
This publication is available free of charge from http://csrc.nist.gov/publications/PubsDrafts.html

 iii

NIST Special Publication 800-163 (Draft) 1

 2

 3

 4

Technical Considerations for 5

Vetting 3rd Party Mobile 6

Applications (Draft) 7

 8

 9

Jeffrey Voas 10
Steve Quirolgico 11

Christoph Michael 12
Karen Scarfone 13

 14

 15

 16

 17

 18

 19

 20

C O M P U T E R S E C U R I T Y

This publication is available free of charge from http://csrc.nist.gov/publications/PubsDrafts.html

 iv

NIST Special Publication 800-163 21

 22

 23

Technical Considerations for Vetting 24

3rd Party Mobile Applications (Draft) 25

 26
Jeffrey Voas, Steve Quirolgico 27

Computer Security Division 28
Information Technology Laboratory 29

 30
Christoph Michael 31

Leidos 32
 33

Karen Scarfone 34
Scarfone Cybersecurity 35

 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46

August 2014 47
 48
 49
 50
 51
 52
 53
 54
 55

 56
U.S. Department of Commerce 57

Penny Pritzker, Secretary 58
 59

National Institute of Standards and Technology 60
Willie May, Acting Under Secretary of Commerce for Standards and Technology and Acting Director 61

 62

This publication is available free of charge from http://csrc.nist.gov/publications/PubsDrafts.html

 v

Authority 63

This publication has been developed by NIST in accordance with its statutory responsibilities under the 64
Federal Information Security Management Act of 2002 (FISMA), 44 U.S.C. § 3541 et seq., Public Law 65
107-347. NIST is responsible for developing information security standards and guidelines, including 66
minimum requirements for Federal information systems, but such standards and guidelines shall not apply 67
to national security systems without the express approval of appropriate Federal officials exercising 68
policy authority over such systems. This guideline is consistent with the requirements of the Office of 69
Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as 70
analyzed in Circular A-130, Appendix IV: Analysis of Key Sections. Supplemental information is 71
provided in Circular A-130, Appendix III, Security of Federal Automated Information Resources. 72

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory 73
and binding on Federal agencies by the Secretary of Commerce under statutory authority. Nor should 74
these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of 75
Commerce, Director of the OMB, or any other Federal official. This publication may be used by 76
nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States. 77
Attribution would, however, be appreciated by NIST. 78

National Institute of Standards and Technology Special Publication 800-163 79
Natl. Inst. Stand. Technol. Spec. Publ. 800-163, 45 pages (August 2014) 80

CODEN: NSPUE2 81

This publication is available free of charge from: 82
 83

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 84
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 85
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 86
available for the purpose. 87
There may be references in this publication to other publications currently under development by NIST in 88
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and 89
methodologies, may be used by Federal agencies even before the completion of such companion publications. Thus, 90
until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain 91
operative. For planning and transition purposes, Federal agencies may wish to closely follow the development of 92
these new publications by NIST. 93
Organizations are encouraged to review all draft publications during public comment periods and provide feedback 94
to NIST. All NIST Computer Security Division publications, other than the ones noted above, are available at 95
http://csrc.nist.gov/publications. 96

 97
Comments on this publication may be submitted to: 98

Public comment period: August 18, 2014 through September 18, 2014 99
National Institute of Standards and Technology 100

Attn: Computer Security Division, Information Technology Laboratory 101
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 102

Email: nist800-163@nist.gov 103
 104

http://csrc.nist.gov/publications

This publication is available free of charge from http://csrc.nist.gov/publications/PubsDrafts.html

 vi

 105
 106

Reports on Computer Systems Technology 107

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology 108
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s 109
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of 110
concept implementations, and technical analyses to advance the development and productive use of 111
information technology. ITL’s responsibilities include the development of management, administrative, 112
technical, and physical standards and guidelines for the cost-effective security and privacy of other than 113
national security-related information in Federal information systems. The Special Publication 800-series 114
reports on ITL’s research, guidelines, and outreach efforts in information system security, and its 115
collaborative activities with industry, government, and academic organizations. 116

 117
Abstract 118

 119
Today's commercially available mobile devices (e.g., smartphones, tablets) are handheld computing 120
platforms with wireless capabilities, geographic localization, cameras, and microphones. Similar to 121
computing platforms such as desktops and laptops, the user experience with a mobile device is tied to the 122
software apps and the tools and utilities available. The purpose of this document is to provide guidance 123
for vetting 3rd party software applications (apps) for mobile devices. Mobile app vetting is intended to 124
assess a mobile app’s operational characteristics of secure behavior and reliability (including 125
performance) so that organizations can determine if the app is acceptable for use in their expected 126
environment. 127

 128
 129

Keywords 130
 131

malware; mobile apps; mobile devices; smartphones; software reliability; software security; software 132
testing; software vetting; 133

 134
 135

Acknowledgments 136

Special thanks to the National Security Agency’s Center for Assured Software for providing Appendices 137
C and D which tabulate platform-specific mobile app vulnerabilities. 138

TBD 139

 140

Trademarks 141

All registered trademarks or trademarks belong to their respective organizations 142
 143

 144

145

This publication is available free of charge from http://csrc.nist.gov/publications/PubsDrafts.html

 vii

Table of Contents 146

Executive Summary ... 1 147

1. Introduction .. 3 148

1.1 Purpose and Scope ... 3 149

1.2 Audience ... 3 150

1.3 Document Structure .. 3 151

2. Software Assurance for Mobile Apps ... 5 152

2.1 Challenges of Software Assurance in Mobile Computing ... 5 153

2.2 Software Assurance for Mobile Apps ... 6 154

3. Mobile App Vetting Planning ... 8 155

3.1 Mobile App Vetting Planning ... 8 156

3.2 Existing Security Infrastructure .. 9 157

3.3 Expectation Management .. 9 158

3.4 Getting Started ...10 159

3.5 Sharing Software Assurance Information ...12 160

4. Mobile App Evaluation ..12 161

4.1 Identifying Undesirable App Characteristics .. 14 162

4.2 Mobile App Tests. .. 15 163

5. App Vetting Tools and Techniques ..20 164

5.1 Designing Analysis Processes ... 20 165

5.2 Vetting Source Code versus Binary Code.. 20 166

5.3 Selecting Automated Tools .. 22 167

Appendix A— App Power Consumption Testing ..25 168

Appendix B— Android Application Vulnerability Types ..27 169

Appendix C— iOS Application Vulnerability Types ..30 170

Appendix D— Glossary ..33 171

Appendix E— Acronyms and Abbreviations ...34 172

Appendix F— References ...36 173

 174

This publication is available free of charge from http://csrc.nist.gov/publications/PubsDrafts.html

 viii

Table of Figures and Tables 175

Table 1: Android Vulnerabilities, A Level ..27 176

Table 2: Android Vulnerabilities by Level ...28 177

Table 3: iOS Vulnerability Descriptions, A Level ..30 178

Table 4: iOS Vulnerabilities by Level ...31 179

180

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 1

Executive Summary 181

Organizations should develop or adopt requirements that they expect mobile software applications (apps) 182
they will use on their organization’s mobile platforms to meet. These requirements should reflect the 183
organization’s unique mission requirements, understanding of their IT infrastructure, choices of mobile 184
devices and configurations, and the organization’s acceptable levels of risk. The process of verifying that 185
a software application meets those requirements is known as vetting. Vetting can be applied to either 186
binary code or source code and the code can be examined as static artifacts or the binary can be examined 187
while running dynamically. This document provides technical considerations for vetting 3rd party mobile 188
applications that are commonly known as mobile apps. Emulated and virtual environments are useful for 189
vetting mobile apps because they allow having many different test configurations (device, OS version, 190
app version, and system parameters) when examining the running binary dynamically and restoring 191
particular states or the entire hardware and system configuration, without altering an actual mobile device. 192
They allow for automated testing and examination as well as exploration of the app by skilled human 193
analysts. 194

This document provides key technical considerations for organizations as they adopt mobile app vetting 195
processes. The following are key recommendations made within this publication: 196

Understand the security and privacy risks mobile apps present and have a strategy for mitigating 197
them. 198

When deploying a new technology, organizations should be aware of the potential security and privacy 199
impact these technologies may have on the organization’s IT resources, data, and users. New technologies 200
may offer the promise of productivity gains and new capabilities, but if these new technologies present 201
new risks, the organization’s IT professionals, users, and business owners should be fully aware of these 202
new risks and develop plans to mitigate them or be fully informed before accepting the consequences of 203
them. Federal, State, Local and Tribal privacy statutes may be different for each organization; security 204
administrators should consult with the organization’s privacy officer or legal counsel to ensure the 205
collection and sharing of data collected using mobile devices is legal. 206

Provide mobile app security and privacy training for your employees. 207

Employers should ensure that their employees understand the organization’s mobile device use policies 208
and how mobile apps may compromise the organization’s security and the user’s privacy. Users should be 209
educated about Personally Identifiable Information (PII), how PII can be accessed and shared, how the 210
privacy- and security-relevant capabilities of a mobile device relate to PII, as well as how an 211
organization’s resources can be protected or put at risk by the user’s actions and inactions. Training 212
programs should describe how mobile devices can collect information about the user and how that 213
information can be shared with third parties through the apps running on the mobile device. 214

To provide long-term assurance of the software throughout its lifecycle, all mobile apps, as well as 215
their updates, should go through a mobile app vetting process. 216

Each new version of a software application can potentially introduce new, unintentional weaknesses or 217
unreliable code into an existing mobile app. New versions of mobile apps should be treated as new mobile 218
apps and should go through an app vetting process. For many organizations this software assurance step 219
does not currently take place for mobile apps. This is in contrast to new releases of desktop or server 220
enterprise software, which are typically tested in a controlled setting or in a staging area before being 221
deployed across an enterprise. This traditional enterprise software assurance model, however, does not 222
scale well to meet user demands for the wide array of apps available for mobile devices Mobile apps 223

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 2

developed in-house should also be tested and analyzed for security and reliability before being released to 224
the community of users within the organization. The purpose of these tests and the analysis is to validate 225
that an app adheres to a predefined acceptable level of security risk and to identify whether the developers 226
have introduced any latent weaknesses that could make the IT infrastructure vulnerable or expose the 227
user’s confidential data. 228

The mobile app update model can help mitigate risks when used properly. Security administrators 229
should establish a process for quickly vetting security-related app updates. 230

Mobile app update notifications can be sent directly to the user’s device and downloaded from an app 231
store or marketplace and bypass the traditional IT testing, staging, approval, and deployment process. 232
This model offers the promise of pushing critical security updates faster to the end user, but it also 233
introduces the risk of having unvetted code be installed on a user’s device with unknown consequences 234
and security implications. The first release of a mobile app may be free of any malware, but malicious 235
code may be introduced in subsequent updates. Security administrators should establish a process for 236
quickly vetting security-related app updates. 237

Stakeholders should be made aware of what the mobile app vetting process does and does not 238
provide in terms of secure behavior of apps. 239

A mobile apps vetting system is comprised of a set of tools and methodologies for addressing specified 240
app vetting requirements. Each mobile app vetting tool or methodology generates results that identify 241
security, privacy, reliability, accessibility, and performance issues with the mobile app. Any vetting 242
approach should be repeatable, efficient, consistent, and limit errors (e.g., false positives, false negatives). 243
As with any software assurance process, there is no guarantee that even the most thorough vetting 244
processes will uncover all vulnerabilities. Stakeholders should be made aware that although app security 245
assessments should generally improve the security posture of an organization, the degree to which it does 246
so may not be easily or immediately ascertained. Stakeholders should also be educated on the value of 247
humans in security assessment processes. Security analysis is primarily a human-driven process that can 248
be highly augmented and aided by automated tools, but the tool results themselves need to be evaluated in 249
the context of the intended mission/business use of the app and the capabilities and configuration of the 250
mobile platform and networking setup. There is a residual risk associated with any capability, including 251
mobile apps. App security assessments are intended to reduce that level of risk by identifying and 252
mitigating vulnerabilities. The collection and analysis of metrics can indicate the level of risk reduction, 253
but it is impossible to completely nullify all risk. 254

Mobile apps are part of a larger system; mobile app testing results should be reviewed by a 255
software analyst within the context of an organization’s mission objectives, security posture, and 256
risk tolerance. 257

End user’s mobile devices, data, and network resources face multiple threats that can originate from many 258
places and that depend on the sophistication of the adversary. Some risks can be mitigated through user 259
education and operational procedures, while other risks can only be mitigated through the use of technical 260
countermeasures. Mobile app deficiencies detected through the mobile app vetting process may be 261
mitigated by technical countermeasures that are part of a larger system. Mobile apps that meet minimum 262
technical requirements may not be suitable for an organization to use because they do not meet acceptable 263
use policies. Automated testing is necessary for the vetting process to scale and keep up with the demands 264
of the user base, but the manual review of the test results by a human analyst will best serve an 265
organization’s software assurance goals. 266

 267

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 3

1. Introduction 268

1.1 Purpose and Scope 269

The purpose of this document is to provide guidance for vetting 3rd party software applications (apps) for 270
mobile devices. Mobile app vetting is intended to assess a mobile app’s operational characteristics of 271
secure behavior and reliability (including performance) so that organizations can determine if the app is 272
acceptable for use in their expected environment1. This document is not a step-by-step guide for 273
performing software vetting, but rather highlights those elements that are particularly important to be 274
considered before mobile apps are approved as “fit-for-use.” This document does not address the 275
robustness, security, or reliability of the underlying mobile platform and operating system, which are 276
addressed in other publications, such as the Protection Profile for Mobile Device Fundamentals2. While 277
these are important characteristics for organizations to understand and consider in selecting mobile 278
devices, this document is focused on how to vet mobile apps after the choice of platform has been made. 279
Ultimately, the acceptance of a mobile app depends on the environment in which it is deployed, the 280
context in which it will be used, and the underlying security technologies supporting the use of mobile 281
apps. Organizations developing apps in-house should also refer to guidance on secure programming 282
techniques and software quality assurance processes to appropriately address the entire software 283
development lifecycle [MCGRAW05, SCHUL07]. 284

1.2 Audience 285

This document is intended for individuals or organizations that will be vetting, assessing, and acquiring 286
mobile apps, as well as those with responsibilities for setting app vetting policies and practices. Mobile 287
app developers may also be interested in this document for its survey of issues they should consider when 288
developing and distributing mobile apps. 289

1.3 Document Structure 290

The remainder of this document is organized into the following sections and appendices: 291

 Section 2 provides a brief overview of software assurance issues for mobile apps. 292

 Section 3 provides guidance for organizations planning to set up an in-house mobile app vetting 293
process. 294

 Section 4 discusses common mobile app testing requirements, such as security, privacy, functionality, 295
performance, and reliability. 296

 Section 5 examines mobile app vetting tools and techniques. 297

 Appendix A discusses power consumption testing for apps. 298

 Appendices B and C identify and define platform-specific vulnerabilities for mobile apps running on 299
the Android and iOS operating systems, respectively. 300

1 For purposes of this document, reliability measures how likely a function will be present at a point in time and operate as
desired, and performance measures its speed of execution.

2 See Protection Profile for Mobile Device Fundamentals Version 1.1 https://www.niap-ccevs.org/pp/PP_MD_v1.1/

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 4

 Appendix D defines selected terms used in the document. 301

 Appendix E defines selected acronyms and abbreviations used in the document. 302

 Appendix F lists references for the publication. 303

 304

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 5

2. Software Assurance for Mobile Apps 305

This section discusses the challenges of software assurance in mobile computing and software assurance 306
in apps. Software assurance can be defined as “the level of confidence that software is free from 307
vulnerabilities, either intentionally designed into the software or accidentally inserted at any time during 308
its life cycle, and that the software functions in the intended manner.” [CNSS-4009] The software 309
assurance process includes “the planned and systematic set of activities that ensures that software 310
processes and products conform to requirements, standards, and procedures.” [NASA-8739] There are a 311
number of government and industry legacy software assurance standards that are primarily directed at the 312
process for developing applications that require a high level of assurance: for example, space flight, 313
automotive systems, and critical defense systems.3 314

Although considerable progress has been made in the past decades in the area of software assurance, and 315
considerable research and development efforts have resulted in a growing market of software assurance 316
tools and services, the state of practice for many today still includes manual activities that are time-317
consuming, costly, and difficult to quantify and make repeatable. The advent of mobile computing adds 318
new challenges because the model under which mobile applications are developed and used does not 319
necessarily support traditional software assurance techniques. At the same time, mobile apps are smaller 320
and more addressable by the static and dynamic analysis techniques available then the large applications 321
used in traditional IT platforms. This document discusses how app vetting might be used to further 322
improve the secure behavior and correctness of mobile apps. 323

2.1 Challenges of Software Assurance in Mobile Computing 324

The rapidly-evolving mobile app marketplace economic model challenges the traditional software 325
development process in a number of ways. Mobile app developers are attracted by the opportunities to 326
reach a market of millions of users overnight. However they may have little experience building quality 327
software that is reliable and secure and do not have the budgetary resources or motivation to conduct 328
extensive testing. Rather than performing comprehensive software tests on their code before making it 329
available to the public, developers often release free trial versions that may contain functionality flaws 330
and/or security and resilience-relevant weaknesses. That can leave an app, the user’s device, and the 331
user’s network vulnerable to exploitation by attackers. Developers and users of this free or inexpensive 332
software often tolerate buggy, unreliable, and insecure code in exchange for the low cost. Mobile app 333
developers typically update their apps much more frequently than traditional applications. This “open-334
ended” development cycle can foster dangerous behaviors when it comes to the reliability and secure 335
behavior of the application. At the same time, the mobile app deployment model offers the opportunity to 336
ensure security patches are widely and rapidly deployed. 337

Enterprises that once spent considerable resources to develop in-house applications are taking advantage 338
of inexpensive third-party apps and web services to improve their organization’s productivity. They are 339
also finding that an increasing amount of their business processes are conducted on employee-owned 340
mobile devices. This contrasts with the traditional information infrastructure, where enterprises support 341
approved desktop applications and the average employee only uses a handful of applications and web-342
based enterprise databases to do the majority of their work. Mobile devices provide access to potentially 343

3 Examples of these software assurance standards include DO-178B, Software Considerations in Airborne Systems and
Equipment Certification [DO-178B], IEC 61508 Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related System [IEC-61508], and ISO 26262 Road vehicles -- Functional safety [ISO-26262].

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 6

millions of mobile apps for a user to choose from. This trend challenges the traditional mechanisms of 344
enterprise IT security, which relied on a tightly controlled environment, where the software available to 345
employees was uniform throughout the organization and communication was filtered using corporate 346
firewalls and common endpoint configurations. 347

Like traditional software applications, mobile apps also suffer from other issues. For example, some apps 348
are not entirely self-contained, but instead rely on third-party libraries that can be closed source, self-349
modifying code, or that can execute unknown server-side code for additional functionality. These third-350
party libraries, over which a developer has no control, can contain malware and can have vulnerabilities at 351
the time of use or that are found later and become an operational risk until patched. 352

A major difference between mobile apps and enterprise applications is that unlike a desktop computing 353
system, far more precise and continuous device location information, physical sensor data, and pictures 354
and audio about a user can be exposed to third-party app developers or third-party services. Mobile apps 355
can sense and store information including user Personally Identifiable Information (PII) data through 356
mobile device services. Although many mobile apps are advertised as being free to consumers, the hidden 357
cost of these apps may be selling the user’s profile to marketing companies or online advertising agencies. 358
Therefore, mobile app vetting must also include identifying potential privacy issues. 359

Unlike traditional laptop computers, mobile devices have access to a wide variety of network services, 360
including Wi-Fi and 2G/3G and 4G/Long Term Evolution (LTE). This is in addition to the short-range 361
data connectivity provided by services such as Bluetooth, and Near Field Communications (NFC). All 362
these avenues of data transmission are typically available to the apps that run on a mobile device and 363
many have been shown to be potential vectors for remote exploits. Mobile devices cannot be physically 364
protected in an agency’s buildings and therefore an adversary can much more easily get their hands on a 365
lost or stolen mobile device. 366

2.2 Software Assurance for Mobile Apps 367

The software distribution model that has arisen with mobile computing presents challenges to software 368
assurance analysts, but it also creates opportunities. The mobile app vetting process acknowledges the 369
concept that someone other than the software vendor is entitled to evaluate the software’s reliability and 370
secure behavior. This may make it easier for organizations to evaluate software in the context of their own 371
security policies, planned use, and risk tolerance, especially if they are willing to set up their own app 372
vetting capability. But distancing the developer from software assurance activities can also make those 373
activities less effective with respect to improving secure behavior and reliability. 374

To provide long-term assurance of the software throughout its lifecycle, all apps, as well as their updates, 375
should go through a software assurance vetting process, because each new version of a software 376
application can introduce new unintentional weaknesses or unreliable code. 377

Mobile apps should be tested for secure behavior and reliability before being released to the community 378
of users within the organization. The purpose of these tests is to validate that the app adheres to a 379
predefined acceptable level of security risk and identify whether the developers have introduced any 380
latent weaknesses that could make the IT infrastructure vulnerable. 381

Organizations will need to define their own acceptance criteria for mobile app tests to address their 382
unique mission requirements, platform, configuration, and threat environment. Acceptance criteria refer 383
to the evidence provided that demonstrates that a mobile app meets the reliability and security 384
expectations of the final approver. A military hospital may use mobile device sensors to allow doctors to 385
record observations or instructions related to patient medical care while other organizations may prohibit 386

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 7

the use of sensing devices in sensitive areas. Some organizations may encourage the use of social 387
networking apps as part of their outreach programs to the public while other organizations may prohibit 388
the use of any apps that profile their users. Some risks may be mitigated by security services offered 389
through Mobile Device Management (MDM) technologies while other risks may be mitigated by the use 390
of sandboxing or other commercially available technologies. Enterprise administrators can make use of 391
MDM software that can provide access to administrative functions and regulate some of the mobile 392
device functionality. One such feature is the ability of an MDM to allow users to download apps that are 393
on lists of preapproved apps and for the organization to keep track of apps and version numbers installed 394
on the organization’s managed mobile devices. The MDM can respond to a report of a vulnerability and 395
release a patched version to address the risk to the organization. However, using such technologies to 396
decide which apps to allow relies on a mobile app approval process and some method for deciding which 397
apps to approve. That approval process should be based on some measurable software assurance 398
properties and enterprise IT policy criteria. 399

Apps should be used within a certain security context; conducting risk analysis before deploying mobile 400
apps should identify the roles of users, the risks, and the available countermeasures (See NIST SP 800-401
124, Guidelines for Managing the Security of Mobile Devices in the Enterprise, for more information).4 402

Application software assurance activity costs should be included in project budgets and should not be an 403
afterthought. Organizations that are hiring contractors to develop mobile apps should specify that mobile 404
app assessment costs for static, dynamic, penetration testing, and directed misuse and abuse testing be 405
included as part of the development process. For apps developed in-house, attempting to implement 406
mobile app assessments solely at the end of the development effort will lead to increased costs, 407
lengthened project timelines, and poorer quality apps reaching the user community. It is essential to 408
identify any potential vulnerabilities or weaknesses during the development process when they can still be 409
addressed by the original developers without leading to a cascade effect across the rest of the app. 410

Because mobile apps and their behaviors are context-sensitive, it may be the case that individual 411
organizations will need to conduct their own vetting and testing processes. It is doubtful that given the 412
current state of the technology a “one size fits all” approach to app vetting is plausible but the basic 413
findings from app vetting may be reusable by others. Sharing an organization’s findings with others or 414
leveraging another organization’s findings for an app should be contemplated to avoid duplicating work 415
and wasting scarce app vetting capabilities. With appropriate standards for scoping, managing, licensing, 416
and recording the findings from assurance activities in consistent ways, the different activities can 417
possibly be looked at collectively and common problems and solutions may be applicable across the 418
industry or with similar organizations. 419

 420

4 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-124r1.pdf

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 8

3. Mobile App Vetting Planning 421

When deploying a new technology, organizations should be aware of the potential security and privacy 422
impact these technologies may have on the organization’s IT resources, data, and users. New technologies 423
may offer the promise of productivity gains and new capabilities, but if these new technologies present 424
new risks, the organization’s IT professionals and users should be fully aware of these new risks and 425
develop plans to mitigate them or be fully informed before accepting the consequences of them. 426
Organizations should develop mobile app testing requirements to ensure that mobile apps comply with 427
their organization’s policies. The process of verifying that an app meets those requirements is known as 428
vetting. App stores may perform some app vetting processes to verify compliance with their own 429
requirements; however, because each app store has its own unique vetting processes and requirements 430
which are not always transparent, it is necessary to consult the current agreements and documentation for 431
a particular app store to get more precise information about its practices. Organizations should not assume 432
that an app has been fully vetted to their organizational needs just because it is available through an 433
official app store. Mobile Device Management (MDM), Mobile Application Management (MAM), or 434
other technologies may also include mobile app vetting as a precondition for allowing users to download 435
mobile apps onto their devices. Moreover, third party assessments that carry a moniker of “approved by” 436
or “certified by” without providing details of which tests are performed, what the findings were, or how 437
apps are scored or rated, do not provide a reliable indication of assurance. 438

Organizations should assess the potential risk introduced by use of each app and perform the necessary 439
degree of vetting to ensure that the risk is properly addressed. It is noted that some types of vulnerabilities 440
or weaknesses discovered in mobile apps may be mitigated by other security controls included in the 441
enterprise mobile device architecture. 442

3.1 Mobile App Vetting Planning 443

Any vetting approach should be repeatable, efficient, consistent, and limit errors (e.g., false positives, 444
false negatives). It may be effective to initially gear assessment processes to the specific policies of the 445
organization and should not just be an embodiment of the organization’s existing security policy. Mobile 446
app vetting process presents the opportunity to improve the organization’s security capabilities rather than 447
merely perpetuating it. 448

Additional considerations for mobile app evaluations include the following: 449

 Do the stakeholders have specific security needs, secure behavior expectations and/or risk 450
management needs? For example, what assets in the organization must be protected, and what events 451
must be avoided? What is the impact if the assets are compromised or the undesired events occur? All 452
of these questions will have to be explored in detail once the mobile app vetting process is 453
operational, but knowing the stakeholders' concerns can help establish a more effective vetting 454
process. 455

 Are the critical assets located on mobile devices, or is the concern simply that mobile devices will be 456
used as a springboard to attack those assets? 457

 Are threat assessments being performed? 458

 What characteristics of attacks and attackers are the stakeholders concerned about? For example: 459

o What information about personnel would harm the organization as a whole if it were disclosed? 460

o Is there a danger of espionage? 461

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 9

o Is there a danger of malware designed to disrupt operations at critical moments? 462

o What kinds of entities might profit from attacking the organization? 463

 What is the mobile computing environment? Do wireless devices carried by personnel connect to 464
public providers, a communication infrastructure owned by the organization, or both at different 465
times? How secure is the organization's wireless infrastructure if it has one? 466

 Are the stakeholders only interested in vetting apps, or is a mobile app vetting process expected to 467
evaluate other aspects of mobile device security such as the OS, firmware, hardware, and 468
communications? Is the mobile app vetting process only meant to perform evaluations or does it play 469
a broader role in the organization’s approach to mobile security? Is the vetting process part of a larger 470
security infrastructure, and if so, what are the other components? Note that only software-related 471
vetting is in the scope of this document, but if the stakeholders expect more than this the vetting 472
system designers should be aware of it. 473

 How many apps per week will the mobile application vetting process be expected to handle, and how 474
much variation is permissible in the time needed to process individual apps? High volume combined 475
with low funding might necessitate compromises in the quality of the evaluation. Some stakeholders 476
may believe that a fully automated assessment pipeline provides more risk reduction than it actually 477
does and therefore expect unrealistically low day-to-day expenses. 478

3.2 Existing Security Infrastructure 479

A mobile apps vetting system should be part of the stakeholders’ overall security strategy. For example, if 480
the stakeholders can use detailed information about types of software vulnerabilities, or weaknesses, to 481
perform in-depth risk assessments, a mobile app vetting system should be able to provide such 482
information. On the other hand, if the stakeholder cannot evaluate security risks, a mobile app vetting 483
system may have to be prepared to do so, since in some cases there may have to be a tradeoff between the 484
risks and benefits of deploying specific apps. If the stakeholders have a formal process for establishing 485
and documenting security requirements, the mobile app vetting system should be able to consume 486
requirements created by that process. Bug and incident reports created by the stakeholder’s 487
organization(s) might also be consumed by a mobile application vetting system as could public advisories 488
about vulnerabilities in commercial and open source apps as well as in libraries used in app development, 489
and conversely evaluation results from mobile app assessments might have to be consumed by the 490
organization’s bug tracking system. 491

3.3 Expectation Management 492

As with any software assurance process, there is no guarantee that even the most thorough vetting 493
processes will uncover all potential vulnerabilities. Stakeholders should be made aware that although app 494
security assessments should generally improve the security posture of an organization, the degree to 495
which it does so may not be easily or immediately ascertained. Stakeholders should be made aware of 496
what the vetting process does and does not provide in terms of security. 497

Stakeholders should also be educated on the value of humans in security assessment processes and ensure 498
that their app vetting doesn’t rely solely on automated tests. Security analysis is primarily a human-driven 499
process (see [DOWD06, MCGRAW05] for example); automated tools by themselves cannot address 500
many of the contextual and nuanced interdependencies that underlie software security. The most obvious 501

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 10

reason for this is that fully understanding software behavior is one of the classic impossible problems of 502
computer science5, and in fact current technology has not even reached the limits of what is theoretically 503
possible. Complex, multifaceted software architectures cannot be analyzed by automated means. 504

A further problem is that current software analysis tools do not inherently understand what software has 505
to do to behave in a secure manner in a particular context. For example, failure to encrypt data stored in 506
the cloud is a security issue if the data is company sensitive, but not if the data consists of employee-507
owned digital pictures. Even if the security requirements for a mobile app have been correctly predicted 508
and are completely understood, there is no current technology for unambiguously translating human-509
readable requirements into a form that can be understood by machines. 510

For these reasons, it is a general dictum that security analysis requires humans in the loop, and by 511
extension the quality of the outcome depends, among other things, on the amount of human effort 512
available for an evaluation. Software assurance analysts should be familiar with standard processes and 513
best practices for software security assessment (for example, see [MCGRAW05, STRIDE, TRIKE, BSI]). 514
A robust mobile app vetting process should use multiple assessment tools and processes, as well as 515
human interaction, to be successful; reliance on only a single tool, even with human interaction, is a 516
significant risk because of the inherent limitations of each tool. 517

Relying solely on app vetting for security instead of planning to build security into a mobile architecture 518
inherently violates a fundamental best practice for software security, which is to include security 519
considerations from the very start of the software development lifecycle [MCGRAW05] The final 520
decision of whether a particular app will be used in an organization must include consideration of the 521
mobile platforms that will host the apps, the configuration of those mobile platforms, the intended 522
mission/business being conducted/supported by the apps, and the security capabilities of the networks and 523
connections needed by the app. 524

3.4 Getting Started 525

At an absolute minimum, vetting an app requires access to the app’s binary code and the most basic 526
metadata for the app, such as the primary point of contact who can answer questions regarding the app’s 527
intended use within the organization. However, vetting can be easier to perform and produce more 528
accurate results if source code is available and if additional information about the app is collected before 529
the vetting evaluation begins. This section describes the information that may be collected to help better 530
assess a mobile app. Note that in many cases, this additional information will only be available if the app 531
was developed on behalf of the organization, for example by internal developers or contractors. 532

Subsequent to vetting the of the mobile app itself, a human analyst will need to evaluate the test results 533
within the context of the app’s planned use, the mobile platforms it will be deployed on, the 534
configurations and capabilities of those platforms when deployed, and the capabilities of the rest of the 535
mobile infrastructure in use by the organization before a determination of whether the organization can 536
accept the residual risks that the app would place on the organization. 537

Information that is most often deemed helpful for deciding whether or not a mobile app is acceptable for 538
use within an organization’s own context includes: 539

5 H. G. Rice, “Classes of Recursively Enumerable Sets and Their Decision Problems.” Transactions of the American
Mathematical Society 75, 358-366, 1953

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 11

 Requirements: Collect all the pertinent requirements, security policies, privacy policies, acceptable 540
use policies, and social media guidelines that are applicable to your organization. 541

 Provenance: Identity of the developer, developer’s organization, developer’s reputation, date 542
received, marketplace/app store consumer reviews, etc. 543

 Target Hardware: The intended hardware platform and configuration on which the app will be 544
deployed.). 545

 Target Environment: The intended operational environment of the app (e.g., general public use vs. 546
sensitive military environment). 547

 Digital Signature: Digital signatures applied to the app binaries or packages.6 548

 Code Components: Access to the source code provides the ability to conduct additional review not 549
possible with app binaries. Software libraries7, scripts, images, debugging information, configuration 550
files, and compilation instructions will allow more in depth testing than simply collecting binary 551
code. 552

 Mobile App Documentation: 553

o User Guide: The mobile app’s user guide assists testing by specifying the expected 554
functionality and expected behaviors. This is simply a statement from the developer 555
describing what they claim their app does and how it does it. 556

o Test plans: Reviewing the developer’s test plans may help focus app testing by identifying 557
any areas that have not been tested or were tested inadequately. A developer could opt to 558
submit a test oracle in certain situations to demonstrate their internal test effort. 559

o Testing results: Code review results, penetration test results, and other testing results will 560
indicate what reliability, security, and development standards were followed. For example, if 561
an application threat model was created, this should be submitted. This will list weaknesses 562
that were identified and should have been addressed during design and actual coding of the 563
app. 564

o Service Level Agreement: If an app was developed for an organization by a third party, a 565
Service Level Agreement (SLA) may have been included as part of the vendor contract. This 566
contract should require the mobile app to be compatible with the organization’s security 567
policy. 568

Some information can be gleaned from app documentation in some cases, but even if documentation does 569
exist it might lack technical clarity and/or use jargon specific to the circle of users who would normally 570

6 The level of assurance provided by digital signatures varies widely. For example, one organization might have stringent
digital signature requirements that provide a high degree of trust, while another organization might allow self-signed
certificates to be used, which do not provide any level of trust.

7 App vetting might require the vetting of other components with which the app communicates, such as a third-party library,
device, or server. Such vetting is typically difficult because licensing issues can restrict access, and user privileges can
restrict access to an app’s associated server.

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 12

purchase the app. Since the documentation for different apps will be structured in different ways, it may 571
also be time-consuming to find the information for evaluation. Therefore, a standardized questionnaire 572
might be appropriate for determining the software’s purpose and assessing an app developer’s efforts to 573
address security weaknesses. Such questionnaires aim to identify software quality issues and security 574
weaknesses by helping developers address questions from end users/adopters about their software 575
development processes. For example, developers can use the DHS Custom Software Questionnaire8 to 576
answer questions such as, “Does your software validate inputs from untrusted resources?” and “What 577
threat assumptions were made when designing protections for your software?” Another useful question 578
(not included in the DHS questionnaire) is “Does your app access a network API?” 579

3.5 Sharing Software Assurance Information 580

Information sharing within the software assurance community is vital and can help analysts benefit from 581
the collective efforts of security professionals around the world. The National Vulnerability Database 582
(NVD) is the U.S. government repository of standards-based vulnerability management data represented 583
using the Security Content Automation Protocol (SCAP). This data enables automation of vulnerability 584
management, security measurement, and compliance. NVD includes databases of security checklists, 585
security related software flaws, misconfigurations, product names, and impact metrics. The SCAP is a 586
suite of specifications that standardize the format and nomenclature by which security software products 587
communicate software flaw and security configuration information. SCAP is a multi-purpose protocol 588
that supports automated vulnerability checking, technical control compliance activities, and security 589
measurement. Goals for the development of SCAP include standardizing system security management, 590
promoting interoperability of security products, and fostering the use of standard expressions of security 591
content. The Common Weakness Enumeration (CWE) and Common Attack Pattern Enumeration and 592
Classification (CAPEC) collections can provide a useful list of weaknesses and attack approaches to drive 593
a binary or live system penetration test. Classifying and expressing software vulnerabilities is an ongoing 594
and developing effort in the software assurance community. Semantic Templates and Software Fault 595
Patterns are evolving approaches to standardizing the description of software flaws. 596

In some cases, agencies will need to use multiple app vetting tools when a single app vetting tool may not 597
meet all their testing requirements or be available for all platforms. Government agencies that are likely to 598
be testing the same apps should discuss licensing agreements with automated mobile app test tool vendors 599
that allow for the sharing of test results. Sharing and comparing machine readable test results can benefit 600
software assurance analysts and help the software assurance industry build new automation tools and 601
services. 602

4. Mobile App Evaluation 603

Mobile app requirements state an organization’s expectations for app behavior and drive the evaluation 604
process. The policies and goals of the organization can help drive and customize app assessment. When 605
possible, tailoring app assessments to the organization’s security, privacy, and acceptable use policies of 606
the organization can help drive and customize mobile app assessments. When possible, tailoring app 607
assessments to the organization’s unique mission requirements, risk tolerance, and available security 608
countermeasures is prudent within the overall context of security and reliability concerns and more cost 609
effective in time and resources. Such assessments could minimize the risk of an attacker exploiting 610
behaviors that a mobile app vetting system did not know were insecure since it could not know how the 611

8 https://buildsecurityin.us-cert.gov/swa/downloads/CustomSoftwareQuestionnaire.doc

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 13

app would be deployed. Unfortunately, it is not always possible to get security requirements from the app 612
end users; the user base may be too broad, the user base may not be able to state their security 613
requirements concretely enough for testing, or they might not have articulated any security requirements 614
or expectations of secure and reliable behavior. (In the two latter cases a skilled and well-resourced 615
software analyst may be able to extract requirements from the users anyway, but it is not to be expected 616
that all mobile application vetting processes will have the means to do this.) 617

A software analyst may be able to anticipate end user expectations successfully based on what the app 618
claims to do and common notions about what constitutes insecure behavior of software. For example, 619
there may be architectural weaknesses that are commonly found in applications of this sort. The resulting 620
requirements should be taken into account even when end users have supplied specific security policies 621
and descriptions of the intended secure behavior. Examples of mobile app test requirements include: 622

 Protect Sensitive Data. Mobile apps collect, store, and transmit sensitive data whether it is user-623
generated content (text, photographs, video, email, etc.), location information, data collected by on-624
board physical sensors, and data shared through network communications. Mobile apps should 625
protect sensitive data at rest and in transit by using cryptographic security services provided by the 626
underlying platform. 627

 Preserve Privacy. The app must properly use any personal information it interacts with—such as 628
asking permission to use personal information and using it only for authorized purposes. This 629
includes location services, geotagging photographs, accessing the microphone and the camera, and 630
other data gather by physical sensors.. 631

 Perform Basic Functionality. The app must work as described; all buttons, menu items, and other 632
interfaces must work. When a service or function is unavailable (disabled, unreachable, etc.), the error 633
condition must be handled gracefully. 634

 Performance. The app’s launch time and suspend time must be reasonable. The app must meet 635
requirements regarding the usage of metered networks, such as cellular networks (e.g., restrictions on 636
using certain protocols over such networks; data rate restrictions; download size restrictions; asking 637
permission to use cellular network instead of Wi-Fi). 638

 Power Consumption. The app must not consume power in excess of a user- or agency-defined rate 639
consistent. This predefined rate may depend on the underlying hardware and the environment in 640
which the app will be used. For example, a first responder may need to have network and GPS 641
services available for a minimum time while using a set of critical apps. 642

 Reliability/Availability. The app must not crash or hang; it must not enter an endless loop, where the 643
user cannot terminate it in an orderly way. Behavior that strikes the evaluator as inconsistent with the 644
implied or documented purpose of the app will probably seem incorrect to the user as well; in the 645
absence of clear and unambiguous documentation stating otherwise, the evaluator is justified in 646
reporting this as a bug. 647

 Security Functionality. The app only uses designated APIs (from the vendor-provided software 648
development kit [SDK]) and uses them properly; no other API calls are permitted.9 The app has 649

9 The existence of an API raises the possibility of malicious use. Even if the APIs are used properly, they may pose risks
because of covert channels, unintended access to other APIs, access to data exceeding original design, and the execution of
actions outside of the app’s normal operating parameters.

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 14

strong access control lists (ACLs) for its executable code, directories/folders, and other objects. Static 650
analysis performed against the binary must not detect the use of any unsafe coding or building 651
practices. The app must also not share memory locations with other apps, possess OS privileges, or 652
contain hard-coded passwords. 653

 Content. The app must have appropriate content, for example, no copyright or trademark 654
infringement, and no offensive material. 655

Well-written security requirements are most useful to the software analyst when they can easily be 656
translated into specific evaluation activities, The various processes concerning the elicitation, 657
management, and tracking of requirements are collectively known as requirements engineering (c.f., 658
[GAU89, NUS00]), and this is a relatively mature activity with tools support. Presently, there is no 659
methodology for driving all requirements down to the level where they could be checked completely10 by 660
automatic software analysis, while ensuring that the full scope of the original requirements is preserved. 661
Thus, the best we can do may be to document the process in such a way that human reviews can find gaps 662
and concentrate on the types of vulnerabilities, or weaknesses, that fall into those gaps. 663

4.1 Identifying Undesirable App Characteristics 664

This section discusses security and privacy-relevant characteristics of mobile apps that are generally 665
undesirable: insecure, malicious functionality contains malware, vulnerable, and poorly designed. The 666
mobile app vetting process attempts to identify mobile apps with these characteristics. 667

Insufficient Data Protection. Sensitive data stored on the device and transmitted over one of many 668
wireless interface now available on mobile device should be protected from eavesdropping, from other 669
mobile apps, and even in the case of a lost or stolen device. When implemented properly, the use of 670
cryptography can help maintain the confidentiality and integrity of sensitive data. FIPS 140-2 precludes 671
the use of unvalidated cryptography for the cryptographic protection of sensitive or valuable data within 672
Federal systems. Unvalidated cryptography is viewed by NIST as providing no protection to the 673
information or data - in effect the data would be considered unprotected plaintext. If the agency specifies 674
that the information or data be cryptographically protected, then FIPS 140-2 is applicable. In essence, if 675
cryptography is required, then it must be validated. Guidelines for proper key management techniques can 676
be found in NIST Special Publication P 800-57 Part 3, Recommendation for Key Management: 677
Application-Specific Key Management Guidance.11 678

Malicious Functionality. Some functionally-inconsistent apps (as well as their libraries) are malicious 679
and intentionally perform functionality that is not disclosed to the user and violates most expectations of 680
secure behavior. This undocumented functionality may include exfiltration of confidential information or 681
PII to a third party, defrauding the user by sending premium SMS messages (premium SMS messages are 682
meant to be used to pay for products or services), or tracking users’ locations without their knowledge. 683
Other forms of malicious functionality include injection of fake websites into the victim’s browser in 684
order to collect sensitive information, acting as a starting point for attacks on other devices, and generally 685
disrupting or denying operation. Another example is the use of banner ads that may be presented in a 686
manner in which causes the user to unintentionally select ads that may attempt to deceive the user. These 687

10 In the mathematical sense of “completeness” completeness means that no violations of the requirement will be overlooked.

11 See NIST Special Publication P 800-57 Part 3, Recommendation for Key Management: Application-Specific Key Management
Guidance http://csrc.nist.gov/publications/drafts/800-57pt3_r1/sp800_57_pt3_r1_draft.pdf

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 15

types of behaviors support phishing attacks and may not be detected by mobile antivirus of software 688
vulnerability scanners as they are served dynamically and not available for inspection prior to the 689
installation of the mobile app. 690

Excessive Permissions. Functionally inconsistent apps have permissions that are not consistent with End 691
User License Agreements (EULAs), application permissions, application descriptions, in-program 692
notifications, or other expected behaviors and would not be considered to exhibit secure behavior. An 693
example is a wallpaper app that collects and stores sensitive information, such as passwords or PII. 694
Although these apps might not have malicious intent—they may just be poorly designed—their excessive 695
permissions still expose the user to threats that stem from the mismanagement of PII and the loss or theft 696
of a device. Similarly, some apps have permissions assigned that they don’t actually use. Moreover, users 697
routinely reflexively grant whatever access permissions a newly-installed app requests. It is important to 698
note that identifying functionally inconsistent apps is a manual process. It involves a subjective decision 699
from an evaluator that certain permissions are not appropriate and the behavior of the app insecure. 700

Malware. Malware is a particular challenge for evaluators because there may be a deliberate attempt to 701
conceal it. To make matters worse, malware can be designed and tested to evade automated detection 702
tools (such as antivirus scanners) as long as the malware author has a copy of the detection tool that he or 703
she can use to test the malware. Because of these challenges, it is essentially impossible for a vetting 704
process to guarantee that a piece of software is free from malicious functionality. Mobile devices do have 705
some built-in protections against malware, for example application sandboxing and user approval in order 706
to access subsystems such as the GPS or text messaging. But sandboxing only makes it harder for apps to 707
interfere with one another or with the operating system; it does not prevent many of the types of malicious 708
functionality listed above. 709

Vulnerabilities. Mobile apps may have residual weaknesses that make them vulnerable to attacks. 710
Traditionally, a vulnerability is defined as a weakness that allows an attacker to reduce the system's 711
reliability, integrity, availability, confidentiality, or functionality and is the intersection of three elements: 712
system weakness, attacker access to the weakness, and attacker capability to exploit the weakness. To 713
exploit vulnerability, an attacker must have at least one applicable attack tool or attack technique that can 714
work against the system weaknesses that exploit the vulnerability. The attacker’s access paths and access 715
mechanisms to the weaknesses in a system are often referred to as the system’s attack surface. 716

Poor Design. Mobile apps that are poorly designed may drain or misuse the device resources or have 717
inconsistent behavior across different sets of devices. An example of such an app is one that goes into an 718
endless loop, draining the computational resources and power rendering the device unusable. Another 719
example is an app that has device or functional dependencies that are not disclosed to the user, altering 720
the behavior or functional capabilities of the app across different devices. This problem has been common 721
for some apps that have display size requirements and no clear functional specifications. As part of 722
software testing, the functional dependencies of an application should be tested and any discrepancies or 723
issues should be identified before the application is deployed. Commercial services are available to 724
provide app user interface testing and usability testing on several manufacturers’ devices, a variety of 725
models and form factors. 726

4.2 Mobile App Tests. 727

Below are automated and manual tests that can be performed to evaluate how well an app meets an 728
organization’s requirements, to help them better understand the risks the apps introduce, and to decide 729
which countermeasures may be needed to mitigate these risks. 730

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 16

 User Interface: Mobile user interface display can vary greatly for different device screen sizes and 731
resolutions. The rendering of images or position of buttons may not be correct due to these 732
differences. If applicable, the User Interface (UI) should be viewed in both portrait and landscape 733
mode. If the page allows for data entry, the virtual keyboard should be invoked to confirm it displays 734
and works as expected. 735

 Malware Detection: Although mobile malware scanning products suffer some of the same 736
limitations of their desktop counterparts, open source and commercially-available malware detection 737
tools can identify known and published malware signatures. Anti-virus and scanning tools can be 738
incorporated as part of an organization’s enterprise MDM, organization’s app store, or as part of the 739
mobile app vetting process. Note that just because an app has been scanned by an anti-virus software 740
tool and no known malware signatures have been detected, does not mean that app does not contain 741
vulnerabilities that can be exploited by an adversary or that the app does not perform functions that do 742
not comply with an organization’s policies. 743

 Input Validation: Due to the short timeframes mobile apps are typically used (and relevant), it is 744
crucial to verify data input. Inputting data, testing actions, and completing transactions confirms an 745
app’s performance matches the stated app’s functionality from the developer. Negative test cases 746
based on critical actions that the app is not supposed to do should also be conducted. 747

 Physical Sensors: Test any device physical sensors used by the app such as GPS, front/back cameras, 748
video, microphone for voice recognition, accelerometers (or gyroscopes) for motion and orientation-749
sensing, and communication between devices (e.g., phone “bumping”). If the app initiates a telephone 750
call or SMS, it is suggested to use a working mobile telephone number to verify the call or SMS was 751
received. 752

 Overall Functional Reliability: Performance testing confirms that the time the app takes to display 753
information, navigate to another page, or process a transaction is fast enough to meet user 754
expectations. Confirm pages heavy with content, images, animations, or video load in a reasonable 755
timeframe without crashing. Also, transactions accessing backend systems using APIs and “screen 756
scraping” are at high risk of performance issues. If possible, it is recommended to test with different 757
carriers, ranges of network bandwidth (LTE, 3G), and wireless internet to truly determine an app’s 758
performance. 759

 Network Events: The network events category includes any functionality related to connections to an 760
external network as well as internal and external content providers. All mobile apps can use network 761
connections to retrieve content, including configuration files, from a variety of external systems. 762
Mobile apps can receive and process information from external sources and also send information 763
out, potentially exfiltrating data from the mobile device without the user’s knowledge. Be sure to 764
consider not only cellular and Wi-Fi network events, but also Bluetooth, NFC, and other forms of 765
networking. Mobile apps should use the Hypertext Transfer Protocol over Secure Socket Layer 766
(HTTPS) instead of HTTP when transferring sensitive information over the web, especially when 767
using public Wi-Fi access points. 768

 Communication with Known Disreputable Sites. Can the app be observed communicate with sites 769
known to harbor malvertising, spam, phishing attacks, or other malware? Does the app connect with 770
unauthorized cloud services? 771

 Protecting Data at Rest and in Transit. Mobile apps may collect, store, and share sensitive 772
information. Should the system owner decide that the use of cryptography is warranted, his 773
information should be protected while at rest and in transit using FIPS-140-2 validated cryptography. 774
Information that is transmitted without being encrypted is susceptible to eavesdropping. Encrypting 775
data at rest can protect sensitive data on a lost or stolen mobile device. A list of FIPS-140-2-validated 776

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 17

cryptographic modules and an explanation of the applicability of the Cryptographic Module 777
Validation Program (CMVP) can be found on the CMVP web site12. 778

 Hard-coded Cryptographic Keying Material: When properly implemented, the use of 779
cryptography can help provide data confidentiality, authenticity, and integrity as well as other 780
security- and privacy-enabling services. The presence of hardcoded cryptographic keying material 781
(keys, initialization vectors, etc.) is an indication that in-app cryptography has not been properly 782
implemented and might be used by an attacker to compromise data or network resources. 783

 File I/O and Removable Storage: File I/O can be a security risk, especially when the I/O happens on 784
a removable or unencrypted portion of the file system. File scanning or access to files that are not part 785
of an application’s own directory could also be an indicator of malicious activity or bad coding 786
practice. Files written to external storage, such as a removable SD card, may be readable and 787
writeable by other mobile apps that may have been granted different permissions, thus placing data 788
written to unprotected storage at risk. 789

 Native Methods: Native method calls are typically calls to a library function that has already been 790
loaded into memory. These methods provide a way for an app to reuse code that was written in a 791
different language. These calls, however, can provide a level of obfuscation that impacts the ability to 792
perform analysis of the app. 793

 Privileged Commands: Apps possess the ability to invoke lower-level command line programs, 794
which may allow access to low-level structures, such as the root directory, or may allow access to 795
sensitive commands. These programs potentially allow a malicious app access to various system 796
resources and information, for finding out the running processes on a device. Although the mobile 797
operating system typically offers protection against directly accessing resources beyond what is 798
available to the user id that the application is running under, this opens up the potential for privilege 799
elevation attacks. 800

 Libraries Loaded: The libraries loaded category includes any third-party libraries that are loaded by 801
the app at run time. Legitimate uses for loaded libraries might be for the use of a cryptographic library 802
or a graphics API. Malicious apps can use library loading as a method to avoid detection. From a 803
vetting perspective, libraries are also a concern because they introduce outside code to an application 804
without the direct control of the developer. 805

 Dynamic Behavior: When apps execute, they exhibit numerous dynamic behaviors. Not all of these 806
operating behaviors are solely from device user inputs. Executing apps also receive input data from 807
information stored in the device. For example, what app data is stored, and is it stored in the sandbox 808
or elsewhere? What external data can the app leave in the sandbox? Likewise, where does data used 809
by the app originate from and how is it sanitized? Can a mobile app vetting system determine what 810
data is permitted and how it affects app behavior? It is critical to recognize that data downloaded from 811
an external source is particularly dangerous as a potential exploit vector unless it is clear how the app 812
prevents insecure behaviors resulting from data from a source not trusted by the organization using 813
the app. 814

 Side-channel Leakage: Unintended channels used by an app that might make data visible to 815
untrusted persons or apps. For example, in addition to the normal issues with concerns over what data 816
is written to log files or cached such as user PII, passwords or failed password attempts, mobile 817

12 For more information on NIST's Cryptographic Module Validation Program see http://csrc.nist.gov/groups/STM/cmvp/

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 18

devices can also capture location data that is sensitive, pictures taken by onboard cameras, both still 818
and video, as well as the broadcast ID of the device that mobile apps may have access to and thus 819
need to be developed and tested in a manner that protects this additional data from side-channel 820
leakage attacks. 821

 Telephony Functionality: Telephony functionality encompass a wide variety of method calls that an 822
app can use if given the right permissions, including making phone calls, transmitting SMS messages, 823
and retrieving unique telephone identifier information. Most, if not all of these telephony events are 824
sensitive and some of them provide access to personally identifiable information (PII). Many 825
applications make use of the unique telephone identifier information in order to keep track of users 826
instead of using a username/password scheme. Another set of sensitive calls can give an application 827
access to the telephone number. Many legitimate applications use the telephone number of the device 828
as a unique identifier, but this is a bad coding practice and can lead to loss of PII. To make matters 829
worse, many of the carrier companies do not take any caution in protecting this information. Any 830
application that makes use of the telephone call or SMS messages that is not clearly stated in the 831
EULA or application description as intending to use them should be immediate cause for suspicion. 832

 Classes Loaded: Classes being loaded by an application can also present a security risk. Classes 833
being loaded by an application are very similar to libraries being loaded with the exception that the 834
classes loaded are written in Java. On the Android platform, for example, these classes are in dex 835
form and contained inside of a jar file to be loaded. Dex is the file format that Java classes are 836
compiled into for use on Android. Similar to libraries being loaded, classes being loaded can present a 837
level of code obfuscation. Unlike library loading, class loading can be device dependent, adding one 838
extra layer of obfuscation since some of the functionality can only manifest itself on a specific device 839
or version of a mobile OS. 840

 Inter-Application Communications: Mobile apps that communicate with each other can provide 841
useful capabilities and productivity improvements, but these inter-application communications can 842
also present a security risk. For example, in Android platforms, inter-application communications are 843
allowed but regulated by what Android calls “intents.” Therefore, the Intent class and its subclasses 844
provide a mechanism for Android apps to perform inter- and intra-application communication. An 845
intent object can be used to start an app component in a different app or the same app that is sending 846
the intent. Intent objects can also be used to interact and request resources from the operating system. 847

 Media Events & Access to Audio/Video/Camera(s): Media events, similar to telephony events, are 848
cause for immediate concern if an app does not explicitly state it intends to use them in its 849
permissions manifest. These events are method calls relating to use of the camera (for pictures or 850
video) and the microphone (for recording of audio). Since these events can take place completely in 851
the background without the user’s knowledge, they are particularly suspicious for an app that does not 852
advertise the use of them. 853

 Dynamic Behavior: Mobile app security testing identifies weaknesses that are exploitable. Review of 854
the binary code can determine if the app is only using the appropriate APIs and where the APIs are 855
transferring data to and from an app. Review of the running code can also determine if access control 856
is set correctly on files, folders, communication channels, and other objects. Dynamic testing of the 857
live app can be used to identify weaknesses in how the user interface handles input and to understand 858
or test the “business logic” of the application (which isn’t what people traditionally think of as input). 859

 Privacy and Personally Identifiable Information: Privacy considerations, such as revealing 860
traditional PII also include mobile-specific personal information like location data, pictures taken by 861
onboard cameras, both still and video, as well as the broadcast ID of the device. This needs to be dealt 862
with in the User Interface (UI) as well as in the portions of the apps that manipulate this data. For 863

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 19

example, a tester can verify that the app complies with privacy standards by masking characters of 864
any sensitive data within the page display, but they should also review audit logs, when possible, for 865
appropriate handling of this type of information. Examples of traditional types of sensitive data 866
include financial data (e.g., credit card number), personal data (e.g., social security number) or login 867
credentials (e.g., password). The login page should limit the number of failed authentication attempts 868
and not provide the ability to save a password for automatic login if the app contains sensitive data. 869
Another important privacy consideration is that sensitive data should not be disclosed without prior 870
notification to the user by a prompt or a license agreement. 871

 Excessive Resource Consumption. Mobile apps may intentionally, or through poor programming 872
practices, consume excessive resources such as CPU cycles, memory, external storage, networking 873
resources, and battery power. Mobile device hardware capabilities are commensurate with those of 874
laptops, but battery resources remain a critical resource. Mobile apps that are designed to help 875
medical personnel or first responders need to manage and in some cases compete for limited power 876
resources. Mobile apps that consume excessive resources should be identified so that users will know 877
what to expect in terms of their mobile device’s availability. 878

 Accessibility. Section 508 requires that when Federal agencies develop, procure, maintain, or use 879
electronic and information technology, Federal employees with disabilities have access to and use of 880
information and data that is comparable to the access and use by Federal employees who are not 881
individuals with disabilities, unless an undue burden would be imposed on the agency. Section 508 882
also requires that individuals with disabilities, who are members of the public seeking information or 883
services from a Federal agency, have access to and use of information and data that is comparable to 884
that provided to the public who are not individuals with disabilities, unless an undue burden would be 885
imposed on the agency.13 886

13 See http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-
standards/section-508-standards for more information on Section 508 Standards for Electronic and Information Technology.

http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards
http://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-section-508-standards/section-508-standards

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 20

5. App Vetting Tools and Techniques 887

This section addresses selected considerations for mobile app vetting tools and techniques, including 888
designing analysis processes, vetting source code versus binary code, and selecting automated tools. For 889
basic information on security testing and assessment tools and techniques that may be helpful for 890
performing vetting, see NIST SP 800-115, Technical Guide to Information Security Testing and 891
Assessment.14 892

5.1 Designing Analysis Processes 893

Evaluation processes may use automated tools or may be entirely manual. Such processes may also be 894
performed by systems that provide (semi-) automatic management of the app vetting workflow (i.e., the 895
uploading, testing, and analysis of apps).15 (Naturally there can also be entirely automated evaluations, 896
but with current technology this can only be expected to yield partial results.) Furthermore, evaluation 897
processes for security differ from those intended to assess software correctness, though correctness tests 898
should be performed even if security is the main goal. 899

Software correctness testing [PY07] is a more mature field than current security analysis. The main 900
reason is that correctness testing has been around longer, but in some ways it is also easier. First, one can 901
argue (as a first approximation) that with appropriate test selection, if the software is unlikely to fail 902
during testing then it is also unlikely to fail in the field [MUSA 99]. Secondly, correctness testing has 903
traditionally been based on specifications, or at least some sort of description of what the software is 904
supposed to do. Even if this information is sometimes hard to come by in practice, there is an expectation 905
in the software industry that testers should have it. This is not always the case in security assessments; 906
often the software analysts are expected to derive the requirements themselves, and automated tools are 907
largely based on security requirements that are considered to be common across many different software 908
artifacts. Nonetheless, correctness testing contributes to software security. For example, crashes and other 909
unexpected behaviors are often indicative of a security flaw. 910

Some traditional software assurance activities may have to be omitted or adapted to the current 911
circumstances of a mobile app vetting system It is also important to determine how many combinations of 912
devices and operating system versions that an app may be expected to execute on can be tested based on 913
budget, time, and resources. 914

5.2 Vetting Source Code versus Binary Code 915

A major factor in performing an app evaluation is whether the mobile app’s source code or only binary 916
code is available. Typically, mobile apps downloaded from an app store do not provide access to source 917
code. When source code is available, there are a variety of tools that can be used to analyze the source 918
code or run it in an emulated environment. The goals of performing a source code review are to find 919
vulnerabilities in the source code, and to make sure that performing risky activities in the source code is 920
done in such a way that they are safer from a security perspective. These tasks need to be performed 921
manually by a secure code reviewer by reading through the contents of source code files. Even with 922
automated aids, the analysis is labor intensive. Benefits to using automated static analysis tools include 923

14 See http://csrc.nist.gov/publications/nistpubs/800-115/SP800-115.pdf

15 See NIST AppVet at http://csrc.nist.gov/projects/appvet/index.html

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 21

introducing consistency between different reviews, and making review of large codebases possible. 924
Reviewers should generally use automated static analysis tools whether they are conducting an automated 925
or a manual review and they should express their findings in terms of CWE Identifiers or some other 926
widely accepted nomenclature. Performing a secure code review requires software development and 927
domain-specific knowledge in the area of application security. Organizations should ensure that the 928
individuals performing source code reviews have the necessary skills and expertise. 929

When source code is not available, binary code can be vetted instead. In the context of mobile apps, the 930
term “binary code” can refer either to byte-code or machine code. For example, Android apps are 931
compiled to byte-code that is executed on a virtual machine, similar to the Java Virtual Machine (JVM), 932
but they can also come with custom libraries that are provided in the form of machine code, that is, code 933
executed directly on the mobile device's CPU. Android binary applications include byte-code that can be 934
analyzed without hardware support using emulated and virtual environments. 935

Static analysis requires that the code be reverse engineered when source is not available, which is 936
relatively easy for byte-code16, but can be difficult for machine code. Many commercial static analysis 937
tools already support byte-code, as do a number of open source and academic tools.17 For machine code, 938
it is especially hard to track the flow of control across many functions and to track data flow through 939
variables, since most variables are stored in anonymous memory locations that can be accessed in 940
different ways. The most common way to reverse engineer machine code is to use a disassembler or a de-941
compiler that tries to recover the original source code. These techniques are especially useful if the 942
purpose of reverse engineering is to allow humans to peruse the code, since the outputs are in a form that 943
can be understood by humans with appropriate skills. But even the best dis-assemblers make mistakes 944
[BALA07], and some of those mistakes can be corrected with formal static analysis. If the code is being 945
reverse engineered for static analysis, then it is often preferable to disassemble the machine code directly 946
to a form that the static analyzer understands rather creating human-readable code as an intermediate 947
byproduct. A static analysis tool that is aimed at machine code is likely to automate this process. 948

For testing (as opposed to static analysis), the most important requirement is to be able to see the 949
workings of the code as it is being executed. There are two primary ways to obtain this information. First, 950
a executing the app can be connected to a remote debugger, and second, the code can be run on an 951
emulator that has debugging capabilities built into it.18 Running the code on a physical device allows the 952
tester to select the exact characteristics of the device on which the app is intended to be used on and can 953
provide a more accurate view about how the app will be behave. On the other hand, an emulator provides 954
more control, especially when the emulator is open source and can be modified by the evaluator to 955
capture whatever information is needed. Although emulators can simulate different devices, they do not 956
simulate of them all and the simulation may not be completely accurate. 957

Useful information can be gleaned by observing an app’s behavior even without knowing the purposes of 958
individual functions. For example, the evaluator can observe how the app interacts with its external 959
resources, recording the services it requests from the operating system and the permissions it exercises. 960
Although many of the device capabilities used by an app are implicitly documented (since the user has to 961
approve its access to those capabilities), this documentation tends to contain a superset of the capabilities 962

16 The ASM framework [ASM] is a commonly-used framework for byte-code analysis.

17 Such as [FINDBUGS, SHAH05, CHEN07, ZHAO08]

18 The Android Emulator is found in the Android SDK.

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 22

actually used. Moreover, if the behavior of the app is observed for specific inputs, the evaluator can ask 963
whether the capabilities being exercised make sense in the context of those particular inputs. For example, 964
a calendar app may legitimately have permission to send calendar data across the network in order to sync 965
across multiple devices, but if the user has merely asked for a list of the day’s appointments and the app 966
sends data that is not simply part of the handshaking process needed to retrieve data, the evaluator might 967
ask what data is being sent and for what purpose. 968

5.3 Selecting Automated Tools 969

Analysis tools are often characterized as being either static or dynamic. Static analysis examines the app 970
source code and binary, including byte-code, and attempts to reason over all possible behaviors that might 971
arise at runtime. It provides a level of assurance that analysis results are an accurate description of the 972
program’s behavior regardless of the input or execution environment. Dynamic analysis operates by 973
executing a program using a set of input use cases and analyzing the program’s runtime behavior. In some 974
cases, the enumeration of input test cases is large, resulting in lengthy processing times. However, 975
methods such as combinatorial testing can reduce the number of dynamic input test case combinations, 976
reducing the amount of time needed to derive analysis results. [IEEE-2010] Organizations should 977
consider the technical tradeoff differences between what static and dynamic tools offer and balance their 978
usage given the organization’s assurance goals. 979

An additional consideration is that tools may analyze either the source code of an application or the 980
binary code. Obviously the choice of tools depends on the availability of source code and the availability 981
of people and tools that can analyze the source code for potential issues. Evaluating source code generally 982
can provide more extensive information on the weaknesses than testing binaries only, but testing source 983
code requires considerably more resources. Examining source code also will not allow the vetting 984
authority to test for and reveal any malicious action that may have taken place during the compiling 985
process. Organizations should carefully consider this tradeoff, along with the level of risk, when 986
determining whether to examine source code, binaries, or both. 987

The methods used for testing software reliability tend to be somewhat different from those used to test 988
software for security, although reliability testing can play a role in security analysis. Accordingly, some 989
tools are intended primarily for reliability testing and some primarily for security testing. Some cross-990
cutting classes of tools useful in software evaluation include: 991

 Simulators: Desktop simulators allow the use of a computer to view how the app will display on a 992
specific device without the use of an actual device. Because the tool provides access to the UI, the 993
app features can also be tested. However, interaction with the actual device hardware features such as 994
a camera or accelerometer cannot be simulated and requires an actual device. 995

 Remote Device Access: These types of tools allow the tester to view and access an actual device 996
from a computer. This allows the testing of most device features that do not require physical 997
movement such as using a video camera or making a telephone call. Remote debuggers are a common 998
way of examining and understanding mobile apps. 999

 Automated Testing: Basic mobile functionality testing lends itself well to automated testing. There 1000
are several tools available that allow creation of automated scripts to remotely run regression test 1001
cases on specific devices and operating systems. 1002

o User Interface Driven Testing: If the expected results being verified are UI specific, pixel 1003
verification can be used. This method takes a “screen shot” of a specified number of pixels from a 1004
page of the app and verifies it displays as expected (pixel by pixel). 1005

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 23

o Data Driven Testing: Data driven verification uses labels or text to identify the section of the 1006
app page to verify. For example, it will verify the presence of a “Back” button, regardless of 1007
where on the page it displays. Data driven automated test cases are less brittle and allow for some 1008
page design change without rewriting the script. 1009

o Fuzzing: Fuzzing normally refers to the automated generation of test inputs, either randomly or 1010
based on configuration information describing data format. Fault injection tools may also be 1011
referred to as “fuzzers.” This category of test tools is not necessarily orthogonal to the others, but 1012
its emphasis is on fast and automatic generation of many test scenarios. 1013

o Network-level testing: Fuzzers, penetration test tools, and human-driven network simulations 1014
can help determine how the app interacts with the outside world. It may be useful to run the app 1015
in a simulated environment during network-level testing so that its response to network events 1016
can be observed more closely 1017

 Test Automation: The term “test automation” usually refers to tools that automate the repetition of 1018
tests after they have been engineered by humans. This makes it useful for tests that need to be 1019
repeated often, for example, tests that will be used for many apps or executed many times (with 1020
variations) for a single app. 1021

 Static Tools: 1022

o Style Checkers: These tools check program syntax to find violations of style guidelines. 1023

o Static Analysis Tools: These tools generally analyze the behavior of software to find security 1024
vulnerabilities, though—if appropriate specifications are available—static analysis can also be 1025
used to evaluate correctness. Some static analysis tools operate by looking for syntax embodying 1026
a known class of potential vulnerabilities and then analyzing the behavior of the program to 1027
determine whether the weaknesses can be exploited. Static tools should encompass the app itself, 1028
but also the data it uses to the extent that this is possible; keep in mind that the true behavior of 1029
the app may depend critically on external resources. 1030

o Metrics Tools: These tools measure aspects of software not directly related to software behavior 1031
but useful in estimating auxiliary information such as the effort of code evaluation. Metrics can 1032
also give indirect indications about the quality of the design and development process. 1033

The SAMATE test suite provides a baseline for evaluating static analysis tools (here defined as tools that 1034
look for potential vulnerabilities by examining software behavior). Tool vendors may evaluate their own 1035
tools with SAMATE, so it is to be expected that over time the tools will eventually perform well on 1036
precisely the SAMATE specified tests. Still the SAMATE test suite can help determine if the tool is 1037
meant to do what a MAVS engineers thought, and the SAMATE test suite is continually evolving. 1038

Commercial automated mobile application testing tools have overlapping or complementary capabilities. 1039
For example, one tool may be based on techniques that find integer overflows19 very reliably while 1040
another tool may be better at finding weaknesses related to command injection attacks20. Finding the right 1041
set of tools to evaluate a requirement can be a challenging task because of the varied capabilities of 1042

19 http://cwe.mitre.org/data/definitions/190.html

20 http://cwe.mitre.org/data/definitions/77.html

http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/77.html

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 24

diverse commercial and open source tools, and because it can be challenging to determine what the 1043
capabilities of a given tool are. Constraints on time and money may also prevent the evaluator from 1044
assembling the best possible evaluation process, especially when the best process would involve extensive 1045
human analysis. Tools that provide a high-level risk rating should provide transparency on how the score 1046
was derived and which tests were performed. Tools that provide low-level code analysis reports should 1047
help analysts understand how the tool’s findings may impact their security Therefore, it is important to 1048
understand and quantify what each tool and process can do, and to use that knowledge to characterize 1049
what the complete evaluation process does or does not provide. 1050

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 25

Appendix A—App Power Consumption Testing 1051

In this document, we opt to not categorize device battery power drainage that is a performance issue due 1052
to apps as simply a reliability issue or a security issue. There are certain vulnerabilities that can lead to 1053
denial of service attacks that drain power. However, there are also other non-malicious defects in apps 1054
that can cause power drain, thus causing device failure and reducing device reliability. Therefore, battery 1055
power drainage caused by mobile apps is both a reliability and security concern. 1056

Power consumption testing identifies app functionality that can cause the app to consume excessive 1057
power leading to battery exhaustion. For example, an app may constantly attempt to initiate the device 1058
camera or GPS upon launching the app or during app idle time. The excessive use of a power “expensive” 1059
device resource can lead to the device being disabled as a direct result of loss of power. In practice, it is 1060
extremely difficult to infer power usage problems just by examining the app code both statically and 1061
dynamically. The reason is that neither of these processes looks for power effects; rather, they focus on 1062
the analysis of the app code as it pertains to code functionality. Another aspect that hinders power 1063
analysis is the numerous devices and configurations of operating systems. For an analysis to be accurate 1064
the specific device hardware and software configurations have to be tested. Regression techniques to 1065
extrapolate behavior within error ranges can also be applied. 1066

To help eliminate external factors that can cause battery consumption miscalculations, the following steps 1067
can be taken before power consumption testing begins: 1068

 Identify the hardware device that the power analysis will take place on. 1069

 Eliminate all other applications that might be running in parallel. 1070

 Control the testing environment in terms of availability of network, screen brightness, other active 1071
network services, etc. 1072

 Calculate and factor in appropriate measurements the overhead of the framework that attempts to 1073
measure the power consumption. 1074

 Measure the power under different environmental conditions (temperature, rate of measure). 1075

 Correlate the results across at least five devices to eliminate hardware errors that might crop in. 1076

 Create an error envelope for the measurements. 1077

Recent research has shown that more accurate power analysis can be performed by measuring the power 1078
consumption of individual device subsystems including display, GPS, and Wi-Fi, among others. Being 1079
able to measure the power consumption of subsystems can help us model the device behavior in various 1080
operating states. Furthermore, analysis can be performed at different timescales because the 1081
measurements happen cumulatively and at real-time. For each device and operating system, we can 1082
generate consumption models that can be used to account for current power consumption and forecast 1083
future consumption within an error range. To achieve that, it is important to perform measurements that 1084
exercise individual subsystems both in isolation and in concert. The end goal is to be able to generate a 1085
power consumption model that will allow us to account for all applications and services as they operate 1086
on the device with as minimal measurement error as possible. All of the power consumption calculations 1087
should be independent of the time interval used in creating the data and should not require reduction into 1088
a fixed predefined set of states with power ratings for each. 1089

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 26

Finally, it is recommended to use measurements of behavior for all the primary device subsystems under 1090
different conditions, which then provide an in-depth understanding of how the power is consumed on a 1091
mobile device. 1092

 1093

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 27

Appendix B—Android Application Vulnerability Types 1094

The purpose of this appendix is to identify and define the various types of vulnerabilities that are specific 1095
to applications running on mobile devices utilizing the Android operating system. The scope of this 1096
appendix includes application vulnerabilities for Android based mobile devices running applications 1097
written in Java. The scope does not include vulnerabilities in the mobile platform hardware and 1098
communications networks. Although some of the vulnerabilities described below are common across 1099
mobile device environments, this appendix only focuses on Android specific vulnerabilities. 1100

The vulnerabilities in this appendix are broken into three hierarchical levels, A, B, and C. The A level is 1101
referred to as the vulnerability class and is the broadest description for the vulnerabilities specified under 1102
that level. The B level is referred to as the sub-class and attempts to narrow down the scope of the 1103
vulnerability class into a smaller, common group of vulnerabilities. The C level specifies the individual 1104
vulnerabilities that have been identified. The purpose of this hierarchy is to guide the reader to finding the 1105
type of vulnerability they are looking for as quickly as possible. 1106

The A level general categories of Android mobile application vulnerabilities are listed below: 1107

Table 1: Android Vulnerabilities, A Level 1108

Type Description Negative Consequence
Permissions Permissions allow accessing controlled

functionality such as the camera or GPS and
are requested in the program. Permissions
can be implicitly granted to an application
without the user’s consent.

An application with too many permissions may
perform unintended functions outside the scope
of the application’s intended functionality.
Additionally, the permissions are vulnerable to
hijacking by another application. If too few
permissions are granted, the application will not
be able to perform the functions required.

Exposed
Communications

Internal communications protocols are the
means by which an application passes
messages internally within the device, either
to itself or to other applications. External
communications allow information to leave
the device.

Exposed internal communications allow
applications to gather unintended information
and inject new information. Exposed external
communication (data network, Wi-Fi, Bluetooth,
NFC, etc.) leave information open to disclosure
or man-in-the-middle attacks.

Potentially
Dangerous
Functionality

Controlled functionality that accesses
system critical resources or the user’s
personal information. This functionality can
be invoked through API calls or hard coded
into an application.

Unintended functions could be performed outside
the scope of the application’s functionality.

Application
Collusion

Two or more applications passing
information to each other in order to
increase the capabilities of one or both apps
beyond their declared scope.

Collusion can allow applications to obtain data
that was unintended such as a gaming
application obtaining access to the user’s contact
list.

Obfuscation Functionality or control flows that are hidden
or obscured from the user. For the purposes
of this appendix, obfuscation was defined as
three criteria: external library calls,
reflection, and native code usage.

1. External libraries can contain unexpected
and/or malicious functionality.
2. Reflective calls can obscure the control flow of
an application and/or subvert permissions within
an application.
3. Native code (code written in languages other
than Java in Android) can perform unexpected
and/or malicious functionality.

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 28

Type Description Negative Consequence
Excessive Power
Consumption

Excessive functions or unintended
applications running on a device which
intentionally or unintentionally drain the
battery.

Shortened battery life could affect the ability to
perform mission critical functions.

Traditional
Software
Vulnerabilities

All vulnerabilities associated with traditional
Java code including: Authentication and
Access Control, Buffer Handling, Control
Flow Management, Encryption and
Randomness, Error Handling, File Handling,
Information Leaks, Initialization and
Shutdown, Injection, Malicious Logic,
Number Handling, and Pointer and
Reference Handling.

Common consequences include unexpected
outputs, resource exhaustion, denial of service,
etc.

 1109
The table below shows the hierarchy of Android application vulnerabilities from A level to C level. 1110

Table 2: Android Vulnerabilities by Level 1111

Level A Level B Level C
Permissions Over Granting Over Granting in Code

Over Granting in API
Under Granting Under Granting in Code

Under Granting in API
Developer Created Permissions Developer Created in Code

Developer Created in API
Implicit Permission Granted through API

Granted through Other Permissions
Granted through Grandfathering

Exposed Communications External Communications Bluetooth
GPS
Network/Data Communications
NFC Access

Internal Communications Unprotected Intents
Unprotected Activities
Unprotected Services
Unprotected Content Providers
Unprotected Broadcast Receivers
Debug Flag

 1112

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 29

Potentially Dangerous
Functionality

Direct Addressing Memory Access
Internet Access

Potentially Dangerous API Cost Sensitive APIs
Personal Information APIs
Device Management APIs

Privilege Escalation Altering File Privileges
Accessing Super User/Root

Application Collusion Content Provider/Intents Unprotected Content Providers
Permission Protected Content Providers
Pending Intents

Broadcast Receiver Broadcast Receiver for Critical Messages
Data Creation/Changes/Deletion Creation/Changes/Deletion to File Resources

Creation/Changes/Deletion to Database
Resources

Number of Services Excessive Checks for Service State
Obfuscation Library Calls Use of Potentially Dangerous Libraries

Potentially Malicious Libraries Packaged but
Not Used

Native Code Detection
Reflection
Packed Code

Excessive Power Consumption CPU Usage
I/O

 1113

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 30

Appendix C—iOS Application Vulnerability Types 1114

The purpose of this appendix is to identify and define the various types of vulnerabilities that are specific 1115
to applications running on mobile devices utilizing the Apple iOS operating system. The scope does not 1116
include vulnerabilities in the mobile platform hardware and communications networks. Although some of 1117
the vulnerabilities described below are common across mobile device environments, this appendix 1118
focuses on iOS specific vulnerabilities. 1119

The vulnerabilities in this appendix are broken into three hierarchical levels, A, B, and C. The A level is 1120
referred to as the vulnerability class and is the broadest description for the vulnerabilities specified under 1121
that level. The B level is referred to as the sub-class and attempts to narrow down the scope of the 1122
vulnerability class into a smaller, common group of vulnerabilities. The C level specifies the individual 1123
vulnerabilities that have been identified. The purpose of this hierarchy is to guide the reader to finding the 1124
type of vulnerability they are looking for as quickly as possible. 1125

The A level general categories of iOS mobile application vulnerabilities are listed below: 1126

Table 3: iOS Vulnerability Descriptions, A Level 1127

Type Description Negative Consequence
Privacy Similar to Android Permissions, iOS privacy

settings allow for user controlled application
access to sensitive information. This
includes: contacts, Calendar information,
tasks, reminders, photos, and Bluetooth
access.

iOS lacks the ability to create shared information
and protect it. All paths of information sharing are
controlled by the iOS application framework and
may not be extended. Unlike Android, these
permissions may be modified later for individual
permissions and applications.

Exposed
Communication-
Internal and
External

Internal communications protocols allow
applications to process information and
communicate with other apps. External
communications allow information to leave
the device.

Exposed internal communications allow
applications to gather unintended information
and inject new information. Exposed external
communication (data network, Wi-Fi, Bluetooth,
etc.) leave information open to disclosure or
man-in-the-middle attacks.

Potentially
Dangerous
Functionality

Controlled functionality that accesses
system-critical resources or the user’s
personal information. This functionality can
be invoked through API calls or hard coded
into an application.

Unintended functions could be performed outside
the scope of the application’s functionality.

Application
Collusion

Two or more applications passing
information to each other in order to
increase the capabilities of one or both apps
beyond their declared scope.

Collusion can allow applications to obtain data
that was unintended such as a gaming
application obtaining access to the user’s contact
list.

Obfuscation Functionality or control flow that is hidden or
obscured from the user. For the purposes of
this appendix, obfuscation was defined as
three criteria: external library calls,
reflection, and packed code.

1. External libraries can contain unexpected
and/or malicious functionality.
2. Reflective calls can obscure the control flow of
an application and/or subvert permissions within
an application.
3. Packed code prevents code reverse
engineering and can be used to hide malware.

Excessive Power
Consumption

Excessive functions or unintended
applications running on a device which
intentionally or unintentionally drain the
battery.

Shortened battery life could affect the ability to
perform mission critical functions.

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 31

Type Description Negative Consequence
Traditional
Software
Vulnerabilities

All vulnerabilities associated with Objective
C and others. This includes: Authentication
and Access Control, Buffer Handling,
Control Flow Management, Encryption and
Randomness, Error Handling, File Handling,
Information Leaks, Initialization and
Shutdown, Injection, Malicious Logic,
Number Handling and Pointer and
Reference Handling.

Common consequences include unexpected
outputs, resource exhaustion, denial of service,
etc.

 1128

The table below shows the hierarchy of iOS application vulnerabilities from A level to C level. 1129

Table 4: iOS Vulnerabilities by Level 1130

Level A Level B Level C
Privacy Sensitive Information Contacts

Calendar Information
Tasks
Reminders
Photos
Bluetooth Access

Exposed Communications External Communications Telephony
Bluetooth
GPS
SMS/MMS
Network/Data Communications

Internal Communications Abusing Protocol Handlers
Potentially Dangerous Functionality Direct Memory Mapping Memory Access

File System Access
Potentially Dangerous API Cost Sensitive APIs

Device Management APIs
Personal Information APIs

Application Collusion Data Change Changes to Shared File Resources
Changes to Shared Database Resources
Changes to Shared Content Providers

Data Creation/Deletion Creation/Deletion to Shared File Resources
Obfuscation Number of Services Excessive Checks for Service State

Native Code Potentially Malicious Libraries Packaged but
not Used
Use of Potentially Dangerous Libraries
Reflection Identification
Class Introspection

Library Calls Constructor Introspection
Field Introspection
Method Introspection

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 32

Excessive Power Consumption Packed Code
CPU Usage
I/O

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 33

Appendix D—Glossary 1131

Selected terms used in this publication are defined below. 1132

Dynamic Analysis: Detecting the set of target weaknesses by executing an app using a set of input use 1133
cases and analyzing the app’s runtime behavior. 1134

Fault Injection Testing: Attempting to artificially trip up the app during execution by forcing it to 1135
experience corrupt data or corrupt internal states to see how robust it is against these simulated failures. 1136

Functionality Testing: Verifying that an app’s user interface, content, and features perform and display 1137
as designed. 1138

Off-Nominal Testing: Exercising a mobile app to determine how it behaves under rarely expected 1139
operational scenarios. 1140

Static Analysis: Detecting the set of target weaknesses by examining the app source code and binary and 1141
attempting to reason over all possible behaviors that might arise at runtime. 1142

Software Assurance: “The level of confidence that software is free from vulnerabilities, either 1143
intentionally designed into the software or accidentally inserted at any time during its life cycle and that 1144
the software functions in the intended manner.” [CNSS-4009] 1145

Target Weaknesses: A specific set of weaknesses to look for in an app. 1146

Traditional Software Reliability Testing: Testing that determines if a mobile app does what it is 1147
supposed to do under normal, expected operational usage. 1148

Vetting: The process of verifying that a particular app meets the requirements that all apps must follow. 1149

Vulnerability: A weakness which allows an attacker to reduce a system's reliability, integrity, 1150
availability, confidentiality, or functionality and is the intersection of three elements: a system weakness, 1151
attacker access to the weakness, and attacker capability to exploit the weakness. 1152

 1153

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 34

Appendix E—Acronyms and Abbreviations 1154

Selected acronyms and abbreviations used in this publication are defined below. 1155

3G 3rd Generation 1156

API Application Programming Interface 1157

CAPEC Common Attack Pattern Enumeration and Classification 1158

CVE Common Vulnerabilities and Exposures 1159

CWE Common Weakness Enumeration 1160

DHS Department of Homeland Security 1161

DoD Department of Defense 1162

EULA End User License Agreement 1163

FIPS Federal Information Processing Standard 1164

FISMA Federal Information Security Management Act 1165

GPRS General Packet Radio Services 1166

GPS Global Positioning System 1167

I/O Input/Output 1168

IPC Inter-Process Communications 1169

IT Information Technology 1170

ITL Information Technology Laboratory 1171

LTE Long-Term Evolution 1172

MAVS Mobile App Vetting System 1173

MDM Mobile Device Management 1174

NFC Near Field Communications 1175

NIST National Institute of Standards and Technology 1176

NVD National Vulnerability Database 1177

OMB Office of Management and Budget 1178

PII Personally Identifiable Information 1179

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 35

RAM Random Access Memory 1180

SDK Software Development Kit 1181

SLA Service Level Agreement 1182

SMS Short Message Service 1183

SP Special Publication 1184

UI User Interface 1185

URI Uniform Resource Identifier 1186

USB Universal Serial Bus 1187

Wi-Fi Wireless Fidelity 1188

 1189

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 36

Appendix F—References 1190

References for the publication are listed below. 1191

[APP2013] Apple Energy Usage Instrument 1192
http://developer.apple.com/library/ios/#DOCUMENTATION/AnalysisTools/Reference/I1193
nstruments_User_Reference/EnergyUsageInstrument/EnergyUsageInstrument.html (Last 1194
updated: 2013-04-23) 1195

[ASM] Java bytecode manipulation and analysis framework: http://asm.ow2.org/ 1196

[BALA07] Gogul Balakrishnan, WYSINWYX: What You See Is Not What You eXecute, Ph.D 1197
dissertation and Tech. Rep. TR-1603, Computer Sciences Department, University of 1198
Wisconsin, Madison, WI, August 2007 1199

 [BSI] Nancy R. Mead, Julia H. Allen, Sean J. Barnum, Robert J. Ellison, and Gary McGraw, 1200
"Software Security Engineering", Addison-Wesley Professional, 2008 1201

[CHEN07] Hua Chen, Tao Zou, and Dongxia Wang. 2007. Data-flow based vulnerability analysis 1202
and java bytecode. In Proceedings of the 7th Conference on 7th WSEAS International 1203
Conference on Applied Computer Science - Volume 7 (ACS'07), Roberto Revetria, 1204
Antonella Cecchi, Maurizio Schenone, Valeri M. Mladenov, and Alexander Zemliak 1205
(Eds.), Vol. 7. World Scientific and Engineering Academy and Society (WSEAS), 1206
Stevens Point, Wisconsin, USA, 201-207 1207

[CNSS-4009] CNSS National Information Assurance (IA) Glossary CNSSI-4009 1208

[CSEC] Blake Shepard, Cynthia Matuszek, C. Bruce Fraser, William Wechtenhiser, David 1209
Crabbe, Zelal Güngördü, John Jantos, Todd Hughes, Larry Lefkowitz, Michael Witbrock, 1210
Doug Lenat, and Erik Larson. 2005. A knowledge-based approach to network security: 1211
applying Cyc in the domain of network risk assessment. In Proceedings of the 17th 1212
conference on Innovative applications of artificial intelligence - Volume 3 (IAAI'05), 1213
Bruce Porter (Ed.), Vol. 3. AAAI Press 1563-1568 1214

 [DO-178B] DO-178B, Software Considerations in Airborne Systems and Equipment Certification 1215

[DOWD06] Mark Dowd, John McDonald, and Justin Schuh, "The Art of Software Security 1216
Assessment - Identifying and Preventing Software Vulnerabilities", Addison-Wesley, 1217
2006 1218

[FINDBUGS] Static analysis to look for bugs in Java code URL: http://findbugs.sourceforge.net/ 1219

[GAU89] Donald C. Gause and Gerald M. Weinberg, “Exploring Requirements: Quality Before 1220
Design”, Dorset House, 1989 1221

[GODE05] Godefroid, P., Klarlund, N., and Sen, K. DART: directed automated random testing. In 1222
PLDI’05: Proc. Of the ACM SIGPLAN Conf. on Programming Language Design and 1223
Implementation (2005), ACM, pp. 213–223 1224

[IEC-61508] IEC 61508 Functional Safety of Electrical/Electronic/Programmable Electronic Safety-1225
related Systems 1226

http://developer.apple.com/library/ios/#DOCUMENTATION/AnalysisTools/Reference/Instruments_User_Reference/EnergyUsageInstrument/EnergyUsageInstrument.html
http://developer.apple.com/library/ios/#DOCUMENTATION/AnalysisTools/Reference/Instruments_User_Reference/EnergyUsageInstrument/EnergyUsageInstrument.html
http://asm.ow2.org/
http://www.cs.wisc.edu/~bgogul/Research/Thesis/thesis.html
http://findbugs.sourceforge.net/

Technical Considerations for Vetting 3rd Party Mobile Applications (Draft)

 37

[IEEE-2010] J.R. Maximoff, M.D. Trela, D.R. Kuhn, and R. Kacker, “A Method for Analyzing System 1227
State-space Coverage with a t-Wise Testing Framework”, IEEE International Systems 1228
Conference 2010, April 4-11, 2011, San Diego 1229

[ISO 26262] ISO 26262 Road vehicles -- Functional safety 1230

[MCGRAW05] Gary McGraw: Software Security: Building Security In, Addison-Wesley Professional, 1231
2006 1232

[MUSA 99] John D. Musa, Software Reliability Engineering, , McGraw-Hill, 1999 1233

[NASA-8739] NASA Software Assurance Standard NASA-STD-8739.8 1234

[NIST-142] D. R. Kuhn, R. N. Kacker, and Y. Lei, “Practical Combinatorial Testing”, NIST SP 800-1235
142, 2010. http://csrc.nist.gov/groups/SNS/acts/documents/SP800-142-101006.pdf 1236

[NUS00] Bashar Nuseibeh and Steve Easterbrook. 2000. Requirements engineering: a roadmap. In 1237
Proceedings of the Conference on The Future of Software Engineering (ICSE '00). ACM, 1238
New York, NY, USA, 35-46 1239

[PY07] Pezzè M. and Young, M., “Software Testing and Analysis: Process, Principles and 1240
Techniques” 1241

[SHAH05] Shah, R.A., Vulnerability Assessment of Java Bytecode, Auburn University, 2005 1242

[STRIDE] The STRIDE Threat Model, Microsoft Corporation, 2005 1243

[SCHUL07] G. Gordon Schulmeyer, (Editor)Handbook of Software Quality Assurance, 4th Edition, 1244
ISBN-13: 978-1450421041,– September 30, 2007 1245

 [TRIKE] Open source threat modeling methodology and tool URL: http://www.octotrike.org 1246

[ZHAO08] Gang Zhao, Hua Chen, and Dongxia Wang. 2008. Data-Flow Based Analysis of Java 1247
Bytecode Vulnerability. In Proceedings of the 2008 The Ninth International Conference 1248
on Web-Age Information Management (WAIM '08). IEEE Computer Society, 1249
Washington, DC, USA, 647-653 1250

 1251

http://csrc.nist.gov/groups/SNS/acts/documents/SP800-142-101006.pdf
http://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=G.+Gordon+Schulmeyer&search-alias=books&text=G.+Gordon+Schulmeyer&sort=relevancerank
http://www.octotrike.org/

	Executive Summary
	1. Introduction
	1.1 Purpose and Scope
	1.2 Audience
	1.3 Document Structure

	2. Software Assurance for Mobile Apps
	2.1 Challenges of Software Assurance in Mobile Computing
	2.2 Software Assurance for Mobile Apps

	3. Mobile App Vetting Planning
	3.1 Mobile App Vetting Planning
	3.2 Existing Security Infrastructure
	3.3 Expectation Management
	3.4 Getting Started
	3.5 Sharing Software Assurance Information

	4. Mobile App Evaluation
	4.1 Identifying Undesirable App Characteristics
	4.2 Mobile App Tests.

	5. App Vetting Tools and Techniques
	5.1 Designing Analysis Processes
	5.2 Vetting Source Code versus Binary Code
	5.3 Selecting Automated Tools
	Appendix A— App Power Consumption Testing
	Appendix B— Android Application Vulnerability Types
	Appendix C— iOS Application Vulnerability Types
	Appendix D— Glossary
	Appendix E— Acronyms and Abbreviations
	Appendix F— References

