monitor Security Posture
• Provide Security Input
• Specify Security Needs
• Verify and Validate Security
The Security Engineering Process

Product, System, or Service

Engineering Process

Assurance Process

Risk Process

Risk Information

Assurance Argument
Security Risk Area

• **Purpose:**
 - To identify combinations of threat, vulnerability, and impact (called risks) that deserve further attention

• **Goals:**
 - Determine Metrics
 - Gather Threat, Vulnerability, and Impact Information
 - Identify and Assess Risks
What is Risk?

• Definition
 – The likelihood that the impact of an unwanted incident will be realized

• Approaches
 – All involve notions of threat, vulnerability, and impact
The Model
PA 04: Assess Threat

Goal

- Threats to the security of the system are identified and characterized

BP 04.01 Identify Natural Threats
BP 04.02 Identify Man-made Threats
BP 04.03 Identify Threat Units of Measure
BP 04.04 Assess Threat Agent Capability
BP 04.05 Assess Threat Likelihood
BP 04.06 Monitor Threats and Their Characteristics
PA 05: Assess Vulnerability

Goal

• An understanding of system security vulnerabilities within a defined environment is achieved

BP.05.01 Select Vulnerability Analysis Method
BP.05.02 Identify Vulnerabilities
BP.05.03 Gather Vulnerability Data
BP.05.04 Synthesize System Vulnerability
BP.05.05 Monitor Vulnerabilities and Their Characteristics
PA 02: Assess Impact

Goal

• The security impacts of risks to the system are identified and characterized

BP.02.01 Prioritize Capabilities
BP.02.02 Identify System Assets
BP 02.03 Select Impact Metrics
BP 02.04 Identify Metric Relationship
BP 02.05 Identify and Characterize Impacts
BP 02.06 Monitor Impacts
PA 03: Assess Security Risk

Goals

- An understanding of the security risk associated with operating the system within a defined environment is achieved
- Risks are prioritized according to a defined methodology

BP.03.01 Select Risk Analysis Method
BP 03.02 Exposure Identification
BP 03.03 Assess Exposure Risk
BP 03.04 Assess Total Uncertainty
BP 03.05 Prioritize Risks
BP 03.06 Monitor Risks and Their Characteristics
The Security Engineering Process

- Product, System, or Service
- Engineering Process
- Assurance Process
- Risk Process
- Risk Information
- Assurance Argument
What Is Assurance?

• Definition:
 – “the degree of confidence that security needs are satisfied”
 • What are security needs?
 • What is confidence?
 • How can we measure?
Assurance Area

• Purpose:
 – To generate and communicate confidence that the enterprise has satisfied its security needs

• Goals:
 – Appropriate evidence is collected efficiently
 – Clear and convincing argument establishing confidence is created
The Model

Verify and Validate Security

Many other PAs

Verification and Validation Evidence

Build Assurance Argument

Assurance Argument
Assurance Arguments

Top Level Claim

- People Argument
- Process Argument
- Environment Argument
- Technology Argument
PA 11: Verify and Validate Security

Goals

- Solutions meet security requirements
- Solutions meet the customer's operational security needs

BP.11.01 Identify Verification and Validation Targets
BP.11.02 Define Verification and Validation Approach
BP.11.03 Perform Verification
BP.11.04 Perform Validation
BP.11.05 Provide Verification and Validation Results
PA 06: Build Assurance Argument

Goal

- The work products and processes clearly provide the evidence that the customer’s security needs have been met

BP.06.01 Identify Assurance Objectives
BP.06.02 Define Assurance Strategy
BP.06.03 Control Assurance Evidence
BP.06.04 Analyze Evidence
BP.06.05 Provide Assurance Argument
The Security Engineering Process

Product, System, or Service

Engineering Process

Assurance Process

Risk Process

Assurance Argument

Risk Information
What is Engineering?

• Solving problems
 – Requirements
 – Identify candidate solutions
 – Tradeoff analyses
 – System configuration

• Part of overall systems processes
 – Not an isolated activity
 – Must balance considerations of performance, safety, human factors, etc…
Security Engineering Area

• **Purpose:**
 – To solve engineering problems involving security

• **Goals:**
 – Determine customer security needs
 – Develop solutions and guidance on security issues
 – Coordinate with other engineering groups
 – Monitor security posture
The Model

Specify Security Needs

Provide Security Input

Coordinate Security

Administer Security Controls

Monitor Security Posture

Risk Information

Configuration Information

Requirements, Policy, etc...

Solutions, Guidance, etc...
PA 10: Specify Security Needs

Goal

- A common understanding of security needs is reached between all parties, including the customer

BP.10.01 Gain Understanding of Customer’s Security Needs
BP.10.02 Identify Applicable Laws, Policies, and Constraints
BP.10.03 Identify System Security Context
BP.10.04 Capture Security View of System Operation
BP.10.05 Capture Security High-Level Goals
BP.10.06 Define Security Related Requirements
BP.10.07 Obtain Agreement
PA 09: Provide Security Input

Goals

- All system issues are reviewed for security implications and are resolved in accordance with security goals
- All members of the project team have an understanding of security so they can perform their functions
- The solution reflects the security input provided

BP.09.01 Understand Security Input Needs
BP.09.02 Determine Security Constraints and Considerations
BP.09.03 Identify Security Alternatives
BP.09.04 Analyze Security of Engineering Alternatives
BP.09.05 Provide Security Related Guidance
BP.09.06 Provide Operational Security Guidance
PA 07: Coordinate Security

Goals

• All members of the project team are aware of and involved with security engineering activities to the extent necessary to perform their functions
• Decisions and recommendations related to security are communicated and coordinated

BP.07.01 Define Coordination Objectives
BP.07.02 Identify Coordination Mechanisms
BP.07.03 Facilitate coordination
BP.07.04 Coordinate Security Decisions and Recommendations
PA 01: Administer Security Controls

Goal

- Security controls are properly configured and used

BP.01.01 Establish Security Responsibilities
BP.01.02 Manage Security Configuration
BP.01.03 Manage Security Awareness, Training, and Education Programs
BP.01.04 Manage Security Services and Control Mechanisms
PA 08: Monitor Security Posture

Goals
- Both internal and external security related events are detected and tracked
- Incident responses are in accordance with policy
- Changes to the operational security posture are identified and handled in accordance with the security objectives

BP 08.01 Analyze Event Records
BP 08.02 Monitor Changes
BP 08.03 Identify Security Incidents
BP 08.04 Monitor Security Safeguards
BP 08.05 Review Security Posture
BP 08.06 Manage Security Incident Response
BP 08.07 Protect Security Monitoring Artifacts
How does the SSE-CMM define best practices?

- **Domain Aspect**
 - process areas
 - base practices

- **Organizational Capability Aspect**
 - implementation of process areas
 - institutionalization of process areas
Organizational Capability Measures

1. Performed Informally
 - Base Practices Performed

2. Planned and Tracked
 - Plan Performance
 - Disciplined Performance
 - Verify Performance
 - Track Performance

3. Well-Defined
 - Define a standard process
 - Perform the defined process
 - Coordinate practices

4. Quantitatively Controlled
 - Establish measurable quality goals
 - Objectively manage performance

5. Continuously Improving
 - Improve organizational capability
 - Improve process effectiveness
Applying Capability Measures to Base Practices: the Rating Profile

- Process Area
 - PA01
 - PA02
 - PA03
 - PA04
 - PA05

- Capability Level
Summary

• Why define best practices?
 – Focus investments in security engineering practices

• How can they best be defined?
 – Use an accepted and proven mechanism

• What is security engineering?
 – No precise definition, but can discuss goals

• How does the SSE-CMM define best practices?
 – Domain base practices
 – Capability measures