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Abstract 

  The timely and accurate detection of computer and network system intrusions has always been an elusive 
goal for system administrators and information security researchers.  Existing intrusion detection approaches 
require either manual coding of new attacks in expert systems or the complete retraining of a neural network 
to improve analysis or learn new attacks.  This paper presents a new approach to applying adaptive neural 
networks to intrusion detection that is capable of autonomously learning new attacks rapidly through the use 
of a modified reinforcement learning method that uses feedback from the protected system. The approach has 
been demonstrated to be extremely effective in learning new attacks, detecting previously learned attacks in a 
network data stream, and in autonomously improving its analysis over time using feedback from the protected 
system.   
 
Keywords:  Intrusion detection, neural networks, reinforcement learning. 

Introduction 

The increasing reliance on computer networks by companies and government agencies means that the 
importance of protecting these systems from attack is critical.  A single intrusion of a computer network can 
result in the loss, unauthorized utilization, or modification of large amounts of data and cause users to question 
the reliability of all of the information on the network.  There are numerous methods of responding to a 
network intrusion, but they all require the accurate and timely identification of the attack.  The individual 
creativity of attackers, the wide range of computer hardware and operating systems, and the ever-changing 
nature of the overall threat to targeted systems have contributed to the difficulty in effectively identifying 
intrusions.  There are currently two primary approaches to detecting intrusions.  Anomaly detection involves 
identifying activities that vary from established patterns for users, or groups of users.  The technique typically 
involves the creation of knowledge bases that contain the profiles of the monitored activities.  The second 
general approach to intrusion detection, misuse detection, involves the comparison of a user's activities with 
the known behaviors of attackers attempting to penetrate a system.  While anomaly detection typically utilizes 
threshold monitoring to indicate when a certain established metric has been reached, misuse detection 
techniques frequently utilize a rule-based expert systems.  When applied to misuse detection, the rules become 
scenarios for network attacks.  Unfortunately, since expert systems have no capability for autonomous learning 
they require frequent updates by a system administrator to remain current.  When a new form of attack is 
identified the signature must be manually encoded as a rule in the expert system for it to be identified in the 
network stream and these updates may be ignored or performed infrequently by the administrator.  Rule -based 
systems also suffer from a lack of flexibility in the rule-to-audit record representation.  Slight variations in an 
attack sequence can affect the activity-rule comparison to a degree that the attack is not detected by the 
intrusion detection mechanism.   
 



This paper presents the results of a research effort that investigated the application of an adaptive neural 
network in the detection of network attacks.  Unlike previous applications of neural networks to intrusion 
detection this research developed a method of autonomously learning new attacks without the need for 
retraining or manual updates.  For the purposes of this research the approach was tested on denial-of-service 
(DoS) attacks.  An attacker carries out a DoS attack by making a computer resource inoperative, by taking up 
so much of a shared resource that none of the resource is left for other users, or by degrading the resource so 
that it is less valuable to users.  The attacker can flood the system with repeated requests for meaningless 
processes, continually sending the system garbage data, causing the system to initiate a re-boot, or other 
similar actions.  Each of these attacks reduces or eliminates the availability of computer resources.  In a ping 
flood attack the system machine is rapidly sent ECHO requests by an attacker.  The response to each of these 
requests limits the amount of available system memory for other processes.  As the number of successive 
requests is sent the protected system may slow to a stop as it attempts to manage the increased activity.  A 
similar type of attack, known as a UDP Packet Storm attack, relies on a rapid succession of UDP packets to 
overwhelm the system.  While DoS attacks are less complex than other forms of intrusion they possess 
characteristics of many other attacks and they are particularly difficult to detect, (National Research Council, 
1998).  As a result, DoS attacks were used in the evaluations of this approach.   
 
There were four objectives of the research effort described in this paper: 
 

1. Determine if an adaptive neural network could autonomously learn to recognize activity that 
represented a denial of service attack – Existing intrusion detection approaches have no independent 
capability to learn new attacks.  The requirement for manual updating of rule -bases and scripts limits 
the effectiveness of expert systems in a dynamic network environment.   

 
2. Determine if an adaptive neural network could accurately identify attacks that had been previously 

learned – While on-line autonomous learning is an important new capability the day-to-day 
effectiveness of any intrusion detection system is based on the ability of the application to accurately 
identify attacks in the network data stream.   

 
3. Evaluate the ability of an adaptive neural network to recognize new attacks on an initial 

presentation – Existing approaches to intrusion detection have little or no ability to identify new 
attacks unless the administrator manually updates the rule base.   

 
4. Test the ability of an adaptive neural network to refine its analysis of a previously learned attack – 

Existing neural network approaches to intrusion detection demonstrated the ability to accurately 
identify learned attacks, but they are incapable of on-line modification of their outputs in response to 
changes in the attacks. 

 
 
While each of these capabilities provide advances over most existing approaches to intrusion detection, the 
ability to autonomously learn new attack patterns without manual updating or retraining was the primary focus 
of the work.  The inability of existing systems to autonomously identify new attacks increases the long-term 
cost of the systems due to the requirement for dedicated personnel to identify and implement the necessary 
updates.  However, more significant is the fact that the lack of autonomous learning by existing approaches 
results in an intrusion detection system that is only as current as the most recent update and therefore becomes 
progressively more ineffective over time.  To evaluate the ability of an adaptive neural network to satisfy the 
stated objective a prototype application was developed in C and Matlab™.   
 
The following sections provide an overview of neural networks and previous applications of the technology to 
intrusion detection.  The adaptive neural network that was used in this research effort is then presented with a 
description of the modified reinforcement learning approach that enhanced the original neural network 
algorithm.  Finally, the results of a series of evaluations of the approach are presented.   



Neural Networks 

An artificial neural network consists of a collection of processing elements that are highly interconnected 
and transform a set of inputs to a set of desired outputs.  The result of the transformation is determined by 
the characteristics of the elements and the weights associated with the interconnections among them.  By 
modifying the connections between the nodes the network is able to adapt to the desired outputs 
(Hammerstrom, 1993). 
 
Unlike expert systems, which can provide the user with a definitive answer if the characteristics that are 
reviewed exactly match those that have been coded in the rulebase, a neural network conducts an analysis 
of the information and provides a probability estimate that the data matches the characteristics that it has 
been trained to recognize.  While the probability of a match determined by a neural network can be 100%, 
the accuracy of its decisions relies totally on the experience the system gains in analyzing examples of the 
stated problem.   
 
Traditional neural networks gain experience initially by training the system to correctly identify pre-
selected examples of the problem.  The response of the neural network is reviewed and the configuration 
of the system is refined until the neural network’s analysis of the training data reaches a satisfactory level.  
In addition to the initial training period, the neural network also gains experience over time as it conducts 
analyses on data related to the problem.     
 
A limited amount of research has been conducted on the application of neural networks to detecting 
computer intrusions.   Artificial neural networks offer the potential to resolve a number of the problems 
encountered by the other current approaches to intrusion detection.  Cannady (1998) demonstrated the use 
of multi-level perceptron/SOM hybrid neural networks for misuse detection in the identification of 
computer attacks and Bonifacio (1998) demonstrated the use of a neural network in an integrated 
detection system.  Artificial neural networks have also been proposed as alternatives to the statistical 
analysis component of anomaly detection systems, (Debar, 1992; Frank, 1994; Ryan, 1997; Tan, 1995).  
Statistical analysis involves statistical comparison of current events to a predetermined set of baseline 
criteria.  The technique is most often employed in the detection of deviations from typical behavior and 
determination of the similarly of events to those which are indicative of an attack (Helman, 1993).  Neural 
networks were specifically proposed to identify the typical characteristics of system users and identify 
statistically significant variations from the user's established behavior.     
 
Artificial neural networks have also been proposed for use in the detection of computer viruses.  Denault 
(1994) and Fox (1990) proposed neural networks as statistical analysis approaches in the detection of 
viruses and malicious software in computer networks.  The neural network architecture that was selected 
by Fox was a self-organizing feature map that uses a single layer of neurons to represent knowledge from 
a particular domain in the form of a geometrically organized feature map.  The proposed network was 
designed to learn the characteristics of normal system activity and identify statistical variations from the 
norm that may be an indication of a virus.   
 
However, each of these neural network-based approaches utilized algorithms that required the complete 
retraining of the neural networks to learn new attacks.  Traditional artificial neural networks (e.g., multi-level 
perceptron backpropogation systems) were designed to be trained for a specific problem domain with a 
representative set of data.  Once sufficiently trained, these neural networks are capable of accurately analyzing 
real-world data that matched, or was similar to, the training data.  Unfortunately, many application 
environments are not sufficiently static to be addressed adequately with traditional neural network models.  
The traditional neural network is unable to improve its analysis of new data until it is taken off-line and 
retrained using representative data that includes the new information.  This process can require substantial time 
and effort and then result in another “inflexible” neural network that is incapable of effectively analyzing 
subsequent additional new data over time.  Unlike traditional algorithms adaptive neural network architectures 



are capable of incremental and/or real-time learning in dynamic environments.   Adaptive neural networks are 
an active area of artificial intelligence research that offer the promise of new architectures that are capable of 
improving their analysis of new data over time without the need for retraining.   

CMAC-based On-line Learning Approach 

A form of adaptive neural network that has a strong mathematical foundation as well as a variety of 
successful applications in other problem domains is the Cerebellar Model Articulation Controller 
(CMAC) neural network (Albus, 1975).  The CMAC neural network is a localized three-layer 
feedforward form of neural network that is designed to produce a series of input-output mappings.  
CMAC neural networks are used widely in neural network-based control applications because of their 
capability for on-line learning. 

 

The CMAC neural network uses two mapping stages to process data (Figure 1).  The first stage is a 

nonlinear transformation that map the input x Rn  into a higher dimensional vector z {0,1}J which is 
a sparse vector where the number of nonzero elements is equal to C, referred to as the generalization size.  

The second mapping results in the output of the CMAC neural network y Rn through a linear matrix-
vector product w, where w is a L x J matrix of real-valued weights.  Inputs to the CMAC neural network 
that are similar in nature will map to many of the same weights.  By mapping to the same weights the 
resulting output of the neural network will also be similar for the inputs.  This process, known as 
generalization, allows the CMAC neural network to respond in a similar fashion to new inputs that are 
sufficiently close in the input space to existing patterns.  Similarly, if the inputs are sufficiently dissimilar 
then the resulting outputs will be noticeably different.   
 
The mapping process occurs in a series of three layers.  A layer consists of input units that forward the 
binary outputs to a layer of logical AND units that are sparsely interconnected to a layer of logical OR 
units.  The vector z is the output of the OR layer.  The inputs provided to the neural network are mapped 
to exactly C, (the generalization parameter), of the internal weights.  A second parameter, the quantization 
value, specifies the discretization of the input space.  Each of the elements in the input vector is provided 
to a series of sensor units with overlapping receptive fields.  Each of the sensors produces a 1 if the input 
falls within its receptive field and 0 if it does not.  The width of the receptive field is of each of the 
sensors determines the input generalization while the offset of adjacent receptive fields determines the 
quantization.  C is defined as the ratio of receptive field width to the offset of the receptive field.   
 
The binary units of the individual sensor units are provided to a layer of logical AND units.  Each of the 
AND units receives input from a group of sensors that correspond to distinct input variables.  The AND 
units are divided into C subsets.  The receptive fields of each sensor unit are connected to each of the 
subsets to provide complete coverage of the input space without overlap.  Each input vector excites an 
AND unit from each of the subsets.  This results in a total of C excited units for each input.   
 
The resulting number of State Space Detectors (logical AND units) required may be extremely large.  
However, since most problem domains do not involve the entire input space the majority of input vectors 
would not be used.  As a result, the size of the output layers and the associated storage requirements are 
often reduced in CMAC neural network implementations by randomly connecting the AND unit outputs 
to a subset of logical OR units.  In this situation exactly C AND units for excited by any input and no 
more than C OR units will be excited by any input.  This approach to memory preservation was preferred 
when computer memory was limited, but these limitations are not as great now.  As a result, the CMAC 
neural network used in this research directly connected each of the AND units directly to an OR unit.  
  



 
Figure 1: Modified CMAC Architecture  

 
The output of the CMAC neural network is computed by multiplying z by the weight matrix of the output 
layer.  The lth row of the CMAC weight matrix is adaptively and independently adjusted, traditionally 
using the least means squared learning algorithm.  This results in an approximation of a function f l(x) that 
is implemented by the lth output unit.  While the CMAC neural network possesses excellent local 
generalization capabilities it is limited in its ability to generalize universally.  For this reason CMAC 
neural networks have been applied most often to real-time robotics and signal processing.  Unlike other 
adaptive neural network the CMAC is able to easily incorporate feedback from the environment.  Figure 1 
displays the inclusion of feedback from the environment in the CMAC neural network implementation 
used in this research.  This allows the neural network to manage the types of data that are learned.  The 
CMAC algorithm was selected for this approach primarily because of the capability for on-line learning.  
While the prior work on neural network-based intrusion detection demonstrated the ability to accurately 
identify network attacks, those efforts were unable to demonstrate the ability to improve analyses without 
completely retraining the neural network.  Like the original CMAC proposed by Albus the neural network 
that was used in this research utilized a binary kernel function.  Traditional least mean square (LMS) 
learning algorithm was used to update the CMAC weights (w) based on multiplying the difference in the 
desired output  (Od) and actual output (Oa ) by a positive learning factor (b ): 
 

wi+1 = wi + b (Od – Oa) 
 
This CMAC neural network implementation was designed to utilize feedback from the protected system 
(s ) to produce an output that represented the probability of an attack.  The feedback from the protected 
system was in the range 0.0 (system stopped) to 1.0 (system optimal).  Each feedback value was based on 
the combined effect of the input packets on a variety of system state indicators, (e.g., CPU load, available 
memory, network load, etc.).  The output ranged from 0.0 (no attack) to .99 (definite attack) and should 
be inversely proportional to s .  While receiving normal network data the state of the protected system 
should be nominal, (e.g., 0.75 - 0.99), and the corresponding CMAC output should be small, (e.g., 0.0 – 
0.25).  However, during a denial of service attack the state of the protected system becomes degraded as 
the system reacts to the flood of packets and s is reduced.    Since the input to the CMAC was limited to 
the network events and system feedback the LMS learning algorithm was modified to incorporate the 
feedback by using the inverse of the state of the protected system (1 – s) as the desired output from the 
CMAC: 

wi+1 = wi + b ((1-s) – Oa) 



The standard LMS learning algorithm was further modified to respond more effectively in a network 
environment.  The inverse of the system state, (1 – s )  was used in place of a constant learning factor to 
increase the flexibility of the learning rate:  
 

wi+1 = wi + (1-s)((1-s) – Oa) 
 
While the typical use of a constant learning factor in LMS algorithm implementations will usually settle 
to an acceptable error level, the use of a single learning factor prevents the system from varying the rate at 
which new information is learned.  The ability to vary the learning factor offers the advantage of allowing 
a system to increase or decrease learning rates in response to circumstances in a dynamic environment.  
By using  (1 – s ) as the learning factor the CMAC developed in this work was designed to learn faster 
when the state of the protected system was degraded and at a lower rate when the state was nominal.  This 
results in an adaptive learning rate that responds to the current level of potential threat to the protected 
system.   

Evaluation of Approach 

The assessment of the viability of the adaptive neural network approach to intrusion detection was based 
on four experiments that were conducted through the use of the prototype application: 
 
1. Autonomous Learning of Attacks 
 
The objective of this experiment was to test the ability of the adaptive neural network to learn attacks 
based on feedback from the environment.  In this simulation the environmental input was the state of the 
protected system.  The prototype application included the functionality to simulate a Ping Flood attack 
against the protected system that could be used to evaluate the autonomous learning ability of the 
prototype.  The number of ping elements was gradually increased in the ten element data vector until the 
entire vector consisted of the attack elements after sixty iterations.  After presenting ten additional 
“complete” attack vectors the number of attack elements was gradually reduced until the data vectors 
included only normal/random data elements were included in the simulated data stream.   The weights 
that serve as the “memory” for the CMAC neural network are initialized to random values when the 
prototype application is started.  The prototype is then provided with a complete Ping Flood attack pattern  
and the resulting initial error is measured as part of the start-up sequence. The prototype was then 
provided with a gradual simulated Ping Flood attack from one of the established connections.  After the 
presentation of each of the data vectors in the gradual attack the original complete Ping Flood attack 
pattern is once again presented to the CMAC neural network for analysis.  The response error to these 
subsequent presentations was plotted throughout the learning process, (Figure 2).  The difference between 
the resulting error at each step and the initial error provided an indication of the ability of the adaptive 
neural network to learn the attack. 
 
After the initial presentation of the complete Ping Flood attack vector the CMAC neural network 
responded with an error of 97.6758%.  This was an extremely high error but not unexpected due to the 
random nature of the initialized neural network weights.  As the CMAC neural network components were 
trained using the gradual Ping Flood attack vectors and the feedback from the simulated protected system 
the response error dropped quickly.  On the second presentation of the complete Ping Flood attack vector 
the error was reduced to 2.199%.  As the training progressed the response error of the prototype was 
reduced to 1.94-07%.  This extremely small error indicated that the CMAC neural network used in the 
prototype had accurately learned to recognize a Ping Flood attack in the simulated network data stream. 
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Figure 2 : Response Error of CMAC While Learning Simulated Ping Flood Attack 

 
 
2. Recognition of New Attacks 
 
The objective of this experiment was to evaluate the ability of the adaptive neural network approach to 
apply prior learning to the analysis of similar patterns that represent a different attack.  One of the most 
significant advantages of neural networks is the ability to generalize.  Generalization allows the neural 
network to provide a similar response to data patterns that are comparable.  The ability to respond 
effectively when presented with a new attack was a principal goal of the adaptive neural network-based 
intrusion detection model.  The neural network should be capable of applying its prior learning to the 
analysis of a new attack pattern.   
 
The prototype application included a process that checked the initial response of the CMAC neural 
network to a UDP Packet Storm attack vector immediately after the CMAC weights were initialized.    
The initial error of the response was displayed on the prototype user interface at the start of the 
application.  After the CMAC neural network learned the Ping Flood attack in the first experiment the 
UDP Packet Storm attack vector was presented again to the CMAC neural network to evaluate the ability 
of the neural network to apply its learning of the Ping Flood attack to another form of denial of service 
attack.  The difference in the initial and post-training responses to the UDP Packet Storm attack vector 
indicated the ability of the neural network to generalize. 
 
It was hypothesized that the CMAC neural network would be capable of identifying a UDP Packet Storm 
pattern with a response error less than 15% (the current standard error rate for recognizing existing attacks 
in commercial intrusion detection systems ((Bonifacio, 1998)) on a presentation of the vector after 
learning the Ping Flood attack.  The initial response error of the CMAC neural network to the UDP 
Packet Storm attack vector was 93.2869%.  This is an extremely high error but it is consistent with the 
expected response from a neural network with initialized weights.  After completing the training the 
CMAC neural network with the Ping Flood attack in the first experiment the UDP Packet Storm attack 



vector was presented to the CMAC.  The response error of the CMAC neural network on the second 
presentation was reduced to 2.1992%.  This result demonstrated the ability of the neural network to 
generalize effectively and respond accurately to a similar attack pattern.  The extreme accuracy (1.94-07%) 
in responding to the Ping Flood attack indicated that the CMAC neural network might have suffered from 
overfitting.  This situation occurs when a neural network learns too many input-output examples and 
memorizes the training data instead of modifying the internal weights to achieve an accurate “curve fit” to 
the nonlinear data.  When a neural network is overtrained it loses the ability to generalize between similar 
input-output patterns (Haykin, 1999).  However, as demonstrated in this experiment the CMAC neural 
network in the prototype retained the ability to accurately compute an input-output mapping for test data 
that had not been used in training the neural network.  As a result, the CMAC neural network had not 
suffered from overfitting. 
 
After determining the initial response of the adaptive neural network to the new attack the CMAC neural 
network learned the new patterns as the new attack progressed.  After the presentation of a data vector 
from the complete simulated UDP Packet Storm attack the original UDP Packet Storm attack pattern is 
once again provided to the CMAC and evaluated.  The response of the CMAC neural network to the 
complete attack vector was plotted during training, (Figure 3).   It was hypothesized that the CMAC 
neural network would be capable of accurately learning a pattern of activity as a new attack based on the 
feedback received from the protected system.   On the initial presentation of the new attack the CMAC 
neural network provided an output with a response error of 2.199%.  On the second presentation the 
CMAC neural network response error was reduced to 0.08%.  As indicated in Figure 3 the error continued 
to decline until it reached 8.53-14%.    
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Figure 3 : Error Rate in Learning New Attack Pattern 



 
3. Recollection of Learned Attacks 
 
The objective of this experiment was to evaluate the ability of an adaptive neural network to subsequently 
identify previously learned attacks from the network data stream.  The application was designed to test 
the ability of the system to quickly and accurately recognize an attack that it has seen before.  Some 
existing adaptive neural network algorithms are capable of learning new information only at the expense 
of previously learned patterns.  This experiment was designed to determine if the CMAC neural network 
could recall a data pattern subsequent to learning a different pattern.  Both the speed and accuracy of an 
intrusion detection system are important in high-bandwidth network environments. 
 
This experiment was significant since many neural network algorithms are unable to retain prior learning 
when subsequently trained on new data.  As a result, this experiment tested the ability of the CMAC 
neural network to perform continual learning.  To evaluate the ability of the prototype to accurately recall 
a previously learned attack after learning an additional attack pattern the Ping Flood attack vector was 
included in the simulated normal data stream at two hundred regular points.  The response of the CMAC 
neural network used in the prototype to each of these presentations was plotted in Figure 4.     
 
The initial response to the Ping Flood attack vector by the prototype was 0.038%.  This demonstrated that 
the CMAC neural network was able to retain memory of the first attack after learning a subsequent attack.  
However, as indicated in Figure 4, the response error dropped further after subsequent presentations until 
it stabilized at 3.28-05% after fifty iterations.  While the initial recall error was low the fluctuations in the 
early iterations were probably due to the further refinement of the CMAC weights during subsequent 
presentations of normal data vectors.     
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Figure 4 : Response Error During Attack Recall Experiment 

 
 



4. Refinement of Analysis 
 
The objective of the final experiment was to test the ability to of the adaptive neural network to improve 
its analysis of new attack during subsequent presentations of the same attack.  While the ability of a 
neural network to learn new attack patterns would be a significant advance over existing approaches to 
intrusion detection the analysis engine of the intrusion detection system must be able to refine its analysis 
of an attack based on the feedback from the protected system.  As an example, a pattern of activity that is 
recognized as a 75% chance of being a Ping Flood attack during an initial presentation should have the 
capability to increase the probability of an attack on a subsequent presentation if the status of the 
protected system is further degraded.   
 
The prototype application included the functionality to simulate Ping Flood and UDP Packet Storm 
attacks of increasing severity on the protected system.  However, the protected system responds in a 
consistent manner to the presentation of attack vectors, (i.e., as the number of attack elements increases in 
the vector the system response is reduced to zero).  While this capability facilitates the training of the 
CMAC neural network used in the prototype in learning attacks an additional form of denial of service 
attack was used to evaluate the ability of the neural network to refine its analysis in response to feedback 
from the protected system.   In this experiment a data vector containing ten identical elements is presented 
to the CMAC with the feedback from the protected system.  The experiment was conducted after 
initializing the CMAC neural network weights to zero to avoid conflicting responses with other learned 
data patterns.  The initial feedback from the system is 100%, which represents a protected system state in 
which all system resources are available.  The expected response from the CMAC neural network should 
be extremely low to represent that the data vector has a low probability of representing a denial of service 
attack.  During each of the fifty presentations of the same data vector the response from the protected 
system is decreased by two percent until the feedback value was zero.  The CMAC neural network should 
increase its output proportionally to the decrease in the feedback from the protected system to represent 
an increasing probability of an attack.  While this would not be expected to occur in an actual 
implementation it was designed to demonstrate the ability of the neural network to adapt to changes in the 
feedback from the protected system that would reinforce the probability of an attack.  The results of the 
CMAC analysis were plotted throughout the on-line learning process.  The graph in Figure 5 
demonstrates that the CMAC neural network was able to accurately modify its response to the data vector 
based on the updated feedback from the protected system.  Over the fifty iterations of the vector 
presentation the CMAC neural network responded with an average error of 1.24%.   
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Figure 5 : Results of Evaluation of CMAC Adaptability 



Conclusions 

Research and development of intrusion detection systems has been ongoing since the early 1980's and the 
challenges faced by designers increase as the targeted systems because more diverse and complex.  The 
results of this research demonstrates the potential for a powerful new analysis component of a complete 
intrusion detection system that would be capable of identifying priori and a priori denial of service attack 
patterns.  Based on the results of the tests that were conducted on this approach there were several 
significant advances in the detection of network attacks:  
 
§ On-line learning of attack patterns – The approach has demonstrated the ability to rapidly learn 

new attack patterns without the complete retraining required in other neural network approaches.  
This is a significant advantage that could allow the intrusion detection system to continually 
improve its analytical ability without the requirement for external updates.  

 
§ Rapid learning of data – The CMAC was usually able to accurately identify the data vectors 

after only a single training iteration.  This is a significant improvement over other neural 
network approaches that may require thousands of training iterations to accurately learn patterns 
of data. 

 
§ Extremely accurate in identifying priori attack patterns – The use of the modified reinforcement 

learning approach resulted in an average error of 3.28-05%, compared with an average error of 
15% in existing intrusion detection systems.  Because other information security components 
rely on the accurate detection of computer attacks the ability to accurately identify network 
events could greatly enhance the overall security of computer systems.   

 
§ Immediate identification of a priori attacks - The approach has demonstrated the ability to 

effectively identify potential attacks during the initial presentation prior to receiving feedback 
from the protected system.  While the error in the response was higher than during subsequent 
presentations of the pattern after feedback had been received, the average error rate of 2.199% 
indicates that the proposed approach has the ability to accurately identify new attacks based on 
its experience.  In addition, the ability of this approach to utilize generalization to provide some 
indication of attack is an advantage over expert system approaches that require an exact match to 
coded patterns to provide an alert.  

 
§ Ability to autonomously improve analysis – The approach demonstrated the ability to effectively 

modify its analysis of attacks in real time based on feedback from the protected system.  This 
capability allows the adaptive neural network to continuously improve its analysis without the 
need for retraining or manual updates.   

 
The results of the tests of this approach shows significant promise, and our future work will involve the 
application of this approach to other complex forms of attacks which are typically addressed through 
misuse detection.  We are also developing a full-scale integrated intrusion detection and response system 
that will incorporate the CMAC-based approach as the analytical component. 

References 

Albus, J.S. (1975, September). A New Approach to Control: The Cerebellar Model Articulation 
Controller (CMAC). Transactions of the ASME. 
 



Bonifacio, J.M, Cansian, A.M., de Carvalho, A., & Moreira, E. (1998). Neural Networks Applied in 
Intrusion Detection. In Proceedings of the International Joint Conference on Neural Networks. 
 
Cannady, J.  (1998). Applying Neural Networks to Misuse Detection. In  Proceedings of the 21st National 
Information Systems Security Conference. 
 
Debar, H. & Dorizzi, B.  (1992).  An Application of a Recurrent Network to an Intrusion Detection System.  In 
Proceedings of the International Joint Conference on Neural Networks.    
 
Denault, M., Gritzalis, D.,  Karagiannis, D., and Spirakis, P. (1994). Intrusion Detection:  Approach and 
Performance Issues of the SECURENET System. Computers and Security 13 (6), 495-507. 
 
Fox, Kevin L., Henning, Rhonda R., & Reed, Jonathan H. (1990).  A Neural Network Approach Towards 
Intrusion Detection.  In Proceedings of the 13th National Computer Security Conference. 
 
Frank, Jeremy.  (1994). Artificial Intelligence and Intrusion Detection: Current and Future Directions.  In 
Proceedings of the 17th National Computer Security Conference. 
 
Hammerstrom, Dan.  (June, 1993).  Neural Networks At Work.  IEEE Spectrum.  pp. 26-53. 
 
Helman, P., Liepins, G., and Richards, W.  (1992).  Foundations of Intrusion Detection. In Proceedings of 
the Fifth Computer Security Foundations Workshop  pp. 114-120. 
 
National Research Council. (1998, September).  Trust in Cyberspace, 7-8. 
 
Ryan, J., Lin,  M., and Miikkulainen, R. (1997).  Intrusion Detection with Neural Networks. AI 
Approaches to Fraud Detection and Risk Management: Papers from the 1997 AAAI Workshop 
(Providence, Rhode Island), pp. 72-79. Menlo Park, CA: AAAI. 
 
Tan, K. (1995). The Application of Neural Networks to UNIX Computer Security. In Proceedings of the 
IEEE International Conference on Neural Networks, Vol.1  pp. 476-481. 


	Table of Contents

