Business Process Driven Framework for defining an Access Control Service based on Roles and Rules

NISSC - October 2000

R. Chandramouli (Mouli)
(Security Division ITL - NIST)
Business Process Driven Framework for defining An Application-level Access Control Service (BPD-ACS) - Outline

• Building Blocks

• Drawbacks in Existing Approaches

• BPD-ACS Framework applied to a Hospital-based Laboratory Information System (HLIS).

• Other Potential Applications
Building Blocks for defining an Application-level Access Control Service

- Identify application-level operations (ACS-T1).

- Identify constraints on the exercise of those operations based on enterprise security policy requirements. Also Define User base and Profiles (ACS-T2)

- Model User-Operation association using an Access Control Model (ACS -T3).

- Implement mechanisms to enforce User-Operation constraints identified in T2 using the model (ACS -T4).
Drawbacks in Existing Approaches for Enforcing User-Operation Constraints

• Enforce User-Operation constraints through application logic. - MAINTABILITY BECOMES AN ISSUE

• Through a trigger procedure - CAN BE DONE ONLY IN LIMITED ENVIRONMENTS LIKE A DBMS.

• Parameterized Groups or Roles - MAKES ROLE DEFINITIONS AND ASSOCIATED PRIVILEGES TIGHTLY COUPLED.
Using BPD-ACS Framework for defining an Access Control Service for a Hospital Laboratory Information System (HLIS)

- Identify application-level operations (BPD_ACS-T1).

- Determine protection requirements for operations based on the Enterprise Security Policy (BPD_ACS-T2).

- Develop the RBAC Model for the application (BPD_ACS-T3)

- Formulating & Processing Access Decision Rules and associating them with Roles. (BPD_ACS-T4).
Identifying Application-level operations for HLIS using business-process analysis (BPD_ACS-T1)

LIST OF BUSINESS PROCESSES SUPPORTED

a. Lab Order Entry
b. Lab Test Scheduling
c. Capture and Recording of Test Results
d. Quality Control checks on Test Results
e. Generation of Summary Reports (if needed).
f. Retrieve/Access Test Results.
Identifying Application-level operations

[LAB ORDER ENTRY] (BPD_ACS-T1 ..contd..)

Application-Level
Operations (Methods)
Determine Protection Requirements

[SET_TEST_REQUEST] (BPD_ACS-T2)

- Enterprise Best Practices
- Threat Model
- Government Regulations

Set_Test_Request()

Enterprise Access Control Policy

Application-Level Operation

Priviledged User Categories
(1) Physicians
(2) Registered Nurses
(M4-ACR1)

Physician Access Restrictions
(M4-ACR2)

Registered Nurse Access Restrictions
(M4-ACR3)

Privileges

Privilege Constraints
Developing the RBAC Model for modeling User-Operation Association in HLIS (BPD-ACS-T3)

Justification for using RBAC as the model

- Encapsulation mechanism for grouping privileges associated with a business process.
- Simplified Privilege Management due to hierarchical relationships among roles.
- Availability on a number of platforms - DBMS,O/S..
- Taxonomy of Models with varying complexity
Developing the RBAC Model for HLIS (BPD-ACS-T3) .. contd

Mapping User Domains to Application Roles

<table>
<thead>
<tr>
<th>Hospital Trusted Access Domains (TADs)</th>
<th>HLIS Application Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Physician</td>
<td>Test_Requester, Report_Viewer</td>
</tr>
<tr>
<td>Speciality Physician</td>
<td>Test_Requester, Report_Viewer</td>
</tr>
<tr>
<td>Lab Supervisor</td>
<td>Test_Scheduler, Results_QC</td>
</tr>
<tr>
<td>Lab Technician</td>
<td>Test_Results_Generator</td>
</tr>
<tr>
<td>Registered Nurse</td>
<td>Test_Requester, Report_Viewer</td>
</tr>
</tbody>
</table>
Developing the RBAC Model (BPD-ACS-T3) .. contd

Users
- Dr. John
- Dr. Susan
- Dr. May

Trusted Access Domains
- Physician

Roles
- Test_Requester
- Report_Viewer

Methods
Defining Access Decision Rules

[Allow_Set_Test_Request] (BPD_ACS - T4)

Rule Name
Allow_Set_Test_Request

Access Request Attributes
PatientId: string
PhysicianId: string
AccessorId: string

Environmental Attributes
Accessor_Domain: string

Temporal Business Association Database Attributes
Table_Name: ATTENDING_CLINICIAN
Field_Names:
Patient_Identifier: string;
Physician_Identifier: string;
Auth_Nurse_Identifier: string;

Rule Predicate
PatientId == :Patient_Identifier &
((Accessor_Domain = “Physician” & PhysicianId == :Physician_Identifier) |
(Accessor_Domain = “Nurse” & AccessorId == :Auth_Nurse_Identifier))
Entries in Temporal Business Association Database

Patient_ Identifier Physician_ Identifier Auth_Nurse _Identifier
P102068 MD23456 RN8967

Truth Values for Rule Predicates are evaluated by instantiating these predicates by retrieving matching entries from Temporal Business Association Database.
Associating Rules with Roles
(BPD_ACS-T4) .. Contd ..

Role Name = “Test_Requester”
Role Memberships = <none> /* Here memberships means other roles – not users */

Privileges:

Privilege Name = Get_Demo_Info(PatientId,AccessorId)
Privilege Rules:
 Rule Name: Allow_Get_Demo_info

............

Privilege Name = Set_Test_Request (PatientId,PhysicianId,AccessorId)
Privilege Rules:
 Rule Name: Allow_Set_Test_Request

............

............
Access Decision Logic (BPD_ACS-T4) .Contd.

John Logs in with the request

Set_Test_Req (DavidId, JohnId, JohnId)

Dr. John’s TAD determined

Trusted Access Domain (TAD) - DB

Dr. John’s Role Memberships

TAD - Role Assignments - DB

Dr. John right to invoke Set_Test_Request() verified

Role Privileges - DB
(also references the rules to be evaluated)

Rule Definitions - DB

Temporal Business Association - DB

Rule Allow_Set_Test_Request evaluated

Allow Access = YES
Other Potential Applications

Where ever rights of Interacting Parties are determined based on occurrence of events and current state of relationships

- Extranet applications with relatively short period of business association/relationship.
- Web-based auction and bidding application