
Towards the Formal Modeling of a Secure Operating System

Dan Zhou
Department of Computer Science and Engineering
Florida Atlantic University, Boca Raton, FL 33431

dan@cse.fau.edu

Abstract

To construct a secure operating system with high as-
surance, it is essential that the security architecture of
the operating system can be analyzed vigorously and
that the architecture can be easily understood by engi-
neers who translate the design into code. In this pa-
per we describe a partial model of the security poli-
cies of an operating system which implements a vari-
ant of the Bell-LaPadula model. In particular, we de-
scribe the privileges of trusted subjects and how they are
used in granting accesses. We use a combination of an
object-oriented modeling technique, the Unified Model-
ing Language (UML), and a mathematically-based for-
mal method called Higher-Order Logic (HOL). UML
provides a visual, intuitive model that is easy to write
and easily understood by engineers. HOL provides a
rigorous model whose properties can be mechanically
proved, thus allowing the correctness of the model to
be established. UML models provide the structure for
natural language descriptions and HOL models. HOL
models add precise semantics to both text descriptions
and UML models.

1 Introduction

As we rely more on information infrastructure to deliver
critical services such as medical services and on-line
banking, the security of these services is of increasing
importance. Underlying all information systems is an
operating system that serves as an intermediary between
these services and the underlying hardware [11]. With-
out a secure operating system as safeguard and foun-
dation, security services of high-level systems can be
easily bypassed and sabotaged [3].

In order to build a high-confidence secure operat-
ing system such that high-level security properties are
accounted for at the implementation level, we need to
have (1) a precise and accurate description of the de-
sired security properties, (2) a design that satisfies the
system’s desired security properties, and (3) a correct
realization of the design in implementation [14].

The first step in constructing a secure operating sys-
tem is to design the security architecture of the operating
system. Current methods of modeling the design have
focused on either ensuring that the design is correct us-
ing formal methods or on facilitating the correct imple-
mentation of the design using an object-oriented model-
ing technique. It is the goal of this project to bridge the
gap between these two approaches by modeling the de-
sign in such a way that the correctness of the model can
be mechanically checked and that the design can guide
a correct implementation and facilitate the validation of
code through test cases. The formal models also serve as
basis for certification of the security products by accred-
itation agencies according to such evaluation methods as
Common Criteria [6].

In this paper we describe a model of the security poli-
cies of Argus Systems Group Enhanced Security Tech-
nology for Solaris 7 [1]. Security policies of a sys-
tem guide the design and implementation of security
mechanisms. PITBULL is a suite of modules provided
by Argus for enhancing standard Solaris 7 security. It
implements a variant of the Bell-LaPadula (BLP) model
wherewrite can occur only at the same level.

Our model includes abstract entities such as files, pro-
cesses, and privileges in the operating system. We mod-
eled in detail the privileges of processes and files, and
how they affect the access rights of processes.

The rest of the paper describes the model that is com-
plete to date. In Section 2 we describe the different types
and relationships of the models we have investigated.
Section 3 gives an overview of the security policies of
PITBULL , the security enhancing product that is the sub-
ject of this study. Section 4 shows our modeling of basic
entities of the system. Formal models of privileges and
access rights can be found in Section 5, and we conclude
in Section 6.

2 Models of Operating Systems

The design of a system serves as a blueprint for systems
engineers to carry out the implementation. Assurance

of the implementation depends on the design being cor-
rect (i.e., it satisfies system-desired properties) and the
correct realization of the design. Hence, it is vital for
the design models to have the following characteristics:

� Precision and accuracy so that the correctness of
the design can be checked rigorously

� Intuitive and understandable to the system engi-
neers so that implementation can be carried out
faithfully and correctly

An operating system is a complex piece of software
with data structures such asfiles, usersandprivileges,
operations such asread, write, andexecute, and secu-
rity conditions such as “A process can change an autho-
rization set of an object only if the process has owner-
ship of the object.” No single model can describe every
aspect of this complex system. A combination of mod-
eling techniques makes high-assurance development of
secure operating systems possible.

2.1 Object-Oriented Modeling

Object-oriented development [4] has gained wide
acceptance in practice. Objects closely mimic real-
world objects, roles, and behavior. Modeling techniques
based on object technology are intuitive and easily
understood. The transition from object-oriented design
to object-oriented implementation is relatively smooth,
because objects in the design phase stay as objects in
the implementation phase, with more details possible in
implementation [10].

The Unified-Modeling Language (UML) is a lead-
ing object-oriented modeling technique [8]. It provides
class diagrams to model objects (their attributes and
operations) and their relationships. Dynamic behaviors
of objects and systems are modeled by state-transition
diagrams. Sequence diagrams and collaboration dia-
grams model the dynamic collaboration among objects
for accomplishing certain tasks.

For example, we can model auser as an object
and login as an operation of theuser. State-transition
diagrams can model the behavior of an operating system
as different users “login” and “logout.”

2.2 Formal Modeling

To calculate and predicate a system’s behavior from a
design, we need to have rigorous definitions of the de-
sign and mathematically based methods for analyzing
the model.

Formal methods based on mathematical logic enable
us to write precise definitions of systems [5, 12]. The
mathematical foundation on which these methods are

based enables us to rigorously analyze the models. For-
mal methods have been used successfully in industry [7],
and we have used HOL, a formal method based on
higher-order logic, to model and analyze a secure e-mail
system [13].

HOL, based on higher-order logic, provides the
facilities to formally define data types and opera-
tions [9], which can then be analyzed rigorously using
HOL’s inference rules. HOL also allows us to write
parameterized descriptions and proofs, so that changes
can be made easily by instantiating parameters to differ-
ent values.

The advantage of using a formal modeling technique
such as HOL is especially apparent when security condi-
tions are concerned. Security conditions form the most
critical component of a secure operating system. HOL
can precisely model the conditions as predicates (func-
tions that return eithertrueor false) and boolean expres-
sions, while there does not seem to be an easy way to
model them in UML, and natural language descriptions
tend to be ambiguous.

In this paper we use standard predicate calculus
notation in formulas. The symbolŝ;_;and �, respec-
tively, denote the logic operationsand, or, andimplica-
tion, while 8 denotes theuniversal quantifier. Applica-
tion of function f to argumenta is denoted by(f a).
Definitional extensions to HOL are denoted by`de f.

2.3 Relationship Among Different Models

The object-oriented modeling technique UML and the
formal method HOL complement each other. In model-
ing a complex system, we need to describe the structure
and relation of system components as well as the criti-
cal functionalities. UML modeling techniques provide
an intuitive yet informal way to organize system com-
ponents. In HOL we can write statements with precise
interpretation.

The relations among these two models and natu-
ral language descriptions of a system are illustrated in
Figure 1. Natural language descriptions of security poli-
cies serve as the basis for obtaining both UML and HOL
models. UML models provide an organization for HOL
modeling activity. That is, structures described in UML
models guide HOL modeling from text descriptions. In
return, the models in HOL provide unambiguous inter-
pretation to both UML models and text descriptions.

3 Security Policies of PitBull

PITBULL is a security product that enhances the security
of Solaris 7. It implements a more restricted version of
the BLP model in which there is neither write-up nor

na
tu

ra
l l

an
gu

ag
e

de
sc

rip
tio

n

UML model

HOL model

formal
semanticsstructure

formal semantics

basis

basis

structure

Figure 1: Relations among different system models

write-down. In this section we give an overview of the
BLP model and PITBULL .

3.1 The BLP Model

The BLP model was developed in 1976 to specifically
address the security concerns of multi-level information
systems [2]. The entities in the model are subjects and
objects that are abstract entities in information systems.
Subjects actively seek access, such asreador write, to
objects. In operating systems, subjects are processes,
while objects can be regular files or processes, among
other entities.

The BLP model prevents unauthorized information
from flowing through the following mechanism. Sub-
jects and objects are classified according to clearance
and sensitivity level, respectively. A subject with a low
clearance level cannot read an object with a higher sen-
sitivity level. Subjects and objects are also categorized
into compartments to model theneed-to-knowconcept.
A subject is not authorized to access an object unless it
has a need to know the object, regardless of their respec-
tive clearance and sensitivity levels.

Three properties need to be satisfied for a system to
be secure, where “secure” means that there is no unau-
thorized access to information (according to the classifi-
cation and categorization of subjects and objects). The
first property issimple-security property, where a sub-
ject s cannot read an objecto unless the clearance level
of s is higher than the sensitivity level ofo and s has
a need to knowo. In other words, there is noread up.
The second property is*-property, where nowrite-down
is allowed to happen. That is, a subject with a higher
clearance level cannot write to an object with a lower
sensitivity level. This is to prevent information from
flowing from high-level objects (which high-level sub-
jects have read access to) to low-level subjects via inter-
mediary low-level objects (which the low-level subjects
have read access to).Transient property, the third prop-
erty, requires that there is no change of classification of

subjects or objects during a system operation.
This access control policy is known as mandatory

access control (MAC) where the access control is man-
dated by the system. In addition to MAC, owners of
information can restrict or grant access to the informa-
tion, such as file permission bits set by users in UNIX
systems. This is known as discretionary access control
(DAC).

The BLP model also defines a set of rules for system
operations. It has been shown that if those are the only
operational rules allowed by a system and the initial sys-
tem state is secure, the system will always be secure.

The *-property is too restricted for an operational sys-
tem in that it disallows any user to write to an object
of lower sensitivity level. Write-down operations are
necessary for the normal operation of a system, such as
when a system administrator broadcasts a message to all
system users. To remedy this problem, the BLP model
introduced trusted subjects with special privileges that
can violate the *-property. A concrete system imple-
menting the BLP models needs to take special care in
assigning privileges to subjects because the system’s
security ultimately depends on the behavior of these
trusted subjects.

3.2 Security System PitBull

The PITBULL Foundation from Argus Secure Solutions
is a concrete implementation of the BLP model with a
more restricted *-property: write access is allowed only
between a subject and an object at the same level.

The only subjects in PITBULL are processes.
Objects can be processes, file system objects, X-
Window objects, etc. Users exist outside the system
and are profiled inside the system. They carry out
duties through processes and are responsible for those
processes.

PITBULL follows the least-privilege principle where
a user is given the least privilege necessary to accom-
plish its task. PITBULL divides the traditional respon-
sibilities and privileges of a UNIX system administra-
tor among different roles: an information system secu-
rity officer (ISSO) who performs security-related system
administration, a system administrator (SA) who per-
forms non-security related administration, and a system
operator (SO) who administrates day-to-day operations
of the system [1]. Each of these roles is granted the least
privilege needed to perform their tasks. Both DAC and
MAC are supported by this system. Processes with priv-
ileges can perform otherwise unauthorized operations,
including bypassing DAC and MAC.

The security policies of PITBULL define the subjects,
objects, their security attributes, and privileges they may
have. PITBULL defines the system security attributes

which affect the operation of the whole system. It also
defines the security conditions for granting access rights
using privileges, file permissions, classifications, and
compartments. In the following section we will describe
in detail our basic model for PITBULL . In Section 5 we
will show the modeling of privileges and access rights.

4 Basic Models of PIT BULL

We combine object-oriented techniques with formal
methods in modeling the security policies of PITBULL .
We start from a natural language description of the
policy, extracting UML models for classes and relation-
ships among these classes. We then formally describe
the UML class models in HOL. Last, we translate secu-
rity conditions from natural language descriptions based
on the structure laid out in UML models. Figure 2 shows
the modeling process.

na
tu

ra
l l

an
gu

ag
e

de
sc

rip
tio

n

UML model

HOL model

translate

translate

extract

Figure 2: Modeling process

4.1 PitBull Entities and Their Relation-
ships

The PITBULL system is composed of system agents
and trusted computing base. There are external system
agents that include hosts and users, and internal system
agents that include subjects and objects. External agents
exist outside the system, but are profiled inside the
system. Internal agents are those that exist inside the
system. The trusted computing base (TCB) is a collec-
tion of hardware, software, and firmware whose oper-
ations are trusted in order to guarantee the correct en-
forcement of system security policies.

Figure 3 is a UML model for the system, where boxes
denote classes and lines denote relationship between
classes. A diamond stands for an aggregation (“part-
of” relationship) and a triangle represents an inheritance
(“is-a” relationship). For example,system, TCB, and
agentare classes; bothTCBandagentare parts ofsys-
tem. Bothsubjectandobjectareinternal agents.

system

agent TCB

external
agent

internal
agent

host user subject object

Figure 3: UML model of a system

The only subjects in PITBULL are processes that are
divided into two categories: normal and special. Normal
processes include user processes and system processes,
and they have security attributes. Special processes
include kernel processes and interrupt processes; they
do not have security attributes and they are not checked
by the system for access rights. Figure 4 shows a UML
model for PITBULL subjects.

subject

special
processprocess

normal

system
process

user
process

interrupt
process

kernel
process

Figure 4: UML model of subjects

There are many different types of objects in PIT-
BULL , such as file system objects (denoted byFS)
and X-Window objects (denoted byXW), as shown in
Figure 5. File system objects include regular files, di-
rectories, and device special files (denoted byFile, Dir ,
andDSF, respectively).

Figure 6 shows the relationship among classes, which
is modeled as associations in UML. The symbol[

X
W

IP
C

no
rm

al
pr

oc
es

s

S
T

R
E

A
M

N
et

w
or

k

object

File Dir DSF

FS

Figure 5: UML model of objects

denotes an association class.Access rightis an associa-
tion betweensubjectandobject. It represents the access
rights that subjects have to objects.Privilege is another
association betweensubjectandobject, representing the
privileges a subject has for performing certain opera-
tions on an object.Authorizationis an association be-
tweenuserandsystem, representing the authorizations
a system grants to a user. Classaccess righthas rights
(such asDAC rightsandMAC rights) as attributes and
classauthorizationhasauthorizationsas attributes.

subject object

user system

authorization

authorizations

MAC right
DAC right

access right

privileges

right

Figure 6: Privileges, authorizations and access rights as
associations

4.2 Security Attributes

A system relies on the values of the security attributes
of subjects, objects, and the system to make decisions
related to access rights. Each entity has a group of
attributes that are pertinent to system security policies,
including identifications (process, file, and user iden-

tities) for DAC, classification and sensitivity labels for
MAC, and privileges for performing special operations.

Subject Figure 7 shows the attributes of subjects
(denoted bySubjAtt). Attributes include subject identi-
fications (including the subject’s effective user ideuid),
MAC labels, privileges and miscellaneous security-
related attributes for subjects (denoted bySubjID, Subj-
MAC, SubjPS, andSubjMisc, respectively). TheSubj-
Misc includes a limiting authorization set (LAS).

SubjAtt

S
ub

jP
S

S
ub

jID

S
ub

jM
A

C

S
ub

jM
is

c

Figure 7: UML model of subject attributes

In HOL we define a record typeSubjAttfor subject
attributes:

SubjAtt = <|

id : SubjID;

PS : SubjPS;

MAC : SubjMAC;

misc : SubjMisc |>,

where SubjID, SubjPS, SubjMAC and SubjMisc are
themselves record types in HOL. For example, type
SubjMiscis defined as follows:

SubjMisc = <|

umask : Umask;

amask : Amask;

PSF : ProcSecFlag;

LAS : Auth set |>,

where

<| |>

represents a record and “;” is a field delimiter. HOL
typesUmask, Amask, ProcSecFlag, andAuth represent
umask, audit mask, process security flags, and autho-
rizations, respectively. They are defined as primitive
types because we are not interested in the details at this
stage. Details of primitive types can be added later as we
model more aspects of the system. The constructset is
a type constructor. The expression (Auth set) represents
a set of authorizations.

Object Figure 8 shows the attributes of objects
(denoted byObjAtt). The attributes of objects include
identifications, MAC labels, DAC attributes, object
authorization sets, and privileges of executable files
(denoted byObjID, ObjMAC, DAC, ObjAS, andObjPS,
respectively). File attributes, denoted byFileAtt, are
modeled as a subclass ofObjAtt. ClassFileAtt has file
security flags as attributes (denoted byFileSecFlag).

D
A

C

ObjAtt

O
bj

ID

O
bj

M
A

C

O
bj

A
S

O
bj

P
S FileAtt

FileSecFlag

Figure 8: UML model of object attributes

In HOL we define a record typeFileAtt for file
attributes:

FileAtt = <|

id : ObjID;

MAC : ObjMAC;

DAC : DAC;

AS : ObjAS;

PS : ObjPS;

FSF : FileSecFlag |>,

where ObjID, ObjMAC, DAC, ObjAS, ObjPSand
FileSecFlagare themselves record types in HOL.

System Figure 9 shows the security attributes of the
system (denoted bySysAtt). These attributes include
system MAC labels (denoted bySysMAC) that the sys-
tem is authorized to handle, and the miscellaneous
security-related attributes (denoted bySysMisc) includ-
ing kernel security flags, which are a set of flags used to
model the states of the system. A system state affects
security decisions for granting access rights.

In HOL we define a record typeSysAttfor system
security attributes:

SysAtt = <|

mac : SysMAC;

misc : SysMisc |>,

whereSysMACandSysMiscare defined as record types
themselves. One of the fields ofSysMisc is KSF:
KernelSecFlag, representing the set of kernel security
flags. One kernel security flag that will be used later is

SysAtt

SysMAC SysMisc

KernelSecFlag

Figure 9: UML model of system security attributes

suemulenabled. When it is enabled, a process with UID
0 is treated as a traditional UNIX superuser process.

In the next section we describe the modeling of privi-
leges and access rights in the higher-order logic theorem
prover HOL.

5 Privileges and Access Rights

In the last section we provided a high-level model of
PITBULL . In this section we will describe in detail the
privileges of subjects and objects and how they affect
access rights.

Privileges of subjects give them the right to bypass
system security constraints and to perform otherwise
unauthorized operations. An executable file has privi-
leges that can be granted to a process executing it. Here
we first introduce privileges and privilege hierarchy, and
then describe privileges for subjects and files, and last
we describe how the privileges are used in granting
access rights.

5.1 Privileges and Privilege Hierarchy

There are three main groups of privileges implemented
on the PITBULL system: general privileges, X-Window
privileges, and superuser privileges (denoted byPriv,
XPriv, andSUPriv, respectively). The general privileges
are organized into eight functionality groups (Table 1).

Privileges are organized hierarchically as a forest with
each group as a rooted tree. A privilege of higher level
in the hierarchy contains all the privileges that are lower
in the hierarchy tree. For example, PVROOT is the root
of the hierarchy tree of general privileges, and PVDAC
is the root of DAC privileges. A process with privilege
PV DAC has all the privileges related to DAC; a process
with privilege PVROOT has all the general privileges,
including PVDAC.

A general privilege is one of the privileges listed in
Table 1 or PVROOT. It is defined in HOL as follows:

Priv = PV_ROOT |

auPriv of AUPriv |

azPriv of AZPriv |

dacPriv of DACPriv |

fsPriv of FSPriv |

labelPriv of LABELPriv |

macPriv of MACPriv |

asnPriv of ASNPriv |

pvPriv of PVPriv |

srPriv of SRPriv |

miscPriv of MiscPriv.

X-Window privilegesXPriv and superuser privileges
SUPrivare defined similarly.

A privilege belongs to one of the three privilege
groups. The HOL definition for a privilege is:

PV = priv of Priv |

xPriv of XPriv |

suPriv of SUPriv.

We define a function(hrPV : PV ! PV) as taking
a privilege and returning the next higher-level privilege
that contains it. In general, when the system checks if
a processp has a specific privilegepv to perform an
operation, it first looks forpv in p’s privilege set, then
looks for (hrPV pv), and then for(hrPV (hrPV pv)),
and, finally, it looks for PVROOT, PVX ROOT or
PV SU EMUL in p’s privilege set.

We define a recursive function(hasPV: PV!PV set
! bool) to do this checking:

hasPV (priv PV_ROOT) pvSet

= (priv PV_ROOT) IN pvSet

hasPV (xPriv PV_X_ROOT) pvSet

= (xPriv PV_X_ROOT) IN pvSet

hasPV (suPriv PV_SU) pvSet

= (suPriv PV_SU) IN pvSet

hasPV pv pvSet = pv IN pvSet \/

hasPV (hrPV pv) pvSet

whereIN is a function in HOL’sset library. Expression
(e IN s) returnstrue if e is an element of sets, otherwise
it returnsfalse.

5.2 Process and File Privileges

A process has three types of privilege sets (Figure 10):
effective privilege set (EPS), maximum privilege set
(MPS), and limiting privilege set (LPS). EPS is the set of
privileges that a process currently holds. MPS contains
the privileges that a process has rights to; privileges in
MPS can be added to the EPS of the process. LPS is
the upper limit of privileges a process can have in its
EPS and MPS. A process’s privilege sets are defined as
a record type in HOL as follows:

MPSEPS LPS

SubjPS

Figure 10: Process privilege sets

SubjPS = <| EPS: PV set;

MPS: PV set;

LPS: PV set |>.

For any process, its EPS is a subset of its MPS, and the
MPS in turn is a subset of its LPS. We define a predicate
validSub jPSto check whether if a process’s privilege
sets satisfy this inclusion condition:

`def validSubjPS ps=
ps.EPS SUBSET ps.MPŜ
ps.MPS SUBSET ps.LPS

whereSUBSETis a function testing the inclusion rela-
tion between sets.

We define a typeSPStyto enumerate the three differ-
ent types of subject privilege sets:

SPSty = nEPS | nMPS | nLPS.

An executable file also has three types of privilege sets
(Figure 11): innate privilege set (IPS), proxy privilege

IPS PPS APS

filePS

Figure 11: File privilege sets

set (PPS), and authorized privilege set (APS). IPS con-
tains the privileges that a process executing the file ob-
tain by default. Privileges in PPS and APS can be added
to a process according to some constraints that will be
explained in Section 5.3.

A file’s privilege sets are also defined as a record type
in HOL:

ObjPS = <| IPS: PV set;

PPS: PV set;

APS: PV set

|>.

Table 1: General System Privileges

Name Description
AUPriv Audit privileges allowing operations related to audit system
AZPriv Authorization privileges allowing operations related to process authorization

DACPriv DAC privileges allowing processes to bypass DAC-related restrictions
FSPriv File system privileges related to file systems

LABELPriv Label privileges related to access of labels such as information label and sensitivity label
MACPriv MAC privileges allowing processes to bypass MAC restrictions
ASNPriv Network, driver, and STREAM privileges
PVPriv Privileges allowing processes to modify the privilege sets of files or processes
SRPriv Privileges related to all other types of system resource

MiscPriv Miscellaneous privileges

5.3 Access Rights

In UML, access rights are modeled as an association
class between subjects and objects, as shown in Figure 6.
In HOL, they are modeled as predicates on subjects,
objects, and access types.

We first define a HOL typeACCESSthat enumerates
different access types:

ACCESS = ADD | EXECUTE | MODIFY | OWNER |

READ | REMOVE | SET | WRITE.

We use several examples in the rest of this section to
demonstrate the modeling of security policies (or secu-
rity conditions) involving privileges.

Example 1 (Overriding MAC constraints) A process
having privilege PVMAC OVRRD (a MAC privi-
lege) attempting to access a file with security flag
FSFMAC EXMPT can bypass the MAC check; only
a process with privilege PVSL FILE (a label privilege)
can set this security flag. This policy is named theFSF-
MACRule. We first define a typeFSFtyin HOL to rep-
resent different types of file security flags:

FSFty = nFSF_AUDIT | nFSF_EPS |

nPSF_IL_NF_OBJ | |

nFSF_MAC_EXMPT.

We then defineFSFMACRulein HOL as follows:

`def FSFMACRule p f=
((f.FSF.FSFMACEXMPT^
hasPV(priv (macPriv PVMACOVRRD))

p.PS.EPS)�
(overrideMAC p f= T))
^
(PFSRight SET p f nFSFMACEXMPT�
hasPV(priv (labelPriv PVSLFILE))

p.PS.EPS)

where predicate (PFSRight: ACCESS! SubjAtt!
ObjAtt! FSFty! bool) checks to see if a processp
has access righta to a file f ’s security flags, and predi-
cate(overrideMAC: Sub jAtt!Ob jAtt! bool) checks
whether a processp can bypass MAC when accessing
file f .

Example 2 (Superuser emulation)A process is in
superuser emulation mode if the kernel security flag
suemulenabled is on and the process has privilege
PV SU EMUL (a superuser privilege). We define pred-
icate (procInSUEmul: SubjAtt! SysAtt! bool) to
check whether a process is in superuser emulation mode.

A process in superuser emulation mode can bypass
DAC if its UID is 0 or if it has privilege PVDAC (a
DAC privilege). This policy, theSUEmulRule, is defined
in HOL as follows:

`def procInSUEmul s p=
(hasPV(suPriv PVSUEMUL) p.PS.EPS)
^
s.misc.KSF.suemulenabled

`def SUEmulRule s p=
(procInSUEmul s p̂
((p.id.euid= 0) _
hasPV(priv (dacPriv PVDAC)) p.PS.EPS))
�
(overrideDAC p= T)

where predicate(overrideDAC : sub jAtt ! bool)
checks whether a processp can bypass DAC when
accessing objects.

Example 3 (File privilege sets)A process p can in-
herit some privileges when executing an executable file
f , as noted in Section 5.2. The rule for privilege inheri-
tance is stated as follows (Figure 12):

C A

B

f’s PPS

f’s IPS

p’s LPS

f’s APS

p’s MPS

Figure 12: Privilege inheritance

1. Processp’s LPS does not change.

2. Processp’s MPS is automatically expanded with
setA, the intersection off ’s IPS andp’s LPS.

3. If processp has special privilege, then its MPS can
be expanded with setB, the intersection off ’s APS
andp’s LPS.

4. Processp’s MPS can be expanded with setC, the
intersection off ’s PPS andp’s MPS.

5. If file f has security flag FSFEPS set, thenp’s new
EPS is set to be the same as the new MPS. Other-
wise, it is set to NULL.

6. There is a set of special privileges that is never lost
across file execution calls.

The privilege inheritance rule is calledexecProcPSOp
and is formalized in HOL as follows:

`def execProcPSOp p1 p2 f=
((p2= exec p1 f) �
(p2.PS.LPS= p1.PS.LPS) ^
(p2.PS.MPS=
((f.PS.IPS UNION
(if (execFileAuth p1 f)
then f.PS.APS elsef g)
UNION (f.PS.PPS INTER p1.PS.MPS))
INTER p1.PS.LPS) UNION
(specialPS INTER p1.PS.MPS)) ^

(p2.PS.EPS=
(if f.FSF.FSFEPS
then p2.PS.MPS elsef g) UNION
(specialPS INTER p1.PS.EPS)))

where parametersp1 and p2 are the process state
before and after the file execution callexec; predicate

(execFileAuth: SubjAtt! FileAtt) checks to see if a pro-
cess has some authorization required by the file; con-
stantspecialPSdenotes the set of special privileges that
are kept across file execution. FunctionsINTER and
UNION denote normal set operationsintersectionand
union, respectively.

6 Conclusion

Our research goal is to facilitate the construction of
high-assurance secure systems. The objective of this
project is to investigate methods of modeling a secure
system that aid correct implementations.

Models of systems are the blueprints. Intuitive mod-
els convey the intention of systems designers to the sys-
tem implementors and the certifying agencies. A design
that is clearly conveyed has a high assurance that it will
be implemented correctly.

Models that are rigorous state the intentions of sys-
tem designers precisely and clearly, and thus minimize
any miscommunication between the designers and the
system implementors or certifying agencies. A design
that is rigorously specified can be checked mechanically,
which provides a high degree of assurance as to its cor-
rectness.

These two types of models complement each other
and together convey the design clearly and precisely.
They enable a high assurance of the design and the cor-
rect construction of the implementation. They can be
used by certifying agencies to evaluate security products
and to gain the confidence of customers.

In this paper we have described how to combine
object-oriented modeling technique UML with the for-
mal method theorem prover HOL based on higher-order
logic. This combination gives us an intuitive descrip-
tion with precise annotation. UML diagrams are intu-
itive and easily understood so that software engineers
can construct a system that reflects the design. HOL for-
mulae are rigorous and can be reasoned formally. They
state the design precisely so as to clear up any confusion
UML models and text descriptions may create.

UML models also provide the structuring capability
that is generally lacking in formal methods. A HOL
model that is supplemented by a UML model can be
navigated relatively easily, which increases the readabil-
ity of a HOL specification.

A general difficulty in formally modeling the policies
of a secure operating system is the scatteredness of in-
formation and the interconnection of parts inherited in
a policy description. As relevant information appears
in a “natural” organization, we find ourselves jumping
from component to component of the description docu-
ment. HOL helps to deal with this difficulty by provid-

ing the ability to define primitive types as place holders
and develop them as information surfaces. UML mod-
els provide high-level pictures that help us identify the
components that are involved.

The difficulty is most notable when describing secu-
rity conditions that depend on multiple parties—for in-
stance, the policy of privilege inheritance and modifica-
tion. The interdependence of different policies is clear
and precise only when we put all the conditions into one
HOL formula.

We modeled a limited subset of the security policies
of PITBULL . Our future plans include modeling a com-
plete set of PITBULL policies and developing a sys-
tematic method for combining object-oriented modeling
techniques and formal methods—in particular, a method
for using object-oriented models to ease the difficulty
raised by the interdependence of information.

References

[1] Argus Systems Group, Inc.Trusted Facility Man-
ual, Argus Security Solutions for Solaris 7, For-
tify/PitBull, September 1999.

[2] D. Elliott Bell and Leonard J. LaPadula. Se-
cure computer systems: Mathematical founda-
tions. Technical Report 2547, MITRE Corpora-
tion, Bedford, MA, 1973.

[3] Pierre Bieber. The inevitability of failure: The
flawed assumption of security in modern comput-
ing environments. InProceedings of 21st National
Information Systems Security Conference, 1998.

[4] Grady Booch. Object-oriented development.IEEE
Transactions on Software Engineering, 12(2):211–
221, February 1986.

[5] Edmund Clarke and Jeannette Wing. Formal meth-
ods: State of the art and future directions.Report
of the ACM Workshop on Strategic Directions in
Computing Research, Formal Methods Subgroup,
August 1996. Available as CMU Computer Sci-
ence Technical Report CMU-CS-96-178.

[6] Common Criteria Project. Common Criteria
for Information Technology Security Evaluation,
August 1999. Available at http://csrc.nist.gov/cc.

[7] Dan Craigen, Susan Gerhart, and Ted Ralston. For-
mal methods reality check: Industrial usage.IEEE
Transactions on Software Engineering, 21(2):90–
98, February 1995.

[8] Martin Fowler and Kendall Scott.UML Distilled:
Applying the Standard Object Modeling Language.
Addison-Wesley, Reading, MA, 1997.

[9] M.J.C. Gordon. A Proof Generating System for
Higher-Order Logic. In G. Birtwistle and P. A.
Subramanyam, editors,VLSI specification, verifi-
cation and synthesis. Kluwer, 1987.

[10] James Rumbaugh, Michael Blaha, William Pre-
merlani, Frederick Eddy, and William Lorensen.
Object-Oriented Modeling and Design. Prentice
Hall, 1991.

[11] Abraham Silberschatz and Peter Baer Galvin.Op-
erating System Concepts. Addison Wesley, Read-
ing, MA, 1998.

[12] Jeannette M. Wing. A specifier’s introduction to
formal methods. IEEE Computer, 23(9):8–24,
September 1990.

[13] Dan Zhou and Shiu-Kai Chin. Formal Analy-
sis of a Secure Communication Channel: Secure
Core-Email Protocol. InThe Proceedings of World
Congress on Formal Methods in the Development
of Computing Systems (FM’99), September 1999.

[14] Dan Zhou, Joncheng C. Kuo, Susan Older, and
Shiu-Kai Chin. Formal Development of Secure
Email. In Proceedings of the 32nd Hawaii Inter-
national Conference on System Sciences, January
1999.

	Table of Contents

