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Abstract

While many techniques have been explored for detecting intrusive or abnormal be-
havior on computer systems, approaches that involve pattern matching, expert systems,
and traditional neural networks require detectors to either be crafted by hand or trained
upon examples of known intrusions. We argue that neural networks capable of unsuper-
vised learning can provide a powerful supplement to these techniques. After learning
the characteristics of normal traffic or user behavior, these networks can identify ab-
normalities without relying on expectations of what abuse will look like. This paper
analyzes the potential of the Kohonen self-organizing map to narrow the envelope of
intrusive behaviors that would not be caught by a detection system.1
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1 Introduction
Intrusion detection systems have been an active area of research and development

since 1987 [Den87]. Increases in speed and complexity of computer networks, as well
as public access to them, have sharpened the need for effective intrusion detection ap-
proaches. This paper describes an innovative approach to intrusion detection that uses
self-organizing neural networks to recognize anomalies in a computer network data
stream. Unlike most existing approaches, these networks could recognize potentially
intrusive activity in network traffic without utilizing the pre-defined attack signatures
that limit the effectiveness of typical approaches using expert systems. The following
sections provide an overview of existing intrusion detection techniques, a discussion
of neural networks and their application to intrusion detection, and a description of the
ongoing research effort that is applying self-organizing neural networks in the detec-
tion of network attacks.

1This work is supported by Army Research Laboratory DAKF11-97-D-0001-0036,
and is the subject of a provisional patent application.



2 Prior Neural Network Approaches
Effective intrusion detection is a difficult and elusive goal for system administrators

and information security researchers. The inherent complexity of computer systems,
the variety of potential vulnerabilities, and the skill of many attackers combine to
create a problem domain that is extremely difficult to address.

Intrusion detection has traditionally focused on one of two approaches.Anomaly
detectionseeks to identify activities that vary from established patterns for users, or
groups of users. It typically involves the creation of knowledge bases compiled from
profiles of previously monitored activities. The second approach,misuse detection,
compares a user’s activities with the known behaviors of attackers attempting to pen-
etrate a system. Anomaly detection often uses threshold monitoring to identify in-
cidents, while misuse detection is most often accomplished using a rule-based ap-
proach. Expert systems are the most common form of rule-based intrusion detection
approaches. Unfortunately, expert systems have little or no flexibility; even minor vari-
ations in an attack sequence can affect the activity-rule comparison to a great enough
degree to prevent detection. Some approaches have increased the level of abstraction
of the rule-base in an attempt to compensate for this weakness, with a side effect of
reducing the granularity of the intrusion detection process.

An increasing amount of research in the last few years has investigated the applica-
tion of neural networks to intrusion detection. If properly designed and implemented,
neural networks have the potential to address many of the problems encountered by
rule-based approaches. Neural networks were specifically proposed to learn the typi-
cal characteristics of system users and identify statistically significant variations from
their established behavior.

Fox employed a Kohonen self-organizing map [FHR90] to learn the characteristics
of normal system activity on a multiuser machine and identify variations from that
norm that could indicate the presence of a virus. Like us he included in the map’s
output not only the location to which input has been assigned, but the measure of how
well it fits there — and like us made the latter factor primary in his analysis.

The first use of a Kohonen self-organizing map in misuse detection is described by
Cannady [CM98]. There a hybrid neural network — in which the output of a Kohonen
map provided input to a conventional feed-forward neural network — was prototyped
to address temporally dispersed, and possibly collaborative, attacks in a simulated data
stream. Temporally dispersed attacks are those conducted by a single attacker over an
extended period of time, while collaborative attacks are conducted by multiple attack-
ers working in concert to achieve a single intrusion. Each of the attackers’ actions
taken individually may appear innocuous, the attack becoming apparent only if all of
the events are considered together. Both of these types of attack may be very complex.
To address this, an enhanced pattern recognition approach was designed and tested
to identify series of events that constitute an attack. The tests conducted on the hy-
brid neural network indicated that the prototype was very effective in identifying the
simulated attacks.

While earlier work considered Kohonen maps that processed the entire state of a
system or network, our work breaks ground by using collections of more specialized



maps. By introducing deterministic preprocessing of network traffic, we narrow the
load placed on each map and, we argue, facilitate the construction of a system that is
much more sensitive to abnormalities in these separate streams of network traffic.

3 The Kohonen Self-Organizing Map
Typical neural networks, to which most readers will have been exposed, can only

be trained after their teacher has determined what output he desires for each of many
possible input values. In contrast, theself-organizing mapdeveloped by Kohonen
[Koh95] automatically categorizes the varieties of input presented during training and
can then express how well new inputs fit the patterns it has discerned.

3.1 Kohonen Map Structure
An input to a Kohonen map takes the form of a mathematicalvector(an ordered

list of coordinates). The map must have been provided with some means of measuring
how different two vectors are; for this paper we will call this function that compares
two vectors ourcomparison function. Later in the paper we will consider several
possible comparison functions.

The map itself is two-dimensional — a surface across which a grid of prototype
vectors is laid (the regularly spaced dots across the maps in Figure 1 indicate the
configuration of each grid). We have been using square maps, each covered by a
uniform rectangular grid of prototype vectors, but other options do exist (hexagonal
maps are, for instance, sometimes encountered). We use the termprototypefor the
vectors at the intersections of the grid to make it clear that the vectors on the grid
are not copied directly from the input, but represent ideal or average vectors of which
many examples may exist in the map’s input.

When we present an input vector to the map for evaluation, it is compared (using
the map’s comparison function) with every prototype vector in the grid. The map then
outputs two pieces of information: the location (in grid coordinates) of the prototype
that most closely matches the input vector, and the measure of how well the input
vector fits the prototype (that is, the metric returned by the comparison function). If
we desire more detail in the locations returned by the map, we can instead have the
map interpolate a location between the two or three most similar prototypes; in fact
for our experiments we use two-point interpolation.

Of course, we are not usually interested in vectors for their own sake, but use them
to describe the properties of some other class of objects which we wish to study. If we
were, for example, interested in the triangles in Figure 1a, we would create a vector
for each triangle that described its shape. This was in fact done (the caption describes
the design of the vector), and to understand the result we must study how the Kohonen
map is trained.

3.2 Kohonen Map Training
Given a set of input vectors on which to train, the Kohonen map spontaneously

organizes them so that similar vectors are clustered together on its surface, and that
important variations among vectors are reflected in their arrangement. The distance
between where two vectors are placed on its surface represents not their absolute dis-
similarity — which we already knew how to compute — but their difference relative



to the space of possibilities present in the training set. Figure 1b illustrates such an ar-
rangement: each triangle has been drawn where the map placed the vector describing
its properties, and we see that the two types of triangles have been segregated — with
all the fat equilaterals piled up in one cluster — and the isosceles triangles have been
stretched along arcs that explore the fine distinctions among their orientations.

The training process through which these relationships are established are fairly
straightforward. Choose a set of vectors upon which to train the map, and randomize
the map’s prototype vector elements within the range of values that the corresponding
input vector elements are expected to offer. Then iterate over the training vectors;
for each training vector, find the prototype on the map which is most similar to it,
and incrementally adjust that prototype and its neighbors on the map to more closely
resemble the training vector. Repeatedly subject the map to the training vectors this
way, gradually reducing the size of both the ‘neighborhood’ that gets adjusted and the
increment by which elements are adjusted.

To prevent the map from clumping the training vectors on only a few favored proto-
types, a bias against winning prototypes can be introduced to force the training vectors
to make more extensive use of the map’s area.

4 Kohonen’s Map and Anomaly Detection
Given the Kohonen self-organizing map’s ability to categorize a collection of input

vectors then rate whether subsequent vectors fit any of those categories, we need only
a technique for turning network traffic into vectors to subject that traffic to the same
type of analysis.

4.1 Constructing a Monitor Stack
Inspection of the network link serving an Internet-connected facility will typically

find it packed with heterogeneous traffic. There are several sources of this variety:

� Packets are not only destined for different hosts, but belong to particular con-
versations ongoing between applications on those hosts. Other packets may not
belong to conversations, instead carrying asynchronous unidirectional commu-
niques that receive no acknowledgement.

� Each packet bears a series of headers that each direct the operation of one of the
protocols which the communicating agent is employing to transmit his informa-
tion.

� The pace and duration of connections is quite variable. Automated transactions
such as nameserver and HTTP requests may often take less than a second, while
login sessions operated directly by humans may persist for hours.

� The payloads carried by the observed packets will vary remarkably between ap-
plications. Some will hold exactingly formatted text, others encode the painstak-
ing manual edits of users at their keyboards, and still others will communicate
arbitrary binary data.

It would be unreasonable to expect a single Kohonen map to usefully characterize such
disparate information.
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Figure 1: (a) Sixty random triangles, deliberately generated within two
narrow categories, form the training set for an example Kohonen map.
(b) This ten-by-ten Kohonen map was trained upon vectors which each
describe the area, acuteness, and orientation of one triangle from the
training set; here each triangle is shown at the position assigned to its

vector by the self-organizing map. (c) A subset of the training triangles is
shown (for clarity), each labelled with the measure of how different its

vector is from the map element to which it is most similar. (d) Finally we
use the map for its intended purpose — categorizing novel inputs; here a
random assortment of triangles, some similar to the trainee vectors and

some different, are shown in position and labelled with how great a
difference they register compared with the underlying map elements.
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Figure 2: General schematic for a network monitor stack, including
suggestions of the kinds of information available at different levels.

These considerations motivate the construction of amonitor stack, utilizing proto-
col analyzers to reduce and segregate the traffic before it is subjected to map analysis.
Figure 2 presents a schematic monitor stack for interpreting Internet Protocol (IP) traf-
fic. Since packets are produced by layered protocols in the originating host, the moni-
tors are similarly layered — allowing the extraction of statistics about lower protocol
layers while permitting the reconstruction of the data streams they support.

Note that activity at every layer of the monitoring stack must be monitored, since
malicious activity can be targeted atany protocol layer. An otherwise innocent web
browser request could be degenerately fragmented at the IP layer in an attempt to
crash the receiver’s operating system; floods of apparently normal connection requests
could be targeted to monopolize the resources of a server’s Transmission Control Pro-
tocol (TCP) layer to deny service to legitimate users; or, an abnormally long and gar-
bled file name requested from a file server could induce it to run arbitrary code on
behalf of an intruder.

Designing an analyzer stack for reconstructing network activity is not novel, but
is an essential component of a neural network approach. By illustrating the kinds of
information available from a complete decomposition of network traffic, it provides a
context in which we may consider the intelligent deployment of neural networks.

4.2 Specialist Networks
The monitor stack architecture strongly suggests that each neural network become

a kind of specialist, trained to recognize the normal activity of a single protocol and
ready to raise an alarm when a significant deviation is detected. The specialization
could be carried even further, with the activities of particular remote hosts or individ-
ual users being subjected to the analysis of neural networks honed to recognize their
typical behavior.

Of course many desirable monitors can, and should, be constructed without neural



networks — many such schemes are already operating in extant intrusion detection
systems. It would be ridiculous to attempt a neural approach to recognizing, say, an
attack based on the reassembly of malformed IP fragments, when simple conditional
checks on fragment offsets and lengths will accomplish this flawlessly and very effi-
ciently. Rather, we are seeking out those roles in the network protocol hierarchy where
flexible pattern recognition is a significant asset over more traditional approaches.

Note that protocol decomposition can continue for as long as we can invoke fur-
ther deterministic rules to guide it. Not only could the data stream reconstructed from
TCP packets be further interpreted as a Simple Mail Transport Protocol transaction,
but the mail message itself could be processed for MIME encoded attachments that
might include documents with macros. The computing resources available for mon-
itoring a given network link will of course place limits on how much processing can
be performed, but we expect that many facilities would find it worthwhile to config-
ure certain monitors to drill down quite far into the structure of transactions that have
posed earlier security problems.

4.3 Vectorization Options
Our discussion to this point has glossed over the issue of how incoming data

streams are packaged for presentation to a Kohonen map, which (as was noted in
the earlier discussion of them) accepts fixed-length vectors as input.

The invention of schemes by which packets, transactions, and data streams might
be represented numerically represents both the greatest challenge and the greatest op-
portunity of this research. The choice of which traffic features to represent, and how to
translate them into numbers, will unavoidably involve highlighting certain aspects of
network activity while making others obscure or even invisible to the detector. The de-
signer of each detector must therefore strive to develop vectorizations which increase,
as much as is possible, the contrast between innocent and malicious activity.

The possibility that several successful vectorization techniques could be developed
for a single protocol suggests the deployment of multiple Kohonen maps, each viewing
that network activity through the lens of a different vectorization. While it may often
be possible to construct an intrusion that appears normal to one particular map, the
presence of several maps — each watching a different aspect of the protocol’s behavior
— will make it extremely unlikely that an intrusion could pass unnoticed.

An open issue which our research shall investigate is which features should be
combined to make a single vector, and which should be presented to different maps
in separate vectors. If too many features are combined into a single vector, we run
the risk that an intrusion will not make enough of them suspicious make the vector as
a whole appear anomalous; but if every feature is presented to its own map, then we
lose the ability to detect unusual correlations. We hope in the course of our research
to develop guidelines for detector construction that address these questions.

Another choice, just as important as the design of the vector, is the formula for
measuring the similarity between two vectors. The comparison function used in Fig-
ure 1, for example, gave the greatest weight to the difference between the triangles’
areas; thus it absolutely segregated the fat equilaterals and thin isosceles, despite the
fact that there are other respects in which they are similar.



The most obvious measure of vector similarity is somehow aggregating the dif-
ferences among their several coordinates. But if vector coordinates represent actual
content, or information for which absolute order is not important, other techniques
might be used for comparison. We might measure the differences between two texts
using the (Levenshtein) editing distance; the similarity between parts of documents
with Tanimoto similarity; or statistical pattern recognition. While these techniques
tend to be quite expensive and would therefore not usually be appropriate for packet
analysis, they might prove useful when comparing transmitted email messages or other
large documents.

It must finally be admitted that many vectorization techniques will be suited for
detecting some intrusions at the expense of others (though further research may teach
us how to construct vectorizations that are quite general). At this point our approach
may prove susceptible to one weaknesses of the rule-based approaches with which he
have contrasted it: that it only allows the detection of attacks that we already know
about. So while a Kohonen map designed with buffer overflow attacks in mind will
almost certainly be more flexible than a set of rules watching for the same type of
activity, both may completely overlook some other kind of attack of which their de-
signers were ignorant. The Kohonen map may thus have a limit to how far outside our
expectations it can detect abnormal activity.

4.4 Over-specificity and Retraining
The activities of networks and their users change slowly over time; new areas of

application can produce new traffic on old protocols and services, while changes in
server and client behavior gradually shift the content of sessions and transactions.
This presents both a challenge and opportunity for neural networks.

The challenge can be termed the problem ofover-specificity. We will presumably
train the Kohonen map on data collected from the site to be monitored. This means
that instead of creating a map that recognizes, say, web traffic in general, we will be
creating a monitor that specifically accepts the web requests common at a particular
installation. As the web content at that site evolves, portions of the traffic it produces
may begin to appear abnormal to a map trained months earlier.

But if indeed map training can be an unsupervised process, as described elsewhere
in this paper, then this problem invites periodic, automaticretrainingas its solution. At
various intervals the intrusion detection system can capture intervals of traffic and use
them to train new networks. The old network could either be immediately discarded,
or several generations could be kept online for comparative evaluation and the oldest
map rotated off once its false-hit rate became unbearable.

4.5 Additional Research Foci
In the course of our initial research, two challenges have arisen whose resolution

will be key to successful implementation of our technique. Here we provide an outline
overview of each challenge.

First, there appear to be specific situations in which the measure of how well a
vector fits on the Kohonen map is by itself an insufficient indicator of whether that
vector is in fact representative of the input. An example occurs when the input falls
naturally into two categories with widely different attributes: the map will carve out



an area to fit each category, leaving between them an empty region in which the pro-
totypes represent intermediate cases between the two observed extremes. If the map
then receives such an intermediate vector as input, it will place it quite comfortably in
that middle region despite the fact that it resembles none of the input vectors. There
are at least two approaches to disambiguating these situations: first, we could contrive
some method of recording which areas of the map were occupied by training vectors
and considering vectors suspicious that were outside of these regions; or, we could
seek some deterministic means of distinguishing the two types of traffic, and train two
separate Kohonen maps upon the properties of each.

Another issue involves the collection of training examples — we have blithely been
assuming an ability to acquire arbitrary amounts of intrusion-free traffic. At a real
computing installation intrusion attempts from the Internet might happen at any time,
and popular sites might find them so frequent that any significant collection of captured
traffic is likely to include one or two. Of course we can use a traditional expert system
to remove known intrusions from our data, but the whole point of our exploring a
neural network approach is that such systems are insufficient because novel intrusions
are always being developed. If such a novel intrusion is present in our training data,
will we not inadvertently create a Kohonen map specifically designed toacceptthat
intrusion as normal network behavior?

We have identified two approaches toward mitigating the problem of intrusions in
the data set. One involves the fact that, given its size and the strength of the neighbor-
hood function used in training, a given self-organizing map possesses a limit on how
much diversity can exist among the vectors it accepts. As long as the intrusion occu-
pies only a fraction of the training set, and generates sufficiently distinct vectors, the
map will be dominated by normal activity and the intrusion will not be able to carve
out a region that accepts it. Maps that are trained using possibly tainted input should
be checked for data that was not able to be accommodated.

A more robust approach to removing anomalies from training data is to collect
several training sets, train a map on each set, then filter each set through the other
maps. Only if similar intrusions manage to appear ineverydata set will they not be
recognized by one of the maps. Once cross-filtering has been used to clean the training
sets, one or any of them can be used for training a final map.

5 Experimental Evidence
We have constructed an anomaly detector based on a Kohonen map, and success-

fully detected two different exploit attempts we perpetrated against our own server.
The following is an outline of our experiment.

5.1 Design
We have implemented a Kohonen map using the C language on a Linux worksta-

tion, and a test harness written in Python that includes basic visualization facilities
allowing us to monitor the training and use of the map. All of our network data was
collected locally using thetcpdumppacket capture program that is standard equipment
with many versions of Unix.



We chose to monitor requests to our Domain Name Service (DNS) port because of
the relative simplicity of its protocol: its requests and replies are defined to be sym-
metric, so a single routine can be used to parse both. DNS implements a worldwide
distributed database for performing host name resolution, allowing users to use names
like “mit.edu” rather than raw IP addresses like 18.72.0.100. We restricted our atten-
tion to requests using the TCP protocol, since this is the protocol used by both of the
exploits which we possess.2

From a sample of roughly forty packets we used the first thirty to train the map, and
the other dozen to determine how well the map generalized from these thirty examples.
A listing of all forty vectors, sorted by how well they fit on the map, showed that the
map did not noticeably favor the thirty vectors from the training set. We then submitted
the packets from both exploits to the trained maps and measured how well they fit.

Since both of the test intrusions were buffer overflow attempts, we designed vec-
tors consisting of a simple six-category histogram indicating how many octets each
packet fit a particular character class (such as alphabetic, numeric, control, and non-
ASCII). Since buffer overflow arguments tend to be unusually large and place binary
data where text is expected, we hypothesized that this vectorization scheme would
make buffer overflow attempts particularly striking.

Note that we have not at this point attempted to reconstruct the TCP packets into
a data stream, as the system envisioned above would do. Since we instead simply
consider each packet individually, our results may be more modest than would be
achieved by a more complete monitor stack.

5.2 Results
We were extremely encouraged by the stability of our self-organizing map. Since

each map is initialized randomly, and reaches a unique spatial arrangement for the
training vectors, we did not know whether our measure of how well each vector fit
would also vary substantially. Our training runs have to date produced quite consistent
measures, rarely approaching a ten percent difference between the measures of fit for
the same vector on different runs. So while the location of the clusters is different each
run, the properties of the topological habitat they carve out are eminently reproducible.

In the case of our data and our particular distance measure, all of the “normal”
traffic scored somewhere between zero and three, save for one outlier that consistently
registered around thirteen — not a very good fit.

The bind4-9-5 exploit produced encouraging results. Of the roughly seven packets
transmitted to accomplish the exploit, two registered just above eighty, indicating they
did not fit well on the map at all, and two other registered around six hundred thirty —
indicating an extreme anomaly. This ratio of more than fifty between the worst-fitting
training vector and the vectors produced from intrusive packets would provide ample
leeway for establishing an alarm threshold in production system.

The results from the rotshb exploit were even more extravagant; not only did it
also display two packets whose fitness measure landed at just above eighty, but the

2We employed both the rotshb (Riders of the Short Bus) and bind4-9-5 exploits, which can be downloaded from
the Packet Storm security archive (visit http://packetstorm.securify.com/exploits/apps/bind/).



two packets actually carrying the exploit payload scored a whopping thirteen hundred
and sixty each!

These experiments provide strong encouragement for the implementation of a work-
ing intrusion detection system utilizing self-organizing maps.

6 Conclusion
The Kohonen self-organizing map is an extremely powerful mechanism for au-

tomatic mathematical characterization of acceptable system activity. We have argued
that it should be applied to the analysis of data collected from network monitoring, and
have designed a monitoring system that would preprocess network packets to highlight
their properties for inspection by a self-organizing map.

Our actual experiments show that even a simple map, when trained on normal
data, will detect the anomalous features of both buffer overflow intrusions to which
we exposed it. The ratio by which normal and intrusive packets differed in the self-
organizing map was computed, and found to be greater than an order of magnitude in
both instances. Note that buffer overflows are considered the most significant practical
security threat of the last decade [CWP+99].

This approach is particularly powerful because the self-organizing mapnever needs
to be toldwhat intrusive behavior looks like. By learning to characterize normal be-
havior, it implicitly prepares itself to detect any aberrant network activity.
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