
Policy-Enhanced Linux

Paul C. Clark

Naval Postgraduate School
833 Dyer Rd., Code CS

Monterey, CA 93943-5118
E-mail: clarkp@cs.nps.navy.mil

Abstract

Graduates from the various computer fields need to have a better education in the area of
computer security problems and their solutions. In particular, there appears to be little exposure
to the enforcement of non-discretionary or Mandatory Access Control (MAC) policies in
automated systems. One cause of this deficiency is the expense, limited availability, and limited
functionality of operating systems that support such policies. This paper provides a detailed
description of an effort to modify the Linux operating system to support MAC policies and
overcome these obstacles, with the hope that it can be used to improve computer security
education.

KEYWORDS: Education, Linux, MAC

1 Introduction

This section describes the necessity of having
widely available and inexpensive systems that
support Mandatory Access Control (MAC)
policies at educational institutions. It also
provides background material, requirements,
and the supporting reasons for using Linux to
achieve this goal. Section 2 describes the
design of the new policy interface in an
operating-system-independent manner.
Section 3 describes the necessary Linux
modifications, while section 4 provides
conclusions and future work.

1.1 Need For Secure Operating Systems

In recent years a lot of emphasis, research and
investment has been put into computer
security products such as firewalls and
intrusion detection systems (IDS’s). Such
products serve a useful purpose in supporting
a multi-layer network defense. However,
interest in these security products should not

allow interest in the security aspects of
operating systems to wane. Some of the
reasons for continued diligence are listed
below:
• With few exceptions firewalls and IDS’s are

applications installed on top of modern
commercially available operating systems.
If the operating system foundation is weak,
then the mightiest security fortress built on
top of it will crumble and fall.

• Firewalls are applied at network entry points
to try to keep unwanted traffic off of internal
networks. If a malicious user is able to
bypass the firewall, then there must be
another line of defense to thwart the attack;
otherwise the network is “crunchy on the
outside, yet soft and chewy on the inside.”

• An IDS is used to detect attacks on an
internal network and (hopefully) trigger
defensive actions before the attack has been
completed. This is certainly a useful
feature, but such products are reactive in
nature. In addition, an installation must be
regularly updated with new attack signatures
and scanning engines.

• From an Internet hacker’s point of view, the
operating system is the last line of defense
against malicious outsiders.

• Additionally, the operating system is the
first and last line of defense against insider
attacks, universally accepted as the source of
most security breaches.

1.2 Overview of Access Control Policies

Given any kind of information access control
policy, the elements of the policy can be
factored into their basic properties, which in
turn can be grouped into one of three
categories: a Discretionary Access Control
(DAC) policy, a Mandatory Access Control
(MAC) policy, or a Supporting Policy [1]. A
Supporting Policy is one that is used to
support the proper enforcement of a DAC or
MAC policy.

A DAC policy is one where an object (e.g.,
file or directory) has a named user, or set of
users, who can decide, at their discretion, who
can have access to the object [2]. A MAC
policy, on the other hand, implies that the
owner of an object does not have control over
who has access to it [2]. A good example is a
file with a SECRET classification; the owner
of the document does not have the discretion
to control who has access to it because the
policy states that a person must have the
necessary clearance to view it.

1.3 Historical Background on MAC
Systems

Systems that can withstand active and passive
attacks from hostile users and outsiders have
been research topics for decades. The result
of some of this activity was the establishment
of the Department of Defense (DoD)
Computer Security Center and the publication
of the Trusted Computer System Evaluation
Criteria (TCSEC) in 1983, commonly referred
to as the “Orange Book” [3], which was

revised and republished in 1985. The Orange
Book described the minimum requirements for
various levels of assurance, and supported the
evaluation of products that claimed to meet a
level of assurance.

After the Orange Book was published,
commercial companies became interested in
meeting the stated needs of the DoD, as put
forth in the criteria, with the idea that this was
a valid market. Unfortunately, such ventures
generally did not experience financial success
over the next five to ten years, leaving some
companies with the impression that MAC
systems are not marketable. On the other
hand, the impression left with users was that
MAC systems are expensive and unusable.

Systems that enforce a DAC policy are easily
obtained on the market, but it is much harder
to find systems that enforce a MAC policy.
The reasons for this disparity are not easily
described, and tend to evoke strong
disagreement between various camps of the
government, research, and commercial
sectors. The fact remains that there are few
MAC systems, and they tend to be at least an
order of magnitude more expensive than non-
MAC systems.

1.4 Secrecy and Integrity Policies and
Models

There are many MAC policies, but the two
most common policies are some form of
secrecy and/or integrity policies. A security
model is a simple, abstract, precise and
unambiguous representation of a security
policy [1]. Modeling a policy before it is
implemented is one way of increasing the
assurance of the implementation. For systems
that have a high degree of confidence in their
correct enforcement of security policies, (i.e.,
high assurance systems), the model is
typically expressed in mathematical terms,
allowing it to be subjected to mathematical

proofs to expose any inconsistencies in the
policy before it is implemented. For secrecy
and integrity policies, the two models that
often found their way into implementations
were the Bell and LaPadula model1 and the
Biba model, respectively [2].

1.5 Advancing Computer Security

It is vital to our country’s political and
economic future to adequately protect
corporate and government information from
unauthorized disclosure and modification.
Unfortunately, the current state of computer
security is weak, especially when novice
adversaries can perform successful
infiltrations of sensitive systems. Systems that
enforce Mandatory Access Control (MAC)
policies are known to reduce some of the
security weaknesses, but such systems have
seen limited use within the DoD, and they
have seen little or no use in the private sector.
Some of this limited use is caused by a lack of
awareness of the benefits of MAC systems,
and the expense of current systems that do
enforce a MAC policy.

Lack of exposure can be resolved through
better education. There are probably many
computer professionals who have never even
heard of Mandatory Access Control. This is
evidenced in the fact that few universities
even offer an introductory course in computer
security [4].

Lack of exposure could also be resolved if the
cost of MAC systems was not so prohibitive.
Ideally, every educational institution needing
a MAC system to support its educational
objectives could easily afford one, and every

1 Though it is often referred to as THE Bell and
LaPadula model, the two authors actually published
four distinct, yet related, models referred to as Volume
I, Volume II, Volume III, and the Multics
Interpretation.

company that wanted to buy a MAC system
could find one at the same price as a similar
non-MAC system. In other words, the
removal of cost as a deciding factor would be
the ideal situation.

1.6 MAC Systems at Educational
Institutions

The Computer Security Track of the
Computer Science Department of the Naval
Postgraduate School (NPS) teaches a class
called Introduction to Computer Security,
among other computer security courses [5].
This class is supported with a series of nine
laboratory exercises, or tutorials, to re-enforce
what the student is learning in class. Three of
these tutorials are related to MAC policies.
These three tutorials are critical in helping
students fully understand MAC concepts.

The MAC tutorials are based on systems that
are expensive to buy and maintain. This limits
the track’s ability to support the tutorials at
distance learning sites, and prohibits other
institutions from benefiting from our
successes in this area because they are unable
to buy the specialized hardware and/or
software. Affordable MAC systems are
absolutely necessary to provide the exposure
and understanding of MAC systems within
educational institutions.

1.7 Solution Requirements

The effort described in this paper researched
the options for supporting an inexpensive
Mandatory Access Control system. The
requirements for such a system are given in
the following subsections, along with a
justification for each requirement.

1.7.1 Relatively Inexpensive

As expressed above, the current high cost of
MAC systems is a barrier to greater exposure,

acceptance, and demand. Lowering the cost
of MAC systems will increase their exposure,
which will then increase their acceptance,
which will cause consumers to demand such
functionality from operating system vendors.

1.7.2 Runs on PC Hardware

Requiring a MAC system to run on a PC may
be viewed as a refinement of the previous
requirement, though the previous requirement
is directed at the cost of software; this
requirement is directed at the cost of the
hardware. By requiring the software to run on
a PC, this eliminates the need for expensive
and/or specialized hardware.

1.7.3 Dual-Boots with Other Operating
Systems

This requirement is also cost-related. If, when
a computer is booted, the user can choose
between some number of operating systems to
boot, the computer can have multiple uses. If
the MAC system can be installed in a multi-
boot configuration, then additional hardware
and/or counter space is potentially not
required to install and use it.

1.7.4 Easy to Use

As explained earlier, one of the complaints
against MAC systems is their un-usability.
This has two perspectives, both of which must
be properly addressed: user and administrator.
Users cannot be expected to learn many new
commands or other interfaces, so the MAC
system interface must be fairly intuitive. In
addition, the administrative interfaces must be
well documented with good security defaults.
If an administrator is confused or frustrated
with the system, then it will not be
recommended for use.

1.7.5 Supports Secrecy and Integrity
Policies

All current MAC systems support a secrecy
policy because this policy is easily
understood, both intellectually and in its
application to an organization. Integrity, on
the other hand, is not as easy to understand or
apply, which may seem contrary to the
previous requirement. From an educational
point of view, however, a system supporting
integrity is of great value, because it gives
students hands-on experience with a
somewhat difficult topic.

1.7.6 Supports the Setting of a Session
Level

There are two basic types of user interfaces
provided by MAC systems: 1) those that allow
a user to read and write to any file during a
session, as long as it falls within the user’s
clearance; and 2) those that require the user to
specify the level at which reading and writing
will be allowed during a session. The setting
of a level as described in the latter interface is
known as setting a session level. Experience
in the NPS Computer Security Lab has shown
that the former interface can be confusing to
new users.

1.8 Proposed Solution

There is no product that meets the stated
requirements. Building an operating system
from scratch to meet the requirements would
be an enormous undertaking, beyond the
abilities of most people (and companies) to
produce. The proposed solution is to modify
an existing operating system. The Linux
operating system has been chosen for this
effort because it meets all the requirements
except those related to MAC, (although some
would argue that it is not user friendly) and
because the source code is freely available.

The remainder of this paper describes
modifications made to the Linux operating
system to support additional access control
policies [6]. This effort started as an attempt
to support secrecy and integrity policies, but it
soon became obvious that a flexible design
would allow any new policy to be easily
added to Linux. In this paper, the final design
is referred to as “Policy-Enhanced Linux.”
Note that this effort does not attempt to
provide a high-assurance product, nor one that
is ready to be used in a “live” environment.

2 Linux Mandatory Access Control
Design

This section describes the design of the new
policy interface with the goal of providing a
design that is independent of the operating
system used to implement it. Section 3
continues by providing a design that
incorporates these ideas into a Linux
distribution. The designs presented in this
section are intended to provide a somewhat
generic interface to allow different policies to
be “plugged into” an installation of Policy-
Enhanced Linux, thus making a change in
policy relatively easy to achieve.

2.1 New Databases

This section describes the new databases that
must be added to Linux to support a new
policy. In this context the term “database”
refers to a passive object holding information.

In addition to the fields described, each new
database has a field to track its version. This
provides a mechanism for modules managing
a database to identify older versions at run-
time, and to act accordingly.

All the databases, with the exception of the
Policy Label, will be stored in separate text
files. This approach follows the standard
Unix practice of having human-readable

configuration files that can be modified using
a text editor. It also has the added benefit of
not requiring special administrative
commands to be implemented. Such
interfaces can be added later as a convenience
for the System Administrator, but are not
necessary for an initial implementation.

2.1.1 Policy Label

To support any kind of MAC policy, there
must be a way of “attaching” some kind of
label that describes the mandatory permission
properties of the subject or object it is
associated with. In a secrecy policy, for
example, there must be a way to associate
labels such as “Secret” and “Top Secret” with
files. An efficient way to implement such a
label is with a set of bits, instead of a character
string like “Top Secret”. The Policy Label is
a set of bits that becomes an immutable2

property of each subject and object. By
comparing the label of the subject with the
label of the object, the system can easily
determine whether the desired access should
be allowed or not.

To create a flexible policy environment, the
Policy Label is viewed as a container for
several labels. In this initial design, the Policy
Label will contain a secrecy label component
and integrity label component, leaving some
amount of the Policy Label unused. To add
another enforced policy, the first step is to
reserve some piece of the unused portion of
the Policy Label for its use. Note that the
label is not called an “Access Class” or
“Access Label” due to the fact that the
implementation is so generic that the label
could be used to enforce a policy that is not
related to access control, e.g., an Audit Policy.

2 Immutability is certainly the desired property for
labels, but no extra effort is expended in this design,
above and beyond what Linux already provides, to
guarantee that a policy label cannot be modified.

2.1.2 Human-Readable Label (HRL)
Databases

There must be a way to map the human-
readable labels, such as “Secret” to the binary
format of a Policy Label, and vice versa. The
Human-Readable Label Databases help to
satisfy this requirement. In order to support
the addition of policies to the system, there is
a separate human-readable label database for
each enforced policy. Because the initial
implementation will support the Bell and
LaPadula secrecy policy and the Biba integrity
policy, two Human-Readable Label Databases
are required.

2.1.3 User Clearance Database

To support a mandatory policy, there must be
a way of associating a clearance with each
user, i.e., what the user is limited to read and
write. These settings need to be stored in a
database separate from the usual Unix user
attribute file (/etc/passwd) for compatibility
purposes. This database is known as the
Clearance Database. Once again, in order to
provide for flexibility, there is a separate
database for each enforced policy. This
database must hold the following information
for each authorized user of the system:
minimum session level; clearance; default
session level. The following dominance
relation must be true:

minimum ≤ default ≤ clearance.

2.1.4 Range Database

To be able to bound the level of the data being
produced and the level of the subjects being
executed (despite what the user clearances
are), there exists a database known as the
“Range Database.” This database allows a
System Administrator to constrain the range at
which a system will operate. This range can
change over the lifetime of a system so that
there can exist objects on a system that are

outside of the currently set range. There exists
one database for each enforced policy, storing
two pieces of information: the system high
label for the associated policy and the system
low label for the associated policy. The
following dominance relation must be true:

System low ≤ System high

2.2 New Modules

This section describes the new modules to be
added to Linux to support flexible policies. In
this context, the term “module” refers to an
active part of the system that manages a
particular database or flow of control. The
design of the modules has been layered in
such a way that higher layer modules are
dependent on the lower layers in a loop-free
construct; modules in a particular layer do not
call modules in the same or higher layer.

2.2.1 Policy Modules

For each enforced policy there must exist a
module which enforces the policy. These
modules provide an interface, as described
below, with respect to the individual policy:

• Determine whether one label dominates
another.

• Determine whether a read or write access
should be allowed based on the subject and
object labels involved.

• Change or query attributes of a label.
• Publish properties of the policy that are

needed by other modules, e.g., the number
of secrecy levels supported by the secrecy
policy implementation.

2.2.2 Meta-Policy Manager

The Meta-Policy Manager is a replaceable
module that is responsible for calling the
individual policy modules and returning the
net result of the query. It is called the “Meta-
Policy Manager” because it implements a
policy on policies, deciding which policy

modules are called first and whether some
combination of results can result in an
approved or declined access.

2.2.3 Label Modules

For each supported policy there exists a
module that manages its associated Label
Database. It provides an interface as
described below:
• Map a human-readable label for the policy

to a binary label for the policy.
• Map a binary label for the policy to a

human-readable label for the policy.

2.2.4 Label Manager

The Label Manager is a replaceable module
that defines the Policy Label, and is
responsible for calling the individual Label
modules to provide an interface as described
below:
• Map a human-readable label for the system

to a binary Policy Label for the system.
• Map a binary Policy Label for the system to

a human-readable label for the system.
• Extract binary policy data from a Policy

Label for any of the policies represented in
the label.

• Set binary policy data in a Policy Label for
any of the enforced policies.

2.2.5 Range Modules

For each enforced policy there must exist a
module which manages its associated range
database. Each range module provides an
interface to the following:
• Return the system low label for the

associated policy.
• Return the system high label for the

associated policy.

2.2.6 Range Manager

The Range Manager is a replaceable module
that is responsible for calling the individual
Range Modules to provide an interface for
doing the following:
• Return the combined system low label for

all the enforced policies.
• Return the combined system high label for

all the enforced policies.

2.2.7 Clearance Modules

For each enforced policy there exists a module
which manages the associated User Clearance
Database. It provides an interface to do the
following:
• Return the maximum clearance for a given

user ID.
• Return the minimum clearance for a given

user ID.
• Return the default session level for a given

user ID.

2.2.8 Clearance Manager

The Clearance Manager is a replaceable
module that is responsible for calling the
individual Clearance Modules to provide an
interface to do the following:
• Return the maximum session level

(clearance) allowed for a given user, in the
form of a complete Policy Label.

• Return the minimum session level for a
given user, in the form of a complete Policy
Label.

• Return the default session level for a given
user, in the form of a complete Policy Label.

3 Linux Modifications

This section is divided into two major parts to
describe the required Linux modifications:
Operating System Modifications and
Application Modifications.

3.1 Operating System Modifications

3.1.1 Basic Policy Enforcement

At the core of every access control policy is a
description of how subjects can read or write
objects. Therefore, any system call that
checks the kind of access given to a subject
must be modified to call the Meta-Policy
Manager to perform the additional policy
checks. The following system calls are
affected:

• open • opendir
• access

Other system calls are not affected, such as
read() and write(), because the open() call
determines the permission that is given to the
opening subject when the file is opened.

3.1.2 Inode Changes

Linux is designed to simultaneously provide
up to 15 different kinds of file systems. The
native Linux file system is known as the
Second Extended File System (EXT2) and has
been available since 1993. It is this file
system which has served as the starting point
for the design of Policy Enhanced Linux, viz.,
the EXT2 file system has been modified to
provide MAC.

Every object in the Linux file system has a
unique structure associated with it, called an
inode, which keeps track of various properties
of the object, e.g., its owner, creation time and
access rights, as well as the location on the
disk where the object is being stored. The
inode is the obvious place to store the Policy
Label for file system objects. Therefore, all
objects managed by Linux via inodes will be
subjected to the new policies.

The non-MAC inode structure currently
requires 128 bytes when compiled on an Intel
CPU. The current structure of the inode has 8

bytes of reserved space. The initial
implementation of the MAC policies will use
these reserved bytes to store the Policy Label.

3.1.3 File Statistics

Many programs need to obtain information
about file system objects. A prime example is
the command shell when it needs to list the
contents of the current directory. To get the
necessary information, the shell makes one
call to the operating system for each object in
the current directory. The information
returned for each object needs to include the
Policy Label. This requires a change to the
following data structure:

• stat
in addition to the following system calls:

• stat • fstat
• lstat

3.1.4 Subject Changes

Now that labels are associated with file system
objects, it is necessary to design the other half
of the policy-enforcement mechanism:
associating Policy Labels with subjects. If a
subject passes the usual Linux DAC check, it
must then pass a MAC check such that the
Policy Label of the object is compared with
the Policy Label of the subject.

Every subject in Linux has a data structure
associated with it called task_struct. It
provides the information needed (1) by the
subject to run properly and (2) by the kernel to
make DAC decisions. For example, it
contains the User ID and Group ID of the
subject, which are compared with the User ID
and Group ID of the file system objects the
process tries to access. This structure is the
obvious location for associating Policy Labels
with subjects.

It is necessary to give each subject two Policy
Labels in order to support trusted subjects [7].

The two Policy Labels assigned to each
subject are called the Read Label and the
Write Label, which have the following
relationship:

Write Label ≤ Read Label
The Read Label is the highest level that the
subject can read, whereas the Write Label is
the lowest level that the subject can write. For
single-level (untrusted subjects) these two
labels are equal.

3.1.5 Creating Objects

When a subject is running at a single level,
objects created by the subject are assigned the
same Policy Label as the subject. When a
subject is a multilevel subject, the subject
needs to communicate with the kernel to
inform it of the Policy Label to assign to each
new object. This can only be accomplished by
modifying the creat() system call to accept the
additional Policy Label parameter. This
presents the following three requirements for
creating new objects:
• Subject Read Class ≥ Requested Object

Class
• Subject Write Class ≤ Requested Object

Class
• Directory Class ≤ Requested Object

Class

The first two restrictions simply mean that the
multilevel subject must be able to both read
and write at the requested access class of the
new object. The latter restriction is given so
the file hierarchy descends from the root to its
leaves in non-decreasing levels. This
restriction is necessary to avoid a “dangling
object” that cannot be accessed by subjects at
its level. This restriction is referred to as the
“compatibility property” [7].

Files are only classified at a single level.
Directories, as objects that contain names and
locations of other objects, are also single-level
objects, but the objects that they point to may

be at a different level than the level of the
directory. However, there are constraints
placed on the creation of objects whose class
is different from that of its directory:
• Subject Read Class ≥ Requested Object’s

Directory
• Subject Write Class ≤ Requested Object’s

Directory

These last two restrictions mean that the
multilevel subject must be able to both read
and write to the new object’s directory.
Therefore, the only way to create an object in
Policy-Enhanced Linux with a different access
class than that of the directory it is being
created in, is by using a trusted subject, e.g., a
multilevel process whose Read and Write
class spans a range that includes the level of
the directory and the level of the object being
created. When an object is created with an
access class that is higher than the directory it
is being created in, it is referred to as an
upgraded object.

Other designs have shown that it is possible
for low-level subjects to create upgraded
objects [8], but it would require a major
redesign of how object statistics are stored and
managed.

The following system calls have been
identified as being affected by the changes
described above:

• open • creat
• mkdir • symlink

3.1.6 Deleting Objects

Deleting an object requires the same
privileges as Creating an object because it
requires the modification of a directory. With
respect to deleting objects, the following
system calls are affected:

• unlink • rmdir

3.1.7 Deflection Directories

Existing Linux applications expect to be able
to read and write to a temporary directory,
located at “/ tmp” in the file system hierarchy.
Because applications will be running at a
number of levels simultaneously, and because
these applications are mostly running as
single-level subjects, this creates a problem,
given the constraints described in the previous
subsections. Fortunately, this is not a new
problem.

When other multilevel Unix designs were
faced with this problem of either modifying
every existing application to write temporary
files somewhere else, depending on the level
they were running at, or coming up with an
alternative, they all came up with an
alternative. The best solution is something
known as a Deflection Directory, first
proposed by Kramer [9], though it is also
known by other names.

A Deflection Directory is a directory that
contains sub-directories for each level that is
needed. Access to these directories is
transparent to the applications. For example,
if a subject at the SECRET level writes a
temporary file to a deflection directory, say
“/tmp”, the kernel will first create a SECRET
sub-directory, transparent to the user, before
creating the file in the SECRET sub-directory.
From the user’s point of view, the file was
created in “/ tmp” because the underlying
system deflects every reference to “/ tmp” to
the “/tmp/SECRET” sub-directory for
SECRET subjects. This allows existing
applications to work without modification, no
matter what level they are running. In order to
prevent a covert channel, deflection
directories can only be created and deleted by
a System Administrator.

In order to simplify the semantics of the
deflection directory, only the System

Administrator is exempt from the deflection.
The administrator sees the true directory
structure and can therefore list and access any
file within a deflection hierarchy. This has the
negative side effect of not allowing higher-
level subjects to read the lower-level objects
in these directories. This is a trade-off
between the complexity involved with
determining when a subject wants to walk the
deflected path, and when a subject wants to
explicitly walk down a different path in the
deflected hierarchy.

Over time, deflection directories can
potentially grow quite large as new
transparent directories are created. This leads
to the design choice to delete all transparent
directories under “/tmp” during system
initialization.

The following system calls have been
identified as being affected by the changes
described above:

• mkdir • chdir
• fchdir • chroot
• open • opendir
• stat • lstat
• fstat

3.1.8 Updating Object Properties

Mandatory Access Control policies, such as
the Bell and LaPadula policy, do not allow a
high level subject to modify a file at a lower
level; if this were allowed, a huge security
hole would be created. A less obvious
observation is that any change in an object’s
properties, such as the time of last access,
creates a covert channel. Therefore, in
addition to the usual MAC constraints, all
object properties can only be changed by a
subject at the same level of the object. This
includes the following properties:

• Name • Owner
• Group • Size
• Last access

The following system calls must be modified
in order to selectively update object
properties:

• rename • truncate

• ftruncate • chmod

• fchmod • chown

• fchown • utime

• utimes

3.1.9 The Super User

Unix systems have a user known as the Super
User, associated with any user with a User ID
value of 0, typically only given to a user with
the name of “root.” This user bypasses all
security checks on the system. One becomes
the super user in one of two ways: 1) logging
in as the root user; 2) logging in as a regular
user, executing the “su” (super user) command
and entering the password for the root user.

This ability of the super user to bypass
security checks will continue to be supported
in Policy-Enhanced Linux by including an
exemption on the additionally enforced
policies.

Unix also supports something known as
“setuid” and “setgid” programs, where
executable files can be configured to run as
the owner or group of the executing file,
respectively, instead of running as the user
executing the file. This feature is typically
used to allow a program to execute with root
privileges, even when executed by a non-root
user. Despite the fact that these features are
recognized as a security weakness in Unix, the
current version of Policy-Enhanced Linux will
not change how setuid and setgid programs
work.

3.2 Application Modifications

3.2.1 Login Program

The program called “login” presents the login
interface to the user, checks a user’s password,
and starts up the user environment if the
password is correct. This program must be
modified to also prompt the user for the
desired session level. If no level is given, then
the user’s default session level is used. This
session level must pass the following tests
before the user environment is set up:
• User’s Minimum Session Level =

Session Level
• System low = Session Level =

System High
• Session Level = User’s Clearance

The login program must also be modified to
set the level of the user processes to the
approved session level, which requires the
addition of a new system call: setlevel.

3.2.2 Object Statistics (ls, stat)

There are two user-level programs that can be
used to display statistics about file system
objects: ls and stat. Both programs need to be
modified to display the human-readable Policy
Label when requested. The ls command is
sometimes implemented as an internal shell
command, and would therefore require the
modification of such a shell.

The ls command must also be modified to
indicate when a directory is a deflection
directory when a full listing of a directory is
made, i.e., when “ls –l” is used. The ‘d’ that
normally indicates that the entry is a directory
must be replaced with a ‘D’ if the directory is
a deflection directory.

3.2.3 Process Status (ps)

The ps command must be modified to have a
new command-line option to allow the
displaying of process Policy Labels.

3.2.4 Process Identification (id)

The id command must be modified to display
the session level, in addition to the group ID
and user ID that are currently displayed with
this command.

3.2.5 Directory Creation (mkdir)

A new option (-M) must be added to the
supported command-line options of the mkdir
command. This new option will create the
specified directory as a deflection directory.
A deflection directory can only be created by
a System Administrator, i.e., the root user.

4 Conclusions and Future Work

Detailed specifications have been produced
for all the new databases and modules
presented in this paper, and all new modules
have been implemented. A small amount of
Linux code was modified to support the
addition of policy labels to subjects and
objects, as well as the comparing of labels to
support the enforcement of the Bell and
LaPadula secrecy policy. A demonstration of
this new capability was produced, showing
that a low-level subject could not read a high-
level object, even when the DAC permissions
allowed it.

The additional Linux changes can now be
implemented with confidence that the system
will work as designed. The finished project
can then be distributed to other universities to
enhance their computer security curriculum,
or to other interested parties.

Additional research is now being performed to
design and implement a Trusted Path, as well
as a robust auditing mechanism.

5 References

1. Gasser, M., Building a Secure Computer
System. New York: Van Nostrand
Reinhold, 1988.

2. Pfleeger, C. P., Security in Computing.
Second edition, Upper Saddle River:
Prentice Hall, Inc., 1997.

3. Department of Defense, Trusted Computer
System Evaluation Criteria, DOD
5200.28-STD, December 1985.

4. Higgins, J. C., “Information Security as a
Topic in Undergraduate Education of
Computer Scientists,” Proceedings of the
12th National Computer Security
Conference, NIST / NCSC, pp. 553-557,
October 1989.

5. Irvine, C., Warren, D., Clark, P., “The
NPS CISR Graduate Program in
INFOSEC: Six Years of Experience”,
National Information Systems Security
Conference, NIST / NCSC, Volume 1, pp.
22-29, October 1997.

6. Clark, P., “A Linux-Based Approach to
Low-Cost Support of Access Control
Policies”, Naval Postgraduate School,
September 1999.

7. Bell, D.E., LaPadula, L.J., Secure
Computer System: Unified Exposition and
Multics Interpretation, ESD, Air Force
Systems Command, United States Air
Force, Hanscom Air Force Base, Report
MTR-2997 Rev. 1, March, 1976.

8. Irvine, C. E., “A Multilevel File System
for High Assurance”, Proceedings of the
1995 IEEE Symposium on Security and
Privacy, pp. 78-87, 1995.

9. Kramer, S., “Linus IV – An Experiment in
Computer Security”, Proceedings of the
1984 Symposium on Security and Privacy,
Institute of IEEE, pp. 24-31, 1984.

	Table of Contents
	Presentation

