

The attached DRAFT document (provided here for historical purposes), released on May 30, 2017,
has been superseded by the following publication:

Publication Number: NIST Special Publication (SP) 800-193

Title: Platform Firmware Resiliency Guidelines

Publication Date: May 2018

• Final Publication: https://doi.org/10.6028/NIST.SP.800-193 (which links to
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf).

• Related Information on CSRC:
Final: https://csrc.nist.gov/publications/detail/sp/800-193/final

https://doi.org/10.6028/NIST.SP.800-193
https://csrc.nist.gov/publications/detail/sp/800-193/final

1

14

Draft NIST Special Publication 800-193

Platform Firmware Resiliency
Guidelines

2

3

4

5

6

7

8

9

10

11

12

13

Andrew Regenscheid

C O M P U T E R S E C U R I T Y

15

16

17 Draft NIST Special Publication 800-193
18

Platform Firmware Resiliency
Guidelines

19

20

21

22 Andrew Regenscheid
Computer Security Division

Information Technology Laboratory

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 May 2017
39
40

41
42
43
44 U.S. Department of Commerce

Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology
Kent Rochford, Acting NIST Director and Under Secretary of C ommerce for Standards and Technology

45
46
47
48

50
51
52
53
54
55
56

57
58
59
60
61
62

63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78

49 Authority

This publication has been developed by NIST in accordance with its statutory r esponsibilities under the
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including
minimum requirements for federal information systems, but such standards and guidelines shall not apply
to national security systems without the express approval of appropriate federal officials exercising policy
authority over such systems. This guideline is consistent with the requirements of the Office of Management
and Budget (OMB) Circular A-130.

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce,
Director of the OMB, or any other federal official. This publication may be used by nongovernmental
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would,
however, be appreciated by NIST.

National Institute of Standards and Technology Special Publication 800-193
Natl. Inst. Stand. Technol. Spec. Publ. 800-193, 46 pages (May 2017)

CODEN: NSPUE2

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an
experimental pr ocedure or concept adequately. Such identification is not intended to imply recommendation or
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best
available for the purpose.

There may be references in this publication to other publications currently under development by NIST in accordance
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies,
may be used by federal agencies even before the completion of such companion publications. Thus, until each
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For
planning and transition p urposes, federal agencies may w ish to closely follow the development of these new
publications by NIST.

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at
http://csrc.nist.gov/publications.

79
80
81
82
83
84

85

Public comment period: May 30, 2017 through July 14, 2017
National Institute of Standards and Technology

Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Email: sp800-193comments@nist.gov

 All comments are subject to release under the Freedom of Information Act (FOIA).

http://csrc.nist.gov/publications
mailto:sp800-193comments@nist.gov

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

86 Reports on Computer Systems Technology

87 The Information Technology Laboratory (ITL) at the National Institute of Standards and
Technology (NIST) promotes the U.S. economy and public welfare by providing technical
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test
methods, reference data, proof of concept implementations, and technical analyses to advance the
development and productive use of information technology. ITL’s responsibilities include the
development of management, administrative, technical, and physical standards and guidelines for
the cost-effective security and privacy of other than national security-related information in federal
information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and
outreach efforts in information system security, and its collaborative activities with industry,
government, and academic organizations.

88
89
90
91
92
93
94
95
96

97 Abstract

98 This document provides technical guidelines and recommendations supporting resiliency of
platform firmware and data against potentially destructive attacks. The platform is a collection
of fundamental hardware and firmware components needed to boot and operate a system. A
successful attack on platform firmware could render a system inoperable, perhaps permanently
or requiring reprogramming by the original manufacturer, resulting in significant disruptions to
users. The technical guidelines in this document promote resiliency in the platform by
describing security mechanisms for protecting the platform against unauthorized changes,
detecting unauthorized changes that occur, and recovery from attacks rapidly and securely.
Implementers, including Original Equipment Manufacturers (OEMs) and component/device
suppliers, can use these guidelines to build stronger security mechanisms into platforms. System
administrators, security professionals, and users can use this document to guide procurement
strategies and priorities for future systems.

99
100
101
102
103
104
105
106
107
108
109

110

111 Keywords

112 BIOS; Code signing; Firmware; Option ROM; Platform Firmware
113

ii

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

114

115 Acknowledgements

116 The author, Andrew Regenscheid of the National Institute of Standards and Technology (NIST),
wishes to thank his colleagues who reviewed drafts of this document and contributed to its
technical content. In particular, NIST appreciates the contributions from experts from industry
and government who helped guide this work. These experts included Gary Simpson from AMD;
Chirag Schroff from Cisco; Mukund Khatri from Dell; CJ Coppersmith, Gary Campbell, Shiva
Dasari, and Tom Laffey from Hewlett Packard Enterprise; Jim Mann from HP Inc.; Charles
Palmer from IBM; Bob Hale, David Riss, and Vincent Zimmer from Intel Corporation; and Paul
England and Rob Spiger from Microsoft.

NIST would also like to acknowledge and thank Kevin Bingham, Cara Steib, and Mike Boyle,
from the National Security Agency, who also provided substantial contributions to this
document, as well as Jeffrey Burke from Noblis NSP.

117
118
119
120
121
122
123

124
125
126

127

128 Audience

129 The intended audience for this document includes system and platform device vendors of
computer systems, including manufacturers of clients, servers and networking devices. The
technical guidelines assume readers have expertise in the platform architectures and are targeted
primarily at developers and engineers responsible for implementing firmware-level security
technologies in systems and devices.

130
131
132
133

134

135 Trademark Information

136 All product names are registered trademarks or trademarks of their respective companies

iii

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

137
138 Executive Summary

139 Modern client and server computing system architectures can be thought of in layers. The top
140 layers are software, composed of the operating system and applications. While these provide
141 most of the functional capabilities employed by users, they rely on functions and services
142 provided by the underlying layers, which this document collectively refers to as the platform.
143 The platform includes the hardware and firmware components necessary to initialize
144 components, boot the system, and provide runtime services implemented by hardware
145 components.

146 Platform firmware, and its associated configuration data, is critical to the trustworthiness of a
147 computing system. Much of this firmware is highly privileged in the system architectures, and
148 because this firmware is necessary for the system to operate, repairing this firmware can be
149 challenging. A successful attack on platform firmware could render a system inoperable,
150 perhaps permanently or requiring reprogramming by the original manufacturer, resulting in
151 significant disruptions to users. Other sophisticated malicious attacks could attempt to inject
152 persistent malware in this firmware, modifying critical low-level services to disrupt operations,
153 exfiltrate data, or otherwise impact the security posture of a computer system.

154 Earlier NIST publications have addressed the threat of attacks on one particular type of platform
155 firmware: boot firmware, commonly known as the Basic Input/Output System (BIOS).
156 However, the platform consists of many other devices with firmware and configuration data.
157 These devices, including storage and network controllers, graphics processing units, and service
158 processors, are also highly-privileged and needed for systems to behave securely and reliably.

159 This document provides technical guidelines intended to support resiliency of platforms against
160 potentially destructive attacks. These guidelines are based on the following three principles:

161 • Protection: Mechanisms for ensuring that Platform Firmware code and critical data
162 remain in a state of integrity and are protected from corruption, such as the process for
163 ensuring the authenticity and integrity of firmware updates.
164 • Detection: Mechanisms for detecting when Platform Firmware code and critical data
165 have been corrupted.
166 • Recovery: Mechanisms for restoring Platform Firmware code and critical data to a state
167 of integrity in the event that any such firmware code or critical data are detected to have
168 been corrupted, or when forced to recover through an authorized mechanism. Recovery
169 is limited to the ability to recover firmware code and critical data.

170 These guidelines are intended to address platforms in personal computer (PC) client, servers, and
171 network devices, but should be broadly applicable to other classes of systems. Implementers,
172 including Original Equipment Manufacturers (OEMs) and component/device suppliers, can use
173 these guidelines to build stronger security mechanisms into platforms. System administrators,
174 security professionals, and users can use this document to guide procurement strategies and
175 priorities for future systems.

iv

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

176

177 Table of Contents

178 Executive Summary... iv

179 1 Introduction... 1

180 1.1 Purpose ..1

181 1.2 Audience..1

182 1.3 Applicability and Scope...1

183 1.4 Document Structure...2

184 2 Platform Architecture .. 3

185 2.1 Platform Devices ...4

186 2.2 Code and Data in Platform Devices ..7

187 2.2.1 Code .. 7

188 2.2.2 Data ... 7

189 3 Principles and Key Concepts ... 10

190 3.1 Principles Supporting Platform Resiliency..10

191 3.2 Resiliency Properties ...10

192 3.3 Roots of Trust and Chains of Trust ...11

193 3.4 Device Relationships ...12

194 3.5 Firmware Update Mechanisms..14

195 3.5.1 Authenticated Update Mechanism.. 14

196 3.5.2 Authorized Update Mechanism .. 15

197 3.5.3 Secure Local Update ... 16

198 3.6 Other Considerations for Platform Resiliency...16

199 3.6.1 Management.. 16

200 3.6.2 Authorization Mechanisms ... 17

201 3.6.3 Network-Assisted vs. Local Recovery.. 18

202 3.6.4 Automated vs. Manual Recovery.. 18

203 3.6.5 Event Logging... 19

204 4 Firmware Security Guidelines for Platform Devices... 20

205 4.1 Roots of Trust and Chains of Trust ...20

206 4.1.1 Roots of Trust (RoT) and Chains of Trust (CoT) ... 20

207 4.1.2 Root of Trust for Update (RTU) and Chain of Trust for Update (CTU) 21

208 4.1.3 Root of Trust for Detection (RTD) and Chain of Trust for Detection (CTD) 21

v

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

209 4.1.4 Root of Trust for Recovery (RTRec) and Chain of Trust for Recovery

210 (CTRec)... 22

211 4.2 Protection...22

212 4.2.1 Protection and Update of Mutable Code... 22

213 4.2.2 Protection of Immutable Code .. 24

214 4.2.3 Runtime Protection of Critical Platform Firmware .. 24

215 4.2.4 Protection of Critical Data .. 25

216 4.3 Detection..25

217 4.3.1 Detection of Corrupted Code .. 25

218 4.3.2 Detection of Corrupted Critical Data.. 27

219 4.4 Recovery..27

220 4.4.1 Recovery of Mutable Code ... 27

221 4.4.2 Recovery of Critical Data ... 28

222

223 List of Appendices

224 Appendix A— Acronyms ... 31

225 Appendix B— Glossary.. 32

226 Appendix C— References .. 38

227

228 List of Figures

229 Figure 1 – High-Level System Architecture... 3

230 Figure 2: Roots of Trust.. 12

231 Figure 3: Trust Chains .. 13

232 Figure 4: Example Update Scenario ... 14

233

vi

file://Users/andrewre/OneDrive%20-%20National%20Institute%20of%20Standards%20and%20Technology%20(NIST)/Firmware%20Resiliency/PlatformResiliency-Draft-20170513.docx#_Toc482628332

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

234

235 1.1 Purpose

236 Modern computing and information technology systems are built upon a variety of hardware
237 components that provide the fundamental capabilities required by the system to operate. Many
238 of these hardware components have firmware and configuration data that drive their behavior,
239 and which must remain in a good state in order for the system to function properly. One
240 example of such firmware is commonly referred to as the Basic Input/Output System (BIOS),
241 which is used facilitate the hardware initialization process and transition control to the operating
242 system. Depending on the system, there may be tens or hundreds of microcontrollers with other
243 kinds programmable firmware which support the overall system architecture. That collection of
244 hardware and firmware components is typically called the platform.

245 The devices which made up the platform are crucial to integrity and availability of the systems
246 built upon these platforms. Without these devices, systems may fail to operate correctly, or may
247 not operate at all. Targeted attacks at certain devices within the platform could significant
248 impact the security posture of these systems, possibly allowing a low-level, persistent malware
249 presence. Destructive attacks which aim to damage or remove platform firmware have the
250 potential to render systems permanently damaged, incurring substantial costs to the affected
251 parties.

252 The purpose of this document is to provide security guidelines to make platforms more resilient
253 to such destructive attacks. These guidelines address mechanisms to protect firmware and
254 configuration data from attacks, as well as mechanisms to detect and recover from successful
255 attacks.

256 1.2 Audience

257 The intended audience for this document includes system and platform device vendors of
258 computer systems, including manufacturers of clients, servers and networking devices. The
259 technical guidelines assume readers have expertise in the platform architectures and are targeted
260 primarily at developers and engineers responsible for implementing firmware-level security
261 technologies in systems and devices.

262 The material may also be of use when developing enterprise-wide procurement strategies and
263 deployment. The material in this document is technically oriented, and it is assumed that readers
264 have at least a basic understanding of computer security principles and computer architectures.
265 The document provides background information to help such readers understand the topics that
266 are discussed.

267 1.3 Applicability and Scope

268 The goal of this document is to provide principles and guidelines that can support platform
269 resiliency. These principles and guidelines directly apply to the individual devices that make up
270 a platform (see Section 2.1 for a list of examples). Specifically, they describe security
271 mechanisms aimed at protecting each device from unauthorized changes (whether inadvertent or

1 Introduction

1

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

272 due to malicious intent to its firmware or critical data and restoring the platform to a state of
273 integrity.

274 1.4 Document Structure

275 The remainder of this document is organized into the following major sections:

276 • Section 2 provides informative material describing platform components and

277 architectures.

278 • Section 3 describes the security principles that form the basis for the guidelines in this

279 document, and describes key concepts for applying these principles to platform

280 resiliency.

281 • Section 4 contains technical security guidelines for protection of firmware code and

282 critical data, detection of authorized changes, and recovery to a state of integrity.

283 • Appendix A provides an acronym and abbreviation list for the document.

284 • Appendix B presents a glossary of selected terms from the document.

285 • Appendix C contains a list of references for the document.

2

m
la

tf
or

P
e

ar
of

tw
S

met
Sy

s

App1

Operating system(s), including VMM

User Data

Master Boot Record or EFI System Partition +UEFI OS Loader

App2 App3 App4

2. fTPM

7. SPI Flash

11. Platform Runtime

10. Host processor
boot firmware

2. TPM 3.
BMC/ME

4. Host
Processor 5. NIC 6. GPU 8. HDD /

SDD HC

Kbd Mouse Memory Display

SO

9. eMMC/UFS

1. EC/SIO

12. Power DIMM SPD

8A. HDD /
SDD

Internally
connected

devices
(e.g. webcam,

fingerprint reader,
smartcard)

Figure 1 – High-Level System Architecture

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

286

287 Ensuring a platform’s firmware code and critical data are always in a state of integrity is critical
to ensure that a computing system can be operated free from malware. Modern client and server
computing systems can be considered to be separated into two high-level logical constructs,
platform and software. For the purposes of this document, we will describe the combination of
these two logical constructs as a system. Note that Figure 1 is merely illustrative and is not
intended to represent all possible devices in a platform, nor is it intended to represent an
exemplary architecture for any particular device. At a high-level, items in blue-shaded boxes are
devices to be considered part of a platform.

288
289
290
291
292
293
294

2 Platform Architecture

295

296
297
298
299
300
301
302
303
304

Broadly speaking, the platform is comprised of hardware and firmware necessary to boot the
system to a point at which software, or an operating system, can be loaded1; software is
comprised of elements required to load the operating system and all applications and data
subsequently handled by the operating system. Note that some firmware continues to execute
once software has started. Existing industry best practice, as well as NIST publications such as
NIST SP 800-147 and NIST SP 800-147B, already address the issue of protecting the integrity of
a platform’s host processor boot firmware (traditionally called BIOS, and more recently UEFI
[3])2 and its update mechanisms, but protection is only one of three key elements of cyber
resiliency (the other two being detection and recovery). Additionally, the resilience of other

1 The OS loader is not included as part of the platform because it is loosely coupled to the platform. While the various implementations of
Secure Boot makes that coupling tighter, ultimately the OEM of the platform is typically not responsible for the OS or OS loader in the
same way that the OEM is responsible for the hardware and firmware on a platform. An end user can completely replace the OS and OS
loader independent of the hardware and firmware, keeping the platform’entirely intact.

2 For purposes of this document, host processor boot firmware will be used generically to refer to either legacy Basic Input/Output System
(BIOS) or Unified Extensible Firmware Interface (UEFI).

3

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

305 critical firmware on the platform has not yet been addressed to the level the host processor boot
306 firmware has been. While it is beyond the scope of this document to identify and define every
307 category and architecture of computing device which contains firmware, this document has
308 applicability to any computing device (platform) which contains firmware, inclusive of PC’s,
309 servers, networking devices, smartphones, tablets, etc.

310 2.1 Platform Devices

311 As noted above, the platform is a collection of devices that provide the functional capabilities
312 and services needed by the operating system and applications. While resiliency of the platform
313 as a whole is the ultimate objective, it is important to recognize that the platform is composed of
314 many different devices, often developed and manufactured by different vendors. For that reason,
315 the technical guidelines in this document are described in terms of guidelines for individual
316 platform devices.

317 For the purposes of describing a resilient platform, this section provides a list of devices which
318 are often critical to the normal and secure operation of a platform. These devices typically
319 contain mutable firmware, and are covered by the intended scope of the security guidelines in
320 this document.

321 However, this should not be considered an exhaustive list of all devices in every platform of
322 interest and platform vendors will need to carefully consider other devices which should be
323 considered in scope for their particular platform.

324 In the case of a traditional x86-based platform (desktop, notebook, server, network switch), these
325 devices are identified in Figure 1, and are defined below. Note that the numbers here reference
326 the devices identified by their like numbers as indicated in the device box. The ordering is not
327 meant to imply any priority or sequencing.

328 1. Embedded Controller (EC) / Super I/O (SIO)
329 An EC is typically associated with mobile platforms (notebooks, convertibles, tablets),
330 while a SIO is typically associated with desk-based platforms (desktops, desk-based
331 workstations, All-in-Ones, Thin Clients). This is not universally true, but is generally
332 true enough to establish the type of client system in which one might find an EC or SIO.
333 An EC or SIO typically controls functions in the platform such as the keyboard, LEDs,
334 fans, battery monitoring/charging, thermal monitoring, etc. Additionally, it is typically
335 the first system board device in the platform to execute code, even holding the host
336 processor in reset until the EC/SIO is ready for the host processor to fetch its first line of
337 host processor firmware code.
338
339 2. Trusted Platform Module (TPM)
340 A TPM [4] is a security coprocessor capable of securely storing and using cryptographic
341 keys and measurements of the state of the platform. These capabilities can be used,
342 among other things, to secure data stored on the system, provide a strong device identity,
343 and to attest the state of the system. While not all platforms include or make use of a
344 TPM, on any system in which a TPM is included and used, its firmware must be
345 protected given its criticality in helping ensure the trustworthiness of the platform.

4

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

346 TPM’s also contain non-volatile memory storage which may contain critical data and, if
347 so, must be protected. TPM’s can be either discrete hardware devices, or may be realized
348 in firmware executed on a platform host controller or other microcontroller (the latter are
349 sometimes referred to as firmware TPM’s, or fTPM).
350
351 3. Baseboard Management Controller (BMC) / Management Engine (ME)
352 A BMC is associated with server platforms while an ME is typically associated with
353 client platforms. In both cases, a core aspect of their functionality is to serve as an out
354 of-band management device enabling platform administrators to manage a platform
355 without requiring an operating system to be running. While not always strictly necessary
356 to the basic computing function of a server or client platform, most modern server and
357 client platforms include a BMC/ME, making it critical that their firmware cannot affect
358 the state of integrity of the host processor’s security domain.
359
360 4. Host Processor [aka Central Processing Unit (CPU), aka Application Processing
361 Unit (APU)]
362 The host processor is the primary processing unit in a typical platform, traditionally
363 called a CPU, and now also sometimes referred to as an APU or an SoC. This is the
364 processing unit on which the primary operating system (and/or hypervisor), as well as
365 user applications run. This is the processor that is responsible for loading and executing
366 the host processor firmware.
367
368 5. Network Interface Controller (NIC)
369 Whether discrete or integrated as part of an SoC, most modern client and server platforms
370 have at least one NIC (wired or wireless), and could have multiple, including multiple
371 types (wired, Wi-Fi, Wireless WAN). While having a NIC is not strictly required to boot
372 a platform, in today’s connected world it’s important to have some form of connectivity
373 at some point after a system has booted. More importantly, a compromised NIC
374 firmware image could serve as a launch pad for other exploits in the system, be used to
375 exfiltrate data, serve as a man-in-the-middle, etc. In addition to firmware run by a
376 microcontroller, a NIC may include expansion ROM firmware which is loaded during
377 boot and executed by the host processor. It is critical that a NIC’s expansion ROM
378 firmware is also protected. The expansion ROM firmware may be stored with the host
379 processor boot firmware (in the case of an integrated NIC), or may be stored separately
380 with the NIC itself as in the case of an add-in card. A NIC often also contains critical
381 data, for example a Media Access Control (MAC) address may be stored in mutable
382 memory. An attack on this critical data could result in a denial of service (DoS) both of
383 this platform as well as of another system with a matching MAC address.
384
385 6. Graphics Processing Unit (GPU)
386 A GPU is a device that serves as the primary ‘output’ human interface device (HID) in
387 client platforms. In addition, GPUs could serve as a launch pad for other exploits in the
388 system. In addition to firmware run by a microcontroller, a GPU may include an
389 expansion ROM firmware which is loaded during boot and executed by the host
390 processor. The expansion ROM firmware may be stored with the host processor boot

5

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

391 firmware (in the case of an integrated GPU), or may be stored separately with the GPU
392 itself as in the case of an add-in card.
393
394 7. Serial Peripheral Interface (SPI) Flash
395 Most modern platforms include some amount of SPI flash to store firmware, typically for
396 host processor boot firmware, though it could be used for other purposes.
397
398 8. A) Host Controller (HC) for mass storage devices
399 For most modern platforms, some form of local mass storage in the form of either a HDD
400 or SSD is required in order to boot an operating system and hold a user’s applications and
401 data. In order for the data to get stored on the mass storage device, a Host Controller
402 (HC) is used to move the data from the platform’s main memory to the physical storage
403 medium over some storage bus (e.g. SATA, SCSI, PCIe). This HC has its own
404 microcontroller and associated firmware. The HC could either be integrated into an SoC,
405 or could be a separate device or on an add-in card.
406
407 B) Hard Disk Drive (HDD) / Solid State Drive (SSD)
408 An HDD or SSD represents current state of the art in a traditional platform for storage of
409 large quantities of data. These devices are coupled with the Host Controller. Within the
410 HDD or SSD, a microcontroller and associated firmware are used to perform the actual
411 storage operation of data sent from the platform’s main memory to the mass storage
412 device. Compromising a HDD’s or SSD’s firmware can also be used as a launch pad for
413 other exploits in the system, or could be used to compromise a user and/or platform data.

414 9. embedded MultiMedia Card (eMMC) / Universal Flash Storage (UFS)
415 eMMC and UFS are emerging as the standard mass storage devices for mobile systems.
416 Each of them may include their own expansion ROM firmware and/or microcontroller
417 with associated firmware.
418
419 10. Host Processor Boot Firmware [aka Basic Input/Output System (BIOS), aka Unified
420 Extensible Firmware Interface (UEFI)]
421 In most modern platforms, host processor boot firmware is contained in a SPI flash
422 device.
423
424 11. Platform Runtime Firmware
425 In addition to boot firmware, there is platform runtime code. This is code which remains
426 resident (typically in DRAM) and executable after the platform has booted. This is most
427 typical for microcontrollers where firmware is required to execute to perform some
428 function while the system is fully operational. An example of host processor firmware
429 which is considered as runtime code would be System Management Mode (SMM) code.
430
431 12. Power Supply
432 Some power supplies have their own microcontroller and associated firmware.
433
434 13. Glue Logic (CPLD’s, FPGA’s) – not pictured
435 Modern embedded systems use, programmable logic components to provide glue logic

6

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

436 functionality. There are two types of programmable logic components, Field
437 Programmable Gate Arrays known as FPGAs and complex Programmable Logic Devices
438 known as CPLDs. FPGAs are typically loaded with bitstream programs from attached
439 flash devices on power up. CPLDs on the other hand are programmed with a bitstream
440 once and then they retain the function until programmed again in the field. Typically this
441 functionality is needed for basic operations of the system and if corrupted could result in
442 bricking of a platform.
443
444 14. Fans – not pictured
445 Some fans have their own microcontroller and associated firmware.
446
447 2.2 Code and Data in Platform Devices

448 The devices describe above will typically contain some set of firmware and data on nonvolatile
449 storage, either resident on the device itself or on a shared storage device (e.g., the SFI flash).
450 This section describes firmware code and data, and briefly discusses the scope of the document
451 related to these components.
452
453 2.2.1 Code

454 Firmware code is the set of instructions used by the any device’s processing unit to perform the
455 operations required by the device. Historically, firmware in platform devices is rarely modified,
456 although system or component vendors may develop firmware updates which patch
457 vulnerabilities, fix bugs, or add new functionality.

458 Because firmware is large part drives the behavior of a device, it is important that it remain in a
459 trustworthy state on the platform. Attacks on the firmware code could render a device inoperable
460 or inject malicious functionality into the device. Firmware should only be loaded from
461 authorized source, typically either the manufacturer of the system or of the platform device.

462 The guidelines in this document describe mechanisms to protect firmware code by verifying
463 updates using digital signatures. They also describe mechanisms to detect unauthorized changes
464 to firmware, and secure methods of recovery.

465 2.2.2 Data

466 Data are pieces of information that Platform Firmware code uses to carry out its operation, as
467 instructed by the code. Data can be further categorized as critical and non-critical. Critical data
468 includes configuration settings and policies that are needed to be a valid state for the device to
469 maintain its security posture. Non-critical data includes all other data.

470 2.2.2.1 Critical Data

471 Critical data may be used for various purposes, including:

472 • Configuration settings: Data which tells the code how to configure operational aspects
473 of the device
474 Example: Enabling or disabling a peripheral when doing so would violate the

7

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

475 enterprise’s security policies.

476 Example: The table of non-functional sectors in a hard drive.

477 • Policies: Data which tells the code what path to take or how to respond

478 Example: The system’s boot order describes the valid devices to attempt to boot from as

479 well as the order.

480 Example: UEFI Secure Boot, a set of security configurations which control which third

481 party code the BIOS will hand control to.

482 Critical data is difficult to precisely define because data that may be critical for one device may
483 not be critical for another. However, common characteristics of critical data include:

484 • It must be in a valid state for the proper booting and run-time operation of the device;
485 • It persists across power cycles (e.g. stored in non-volatile memory)
486 • It modifies the behavior or function of the device
487 • It must be in a valid state to support protection, detection and/or recovery of platform
488 firmware and associated data.
489
490 Some critical data is hard-coded in code, and updated only by means of a firmware image
491 update. For the purposes of this document, hard-coded data is considered part of the code, and
492 protected according to the firmware code protection, detection and recovery guidelines.

493 Platform devices often have other data that is configurable during its normal operation by
494 Platform Administrators, hardware, firmware or software. Because corruption of critical data
495 can interfere with the normal or secure operation of a system, it is important to protect critical
496 data from corruption, and to be able to recover when problems are detected. However, strong
497 protection of some forms of critical data can be architecturally difficult, due to expectations that
498 some entities, such as operating systems and device drivers, have access to change these settings.

499 Some configuration data can only be changed through defined interfaces controlled by platform
500 level code. For example, UEFI runtime variables fall into this category. This basic level of
501 protection guards against attackers from directly modifying configuration data, and allows
502 Platform Firmware to validate input before committing changes to storage. However, malicious
503 entities may be able to use these defined interfaces to make well-formed, but incorrect,
504 configuration changes.

505 To guard against such tampering, changes to some particularly sensitive configuration data may
506 require authorization before changes can be applied using the defined interfaces described above.
507 In some cases, platform devices, such as host processor boot firmware or service processor
508 firmware, may be capable of authenticating Platform Administrators prior to allowing them to
509 make changes. Stronger authentication techniques may allow Platform Firmware to
510 cryptographically verify the source and integrity of changes.

511 Some critical data is managed by the firmware with no programmatic exposure through external
512 interfaces (e.g., wear leveling data) and if lost or damaged can result in permanent loss of service
513 of the device. This type of state data needs to be protected at the highest level and is not
514 writeable from the rest of the platform.

8

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

515 In practice, all data consumed by platform firmware may by security-sensitive, including some
516 data that does not directly impact the correct and secure operation of the platform. Errors or
517 malicious attacks in any data consumed by platform firmware could expose and exploit
518 vulnerabilities in that code. As such, particular care needs to be given to any non-trusted input or
519 data consumed by the platform.

520 2.2.2.2 Non-Critical Data

521 Non-critical data may be used for various purposes, including:

522 • Informational / UI: Data which is merely informational or used as part of a user
523 interface for the end user
524 Example: An asset tag name of “Property of NIST” is displayed during boot

525 • State: State settings which do not affect the integrity of the platform
526 Examples: The state of the Num Lock key upon system boot; whether the BIOS performs
527 a fast boot or standard boot

528 Non-critical data is not deemed critical to the secure booting or operation of a platform and is
529 therefore not addressed by the security guidelines in this document.

9

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

530

531 This section provides a brief description of the driving principles for platform resiliency which
532 provide the foundation for the guidelines in this document. It also discusses major architectural
533 concepts and considerations used throughout the document.

534 3.1 Principles Supporting Platform Resiliency

535 The security guidelines in this document are based on the following three principles:

536 • Protection:
537 Mechanisms for ensuring that Platform Firmware code and critical data remain in a state
538 of integrity and are protected from corruption, such as the process for ensuring the
539 authenticity and integrity of firmware updates.
540
541 • Detection:
542 Mechanisms for detecting when Platform Firmware code and critical data have been
543 corrupted.
544
545 • Recovery:
546 Mechanisms for restoring Platform Firmware code and critical data to a state of integrity
547 in the event that any such firmware code or critical data are detected to have been corrupted,
548 or when forced to recover through an authorized mechanism. Recovery is limited to the
549 ability to recover firmware code and critical data.

550 The technical guidelines found in Section 4 are organized around these principles. The first
551 principle, protection, is similar in scope and purpose to the guidelines found in NIST SP 800-147,
552 BIOS Protection Guidelines. The basic principle of protection is expanded in this document to
553 apply to a broader set of firmware and configuration data within the platform.

554 While protection mechanisms are intended to prevent destructive or malicious attacks against
555 platform firmware and critical data, these mechanisms may be imperfect or impractical to
556 implement on all categories of devices. In those cases, detection and recovery mechanisms are
557 intended to discover and remediate attacks to regain normal and secure operation on the device.

558 3.2 Resiliency Properties

559 The technical guidelines in this document are written in terms of guidelines for individual
560 platform devices in order to make them broadly applicable to a variety of devices, platforms and
561 systems. Despite the narrow focus on devices, the intent of this document is to establish
562 guidelines supporting overall resiliency in systems against destructive attacks by ensuring that
563 the underlying platform is resilient.

564 Platforms may not be able to fully provide the protection, detection and recovery capabilities for
565 all platform devices. A loss of functionality in even one device may be sufficient to render the
566 complete system permanently inoperable if that particular device plays a crucial role in booting

3 Principles and Key Concepts

10

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

567 or operating the platform. For a platform as a whole to claim resiliency to destructive attacks,
568 the set of platform devices necessary to minimally restore operation of the system, and sufficient
569 to restore complete functionality, should themselves be resilient. We call this set of devices
570 critical platform devices. The particular resiliency properties may vary from platform-to
571 platform.

572 Protected
573 For a platform to be considered Protected, all critical platform devices should meet the protection
574 guidelines found in Sections 4.1 and 4.2, but may not fully offer capabilities to recover the device’s
575 firmware and/or critical data. In the event that a device is able to detect a corrupted state but cannot
576 recover, then the device may at least be able to signal a user or IT administrator about this event
577 and/or stop the device from operating in order to prevent the platform from booting to allow the
578 administrator to attempt to manually recover the device.

579 Recoverable
580 For a platform to be considered Recoverable, all critical platform devices should provide the means
581 to detect corruption as described in Sections 4.1 and 4.3, and provide the means to recover from
582 this corruption in compliance with the guidelines in Sections 4.1 and 4.4.

583 Resilient
584 In this mode, all critical platform devices should meet all of the guidelines in Section 4. This mode
585 is the ideal situation and the desired end-state for all devices in a platform.

586 3.3 Roots of Trust and Chains of Trust

587 The security mechanisms described in this document are founded in Roots of Trust (RoT). A
588 Root of Trust is an element that forms the basis of providing one or more security-specific
589 functions, such as measurement, storage, reporting, recovery, verification, update, etc. A RoT is
590 trusted to always behave in the expected manner because its proper functioning is essential to
591 providing its security-specific functions and because its misbehavior cannot be detected. A RoT
592 is typically just the first element in a Chain of Trust (CoT) and can serve as an anchor in a chain
593 of trust to deliver more complex functionality. The responsibilities and capabilities of a RoT
594 may be implemented entirely within the RoT or may be performed by a delegate or agent
595 spawned by its RoT via a chain of trust anchored in the RoT. For example, a RoT for recovery
596 (RTRec), when triggered, will initiate a recovery process by launching another element that
597 determines an appropriate recovery sequence and launches a chain of successive elements that
598 perform the recovery actions.

599 Generally, successive elements are cooperative in maintaining the chain of trust started by the
600 RoT. Components in a chain of trust are privileged to perform security critical functions like
601 performing device updates that are not available to less trusted software. Roots of Trust and
602 Chains of Trust may have mechanisms to relinquish these privileges once the security function is
603 complete, or if it is determined that the security function is not required. A chain of trust may
604 also relinquish privileges before passing control to a non-cooperative element.

605

11

 Figure 2: Roots of Trust

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

606 Because Roots of Trust are essential to providing critical security functions, they need to be
607 secure by design. Major considerations for determining confidence in Roots of Trust are an
608 analysis of the attack surface of a Root of Trust and an evaluation of the mitigations used to
609 protect that attack surface. The responsibility of ensuring the trustworthiness of a Root of Trust is
610 on the vendor which provides the Root of Trust. Vendors typically protect Roots of Trust by
611 either making them immutable, or by ensuring that the integrity and authenticity of any changes
612 to a RoT are verified prior to performing such updates. Often, Roots of Trust run in isolated
613 environments, at greater privilege level than anything which could modify it, and/or complete
614 their function before anything can modify it to ensure that other devices cannot compromise their
615 behavior of them during operation.

616 Section 4.1 of this document provides specific guidelines on the capabilities and properties of the
617 Roots of Trust that support platform resiliency.

618 Platforms are often composed of numerous devices, often with isolation boundaries between
619 devices and different manufacturers. A platform may need multiple independent Roots of Trust
620 and Chains of Trust to provide comprehensive coverage for resiliency. For example, a hard disk
621 controller may have a separate microcontroller and firmware than the host platform. Both the
622 hard disk controller and the host platform may need their own independent chain of trust for
623 recovery if their individual critical data become corrupted.

624 3.4 Device Relationships

625 Due to lack of capability or functionality, some platform devices may not have their own root(s)
626 of trust to perform an update, detection, or recovery. We refer to devices needing assistance as
627 symbiont devices and those lending assistance as host devices. A dependency may be established
628 whereby a host device and symbiont device jointly fulfill the guidelines for protection, detection

12

 Figure 3: Trust Chains

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

629 and/or recovery that the symbiont device cannot fulfill independently. Such dependencies might
630 leverage a secure communication channel or other techniques. To be effective at lending
631 assistance, the host device needs to meet the guidelines itself for the mechanisms it helps convey
632 to the symbiont device. Together, the host and symbiont device provide a CoT that implements
633 the security guidelines for protection, detection and recovery.

634 There may be relationships between devices where the trust is implicit- that is, where trust is
635 provided by the architecture of the system. A device may receive indication of unambiguous
636 physical presence from a device where an implicit trust relationship already exists. The fact that
637 the other device sent the message means that the device can trust the request.

638 There may also be other relationships which do not imply nor require any level of trust. Consider
639 a device responsible for receiving updates. That device may then propagate those updates to
640 other devices. Since each device (or the symbiont device along with its host device) is
641 responsible for verifying its own updates, there is no requirement for trust between the device
642 distributing updates and the devices those updates are provided to.

13

 Figure 4: Example Update Scenario

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

643 3.5 Firmware Update Mechanisms

644 A central tenet to the firmware protection guidelines is ensuring that only authentic and
645 authorized firmware update images may be applied to platform devices. An update image is
646 authentic if the source (e.g., the device or system manufacturer) and integrity can be successfully
647 verified. Technical processes to verify images before using applying updates are called
648 authenticated update mechanisms.

649 Authorization, however, is the permission to perform an update. While authentication is
650 typically rooted in the device or system manufacturer, authorization to perform updates is
651 typically rooted in the device or system owner.

652

653 3.5.1 Authenticated Update Mechanism

654 An authenticated update mechanism employs digital signatures to ensure the authenticity of the
655 firmware update image. An update of the firmware image using an authenticated update
656 mechanism relies on a Root of Trust for Update (RTU) that contains a signature verification
657 algorithm and a key store that includes the public key needed to verify the signature on the
658 firmware update image. The key store and the signature verification algorithm are stored in a
659 protected fashion on the computer system and are modifiable only through use of an
660 authenticated update mechanism or a secure local update mechanism.

14

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

661 The key store in the RTU includes a public key used to verify the signature [7] on a firmware
662 update image or includes a hash [6] of the public key if a copy of the public key is provided with
663 the firmware update image. In the latter case, the update mechanism hashes the public key
664 provided with the firmware update image and ensures that it matches a hash which appears in the
665 key store before using the provided public key to verify the signature on the firmware update
666 image.

667 It is possible that the private key corresponding to the public key in the key store may become
668 “compromised”, for example, by the private key being stolen and published. An attacker that
669 gains access to this key could sign invalid firmware that might damage platform devices or inject
670 malware into the platform. Proper use of signatures thus necessitates provisions to recover from
671 a key compromise. A variety of techniques may be used to recover from these cases. Examples
672 range from the complex, including key hierarchies, to simpler, including updating the key store
673 when recovering (or updating) the rest of an image.

674 3.5.2 Authorized Update Mechanism

675 A system and its supporting management software and firmware may provide several authorized
676 mechanisms for legitimately updating a firmware image. These include:

677 1) User-Initiated Updates: Vendors typically supply end users with utilities capable of
678 updating a firmware image. This could be from external media to perform these updates,
679 or via utilities that can update the firmware image from the user’s normal operating
680 system. Depending on the security mechanisms implemented on the system, these
681 utilities might directly update the firmware image or they may schedule an update for the
682 next system reboot. The updated code will encounter critical data written by a different
683 revision of the code. The updated code should ensure that the platform continues to
684 function by remaining compatible with the critical data, by updating the critical data to be
685 compatible with the updated code, or, at least by resetting the critical data values to their
686 defaults.

687 2) Managed Updates: A given computer system may have hardware and software-based
688 agents that allow a system administrator to remotely update the firmware image without
689 direct involvement from the user.

690 3) Rollback: Implementations that authenticate updates before applying them may also
691 check version numbers during the update process. In these cases, the firmware image
692 may have a special update process for rolling back the installed firmware to an earlier
693 version. For instance, the rollback process might require the physical presence of the
694 user. This mechanism guards against attackers flashing old firmware with known
695 vulnerabilities.

696 4) Manual Recovery: To recover from corrupt or malfunctioning firmware, computer
697 systems may provide mechanisms to allow a user with physical presence during the boot
698 process to replace a firmware image with a known good version and configuration.

15

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

699 5) Automatic Recovery: Some computer systems are able to detect when a firmware image
700 has been corrupted and recover from a backup firmware image stored in a separate
701 storage location from the corrupted image (e.g., a second flash memory chip, a hidden
702 partition on a hard drive).

703 3.5.3 Secure Local Update

704 While this document recommends firmware updates be done through an authenticated update
705 mechanism as described in Section 3.5.1, some devices may also support a secure local update
706 mechanism. These mechanisms instead authorize firmware updates through a process
707 demonstrating unambiguous physical presence. A secure local update mechanism can be used,
708 for example, to recover a corrupted firmware image that cannot be updated using an
709 authenticated update or an automated recovery mechanism. The secure local update mechanism
710 could also be used by a physically-present administrator to update to an earlier firmware image
711 on a device that does not allow rollback.

712 To protect against remote attacks exploiting secure local update mechanisms, it is important that
713 these mechanisms verify that a user has physically authorized the update. Remote mechanisms,
714 such as interacting with a device or system via a remote console, do not satisfy this requirement
715 for physical presence. Similarly, mechanisms that can be spoofed by malware running on the
716 system or device do not satisfy this requirement. See Section 3.6.2 for more details.

717 However, note that devices that implement the secure local update mechanism are potentially
718 vulnerable to attacks by rogue administrators or other attacks with physical access to the device
719 or system. Therefore, additional physical, environmental and technical security measures are
720 essential to protecting these devices, but they are beyond the scope of this document.

721 3.6 Other Considerations for Platform Resiliency

722 This document does not address certain other considerations that a purchaser, user, or IT
723 administrator may take into account as it pertains to platform cyber resiliency. A non-exhaustive
724 list and discussion of these other considerations follows.

725 3.6.1 Management

726 Vendors should carefully consider their target customers when designing resilient platforms to
727 ensure proper management and control of policies and configuration settings can be administered
728 in the way which best serves their needs. Management of policies and configuration settings can
729 be performed either locally or remotely. Depending on platform type, customers may expect to
730 be able to fully administer a platform securely from a remote location. Some customers may
731 expect to require a physically present user to approve a change in policy. Customers may expect
732 to be able to remotely extract any log data, or they may wish to prevent the exfiltration of log
733 data except through authorized local mechanisms.

16

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

734 3.6.2 Authorization Mechanisms

735 Some recovery and administrative actions can make significant changes to either the Platform
736 Firmware or software. For example, firmware settings may control the boot order and a
737 software recovery agent may restore a backup erasing recently created data. Modifying these
738 settings could require Platform-level Authorization to demonstrate that the entity requesting a
739 change is authorized to do so. For some environments, like large organizations or data centers, a
740 professional Platform Administrator may authorize actions remotely using credentials
741 provisioned to manage the platform. In other environments, like for consumers or smaller
742 enterprises, there may not be a remote Platform Administrator. Some systems, however, may
743 have Platform Administrator credentials that can be used locally. Alternatively, some systems
744 may allow users to assert platform-level authorization by ensuring that a physically-present user
745 has issued a command or requested a change. On these systems, the platform must
746 unambiguously verify that a physically present user has authorized the action. If done correctly,
747 malware cannot impersonate an authorization check that involves confirmation from a physically
748 present user. We use the term Unambiguous Physical Presence to indicate a local user that
749 cannot be impersonated by malware.

750 Unambiguous Physical Presence allows for assertion of Platform-level Authorization (or a
751 portion of Platform-level Authorization) by demonstrating that a person is physically interacting
752 with a device or platform. By ensuring that recovery actions or critical data changes are
753 authorized by a physically present person, Unambiguous Physical Presence provides a
754 management path that is intended to be protected from influence by malware.

755 Creating platforms and devices that properly and reliably verify confirmation of a physically
756 present person is complex. Dedicated physical buttons or hardware jumpers could provide a
757 relatively direct and explicit method by which to demonstrate physical presence. Platform design
758 or deployment considerations may prevent a person from having direct physical mechanisms to
759 interact with each device supporting a function that relies on Unambiguous Physical Presence. In
760 these cases, there will need to be a trusted path between the mechanisms used to verify UPP, and
761 the device which will perform an action on behalf of the Administrator. To satisfy the non
762 bypassability guidelines found later in this document, this trusted path, which could include I/O
763 devices (e.g., human interface device, graphics card, etc.) and internal buses, needs to be
764 protected from manipulation by malware.

765 There are a variety of techniques that could provide a trusted path between a physical mechanism
766 that verifies Unambiguous Physical Presence and a platform or device. One example could be to
767 accept or confirm commands from a physically-present person only when the platform can be
768 trusted to be in a good state, before malware could disturb these processes, such as early in the
769 boot process. In other cases, system architectures may provide trusted paths between a Service
770 Processor (e.g., EC, BMC) and other platform devices.

771 Devices which rely on UPP in place of Platform Administrator credentials to authorize
772 administrative actions may be vulnerable to attacks by individuals with physical access to the
773 device. As such, its usage may not be suitable in applications or environments that lack strong
774 physical security.

17

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

775 3.6.3 Network-Assisted vs. Local Recovery

776 In most cases, the ability to recover locally from corruption will be the most expedient, provide
777 the highest level of customer satisfaction, and may be necessary if there is no network
778 connectivity. But it is recognized that this is not always possible, particularly given storage
779 limitations that many devices will have. In instances where local recovery is not possible,
780 network-assisted recovery can be implemented if done in a secure and trustworthy manner,
781 which may include the use of encryption, digital signatures, secure transport methods, etc. While
782 either local or network-assisted recovery are acceptable implementation mechanisms, the ability
783 for a device to support both provides for an even higher level of resiliency and is therefore
784 recommended.

785 3.6.4 Automated vs. Manual Recovery

786 Recovery can proceed in one of three ways:

787 1. Fully automated -- no user interaction required to initiate recovery or during recovery
788 process
789 2. Partially automated -- recovery initiated automatically but requires user interaction at
790 some point during the recovery process
791 3. Manual -- user interaction required to initiate recovery

792 Fully automated recovery mechanisms may be preferred by some users, as this can allow for
793 faster recovery at scale in the event of a mass attack.

794 Fully automated recovery may not be supported by all systems or desired by all users. For
795 example, systems may require administrative credentials or authorization to continue with the
796 recovery process.

797 Manual recovery may be preferred by some users so that a Platform Administrator is informed
798 that something is wrong, and then wait for that administrator to decide what steps will be taken
799 next. This can also be useful in the event that a Platform Administrator wishes to capture
800 information in order to help with forensic analysis.

801 Administrator-defined policies typically define the behavior and privilege requirements for
802 manual recovery. Such policies may also affect automatic recovery. For example, an
803 administrator-defined policy may constrain the versions of firmware that may be installed during
804 the recovery. Those who set recovery policies must do so with care. The firmware version set in
805 the policy might well be the version that was successfully attacked necessitating the recovery.
806 Simply rewriting the vulnerable version may lead to an attack/recovery cycle.

807 Policy itself may be a target of attack so the design of the recovery implementation must account
808 for the case that policy is not available. Also, since recovery can be a multi-step process, a policy
809 requirement that will be met by the end of the recovery process might not be met during
810 intermediate steps.

18

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

811 Recovery schemes which write over firmware images might, in the process, destroy evidence
812 that would be useful in the analysis of the attack. Recovery schemes should, where practical,
813 provide methods to retain or record attacked images and other information in cases where
814 recovering the firmware may lose that information.

815 3.6.5 Event Logging

816 Logging firmware and recovery-related can often be useful for multiple purposes, including but
817 not limited to:

818 • Forensic analysis which allows for a Platform Administrator of a system to capture
819 information which might have led to an attack on a platform or actual platform
820 compromise. This can be useful in determining if the platform might contain an
821 unknown security vulnerability, or understanding if there might be a widespread attack of
822 similar nature.
823 • Providing an audit trail to know when an event has occurred and if an update or recovery
824 was authorized, who authorized it and when.

825 Platform and device manufacturers need to determine what level of event logging might be
826 required for their systems, taking into account the intended users environments for those
827 systems. Events which are logged should be recorded in a manner which provides assurances of
828 their integrity and allows for the secure recovery and transmission of logged events. Care must
829 be taken to insure even log access is controlled. Unauthorized personnel can use event log data
830 analysis to broaden the attack surface.

19

4 Firmware Security Guidelines for Platform Devices

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

831

832 This section details the technical security guidelines for devices in a platform for each of the
833 three elements of resiliency: protection, detection, and recovery. Devices may implement the
834 requirements in one or more of these sections based on the firmware resiliency properties, as
835 defined in Section 3.2, they aim to support. Section 4.1 provides foundational security
836 guidelines for the Roots of Trust that support those properties. Section 4.2 provides security
837 guidelines for the protecting firmware code and critical data. Guidelines for mechanisms to
838 detect authorized changes to firmware and data are described in Section 4.3. Finally, Section 4.4
839 specifies security guidelines for firmware and data recovery mechanisms.

840 While the guidelines are written in terms of applying to individual devices, a device may
841 implement these guidelines with assistance from another device. Security functionality may be
842 done by the device itself (self-contained) or it may rely upon a security architecture whereby
843 another platform device provides some or all those security functions for that device. The
844 reliance on another device to provide necessary security functionality creates a highly-trusted
845 device relationship, as described in Section 3.4. These guidelines refer to the device relying on
846 security functionality from another device as a symbiont, and the device providing that
847 functionality for the symbiont as a host device. In these cases, the symbiont and host together
848 form the Root of Trust or Chain of Trust responsible for implementing the security functions.
849 The host device must additionally meet all of the requirements for a self-contained device.

850 The use of shall, should, and may are used as defined in RFC 2119 [5].

851 4.1 Roots of Trust and Chains of Trust

852 This section provides foundational guidelines on the Roots of Trust and Chains of Trust that
853 support the subsequent guidelines for Protection, Detection, and Recovery.

854 4.1.1 Roots of Trust (RoT) and Chains of Trust (CoT)

855 1) The security mechanisms shall be founded in Roots of Trust (RoT).

856 2) If Chains of Trust (CoT) are used, a RoT SHALL serve as the anchor for the CoT.

857 3) All RoTs and CoTs shall either be immutable or protected using mechanisms which
858 ensure all RoTs and CoTs remains in a state of integrity.

859 4) All elements of the CTU, CTD and CTRec in non-volatile storage shall be implemented
860 in platform firmware.

861 Note: This guideline that RoTs and CoTs be implemented as part of platform
862 firmware applies only to elements that implement the platform resiliency functions
863 described in this paper. Platform vendors are encouraged to maintain a chain of
864 trust from boot firmware through the Operating System to provide resiliency
865 against various forms of attacks.

866 5) Software running under, or as part of, the operating system on the host processor shall
867 not be capable of interfering with the functions of the RoTs or CoTs.

20

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

868 6) Information transferred from the software on the host processor to the platform firmware
869 shall be treated as untrusted.

870 7) CoTs may be temporarily extended to include elements that are not from non-volatile
871 storage. Before use, those elements shall be cryptographically verified by an earlier
872 element of the CoT.

873 8) RoTs and CoTs that cross device boundaries, or that provide services to a symbiont
874 device, shall use a secure communication channel between components.

875 4.1.2 Root of Trust for Update (RTU) and Chain of Trust for Update (CTU)

876 1) Each platform device with mutable firmware shall rely on either a Root of Trust for
877 Update (RTU), or a Chain of Trust for Update (CTU) which is anchored by an RTU, to
878 authenticate firmware updates.

879 2) If the RTU or CTU is mutable, then the RTU or CTU elements shall be updated using an
880 authenticated update mechanism, absent physical intervention through a secure local
881 update. During such an update, the RTU or CTU shall always be operational or
882 recoverable upon a subsequent reboot even in the event of an unexpected, catastrophic
883 event (e.g., power loss in the middle of a flash write operation).

884 3) The RTU or CTU shall include a key store and an approved digital signature algorithm
885 implementation from FIPS 186-4 [7] to verify the digital signature of firmware update
886 images.

887 4) If the keystore is updateable, then the keystore shall be updated using an authenticated
888 update mechanism, absent unambiguous physical presence through a secure local update.

889 Note: Updatable keystores provide a means to recover from compromise of the
890 signing key, but may the device’s keystore more vulnerable to tampering.
891 Implementers that use a non-updatable key store are encouraged to design their
892 devices to be resilient to disclosure of the firmware signing keys.

893 5) An authenticated update mechanism anchored in the RTU shall be the exclusive means
894 for updating device firmware, absent unambiguous physical presence through a secure
895 local update.

896 4.1.3 Root of Trust for Detection (RTD) and Chain of Trust for Detection (CTD)

897 1) Each platform device which implements a detection capability shall rely on either a Root
898 of Trust for Detection (RTD), or a Chain of Trust for Detection (CTD) which is anchored
899 by an RTD, for its detection.

900 2) The RTD or CTD shall include or have access to information necessary to detect
901 corruption of firmware code and critical data.

902 3) Detection mechanisms anchored in the RTD shall provide the detection capabilities
903 specified in Section 4.3.

21

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

904 Note: This document provides minimum requirements for detection capabilities
905 rooted in low-level hardware and firmware to provide resiliency against
906 destructive attacks. However, nothing in this document should be construed as
907 disallowing other detection capabilities that are outside this trust chain.

908 4.1.4 Root of Trust for Recovery (RTRec) and Chain of Trust for Recovery (CTRec)

909 1) Each platform device which implements a recovery capability SHALL rely on either a
910 Root of Trust for Recovery (RTRec), or a Chain of Trust for Recovery (CTRec) which is
911 anchored by an RTRec, for its recovery.

912 2) The RTRec or the CTRec SHALL perform the recovery.

913 Note: RTR was not chosen as the acronym for Root of Trust for Recovery because
914 RTR is typically used to denote Root of Trust for Reporting. As such, throughout
915 this document we will disambiguate RTR by using RTRec to denote Root of Trust
916 for Recovery.

917 4.2 Protection

918 While previous efforts have addressed protection of BIOS (e.g., NIST SP 800-147 [1], NIST SP
919 800-147B [2]), there remains other security-critical firmware in the platform that has not been
920 addressed. These include option ROMs, management controllers, service processors, firmware
921 on disk/flash drives, network controllers, and graphics processing unit. Protection must also
922 extend to critical data associated with the firmware being protected, as some of this data could be
923 a vector of attack which can compromise the integrity of the platform.

924 All platform devices which provide protection of firmware code and critical data must meet the
925 requirements which follow.

926 4.2.1 Protection and Update of Mutable Code

927 This section specifies guidelines for firmware protection based on the principles of authenticated
928 firmware updates, integrity protection, and non-bypassability of security mechanisms.
929 Authenticated update mechanisms use digital signatures verify the integrity and authenticity of
930 firmware update images. Firmware integrity protections prevent unintended or malicious
931 modification of firmware outside the authenticated BIOS update process. The final principle,
932 non-bypassability, ensures that there are no means for an attacker to bypass the protective
933 mechanisms.

934 4.2.1.1 Authenticated Update Mechanism

935 One or more authenticated update mechanisms anchored in the RTU shall be the exclusive
936 means for updating device firmware, absent unambiguous physical presence through a secure
937 local update, as defined in Section 3.5.3. Authenticated update mechanisms shall meet the
938 following authentication guidelines:

939 1) Firmware update images shall be signed using an approved digital signature algorithm as
940 specified in FIPS 186-4 [7], Digital Signature Standard, with security strength of at least

22

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

941 112 bits in compliance with SP 800-57, Recommendation for Key Management – Part 1:
942 General [8].

943 2) Each firmware update image shall be signed by an authorized entity – usually the device
944 manufacturer, the platform manufacturer or a trusted third party - in conformance with SP
945 800-89, Recommendation for Obtaining Assurances for Digital Signature Applications
946 [9].

947 3) The digital signature of a new or recovery firmware update image shall be verified by an
948 RTU, a CTU prior to the non-volatile storage completion of the update process. For
949 example, this might be accomplished by verifying the contents of the update in RAM and
950 then performing an update to the active flash. In another example, it could also be
951 accomplished by loading the update into a region of flash, verifying it, and then selecting
952 that region of flash as the active region.

953 4.2.1.2 Integrity Protection

954 To prevent unintended or malicious modification of the firmware, nonvolatile storage regions
955 containing device firmware need to be protected from such modifications outside of an
956 authorized update mechanism.

957 1) The flash regions that contain device firmware shall be protected so that it is modifiable
958 only through an authenticated update mechanism or by a secure local update mechanism
959 that ensures the authenticity and integrity of the firmware update image by requiring that
960 an authorized user physically touch the system itself to conduct the update.

961 Note: To ensure integrity protections cannot be bypassed, integrity protections
962 must either always be enabled, or must be engaged prior to execution of code
963 outside of the CTU. Hardware integrity mechanisms may provide higher
964 assurance than software or firmware-based mechanisms. These integrity
965 protection mechanisms must ensure that firmware can only be modified as part of
966 authenticated update, or a secure local update.

967 4.2.1.3 Non-Bypassability

968 The principle of non-bypassability is that it should not be possible for an attacker to modify
969 device firmware outside of the authenticated update mechanism or, if supported, a secure local
970 update. Any mechanisms capable of bypassing the authenticated update mechanism could create
971 a vulnerability allowing malicious software to modify device firmware with a malicious or
972 invalid image.

973 1) The protection mechanisms shall ensure that authenticated update mechanisms are not
974 bypassed.

975 2) The authenticated update mechanism shall be capable of preventing unauthorized updates
976 of the device firmware to an earlier authentic version that has a security weakness or
977 would enable updates to a version with a known security weakness.

978 Note: Updates to earlier firmware versions, sometimes called “rollback,” may
979 provide a means to recover from a firmware update that is not functioning

23

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

980 correctly. However, unauthorized rollback could allow an attacker to restore a
981 vulnerable firmware image, which in turn could allow the attacker to damage the
982 device or inject malware. As such, devices that support rollback should include
983 appropriate security controls to ensure it cannot be exploited by an unauthorized
984 entity in an attack.

985 4.2.2 Protection of Immutable Code

986 Code could be stored in field non-upgradable memory, such as Read Only Memory (ROM). While
987 the protections for this type of storage are strong, the trade-off is the inability to update the code
988 to fix bugs and patch vulnerabilities. Manufacturers of systems and devices should carefully weigh
989 the advantages and disadvantages of using nonvolatile storage that is not field upgradable.

990 1) If used, the write protection of field non-upgradable memory shall not be modifiable.

991 4.2.3 Runtime Protection of Critical Platform Firmware

992 To satisfy the principle of non-bypassability described in Section 4.2.1.3, it is important that
993 software or bus-mastering hardware under the control of Software not be capable of interfering
994 with the intended function of Critical Platform Firmware. Critical Platform Firmware is the
995 collection of all Platform Firmware that either (a) performs the functions of protection, detection,
996 recovery and update of any Platform Firmware, (b) maintains the security of Critical Data or (c)
997 implements interfaces for Critical Data that are non-bypassable.

998 Devices that claim conformance with the Protection requirements, and rely on critical platform
999 firmware to protect the firmware image and/or critical data at OS runtime, must meet the

1000 guidelines in this subsection. The goal of these guidelines is to establish an environment for
1001 critical platform firmware to execute in which is isolated (protected) from software. Such
1002 isolation (protection) may be provided either logically (e.g., use of System Management Mode in
1003 x86-based platforms, or TrustZone in ARM-based platforms), or physically (e.g. in RAM
1004 attached to a non-host processor which is physically or logically isolated from the host
1005 processor).

1006 This subsection does not necessarily apply to firmware that is classified as non-critical (for
1007 instance, the majority of the BIOS on a PC-style platform is typically non-critical).

1008 1) If Critical Platform Firmware code in non-volatile memory is copied into RAM to be
1009 executed (for performance, or for other reasons) then the firmware program in RAM
1010 shall be protected from modification by Software or complete its function before
1011 Software starts.

1012 2) If Critical Platform Firmware uses RAM for temporary data storage, then this memory
1013 shall be protected from Software running on the Platform or until the data’s use is
1014 complete.

1015 3) Software shall not be able to interfere with the functioning of Critical Platform
1016 Firmware. For example, by denying execution, modifying the processor mode, or
1017 polluting caches.

24

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

1018 Note: This guideline does not preclude the use of RAM that is writable by
1019 Software specifically for communication with Firmware or device hardware,
1020 including using memory as a staging area for updates. The requirement is
1021 intended to prevent the unauthorized modification of executing code or private
1022 state used by the Critical Platform Firmware.

1023 4.2.4 Protection of Critical Data

1024 Unauthorized changes to critical data stored and used by devices could also seriously impact the
1025 security posture of a device. Such changes could modify or disable important security-relevant
1026 functions provided by the platform, or prevent the device from functioning at all. While critical
1027 data may need to be modifiable by operating systems and other components, the guidelines in
1028 this section aim to provide a controlled interface for these changes and guard against changes
1029 that would put the device in an invalid state.

1030 1) Critical data shall be modifiable only through the device itself and/or defined interfaces
1031 provided by device firmware. Examples of defined interfaces include proprietary or
1032 public application programming interfaces (API’s) used by the device’s firmware, or
1033 standards-based interfaces. Symbiont devices may rely on their host devices to meet this
1034 requirement.

1035 2) Critical data updates shall be validated either by the device or a symbiont’s host device
1036 prior to committing changes to critical data to ensure that the new data is well-formed.
1037 Examples of validation can include range or bounds checking, format checking, etc.

1038 3) Critical data updates shall by authorized by a Platform Administrator.

1039 4) Critical data updates may employ mechanisms to authenticate the critical data before it is
1040 used.

1041 5) The device shall protect its factory defaults at least as well as it protects its code. The
1042 factory defaults shall be able to be updated in the same manner as the code.

1043 4.3 Detection

1044 The detection guidelines in this section describe mechanisms which can detect authorized
1045 changes to device firmware and critical data before it is executed or consumed by the device.
1046 When unauthorized changes are detected, a device could initiate a recovery process, as described
1047 in Section 4.4. Detection mechanisms are particularly important for devices that lack strong
1048 protections on their firmware or critical data. However, these mechanisms can also provide a
1049 means to detect failures in firmware or code protection for devices that attempt to implement the
1050 guidelines in Section 4.2.

1051 All devices which provide detection of corruption of their firmware code and critical data must
1052 meet the guidelines which follow.

1053 4.3.1 Detection of Corrupted Code

1054 Execution of unauthorized or corrupted firmware on a device could damage the device, inject
1055 malware in the system, or otherwise impact the security functions and capacities of a device or

25

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

1056 encompassing system. The following guidelines describe mechanisms to verify the integrity of
1057 firmware during the boot process using the Root of Trust for Detection (RTD), specified in
1058 Section 4.1.3. While cryptographic integrity checks are preferred, either by the device itself or a
1059 host device, some hardware devices, such as FPGAs or CPLDs, may use other mechanisms to
1060 detect corruption in their code and programmable logic.

1061 For these detection mechanisms to be effective, the design of the device needs to ensure that the
1062 RTD remains trustworthy in the event of a successful attack on the firmware itself.

1063 1) A successful attack which corrupts the active critical data or the firmware image, or
1064 subverts their protection mechanisms, shall not in and of itself result in a successful
1065 attack on the RTD or the information necessary to detect corruption of the firmware
1066 image.

1067 2) One or more of the following techniques shall be used by the RTD or CTD to validate
1068 firmware code:

1069 a) Integrity verification, using an approved digital signature algorithm or cryptographic
1070 hash, of device firmware code prior to execution of code outside the RTD.

1071 Note: Integrity verification may also be performed at runtime. These mechanisms
1072 may or may not be anchored in the RTD.

1073 b) Symbiont devices may rely on a host device to perform detection. If the symbiont
1074 device boots independently from the host device, integrity verification of the
1075 symbiont’s device firmware shall be performed prior to execution of code outside the
1076 host CTD. In such cases, the following additional requirements apply:

1077 i) The symbiont’s firmware shall be protected according to the requirements in
1078 Section 8.2.1.

1079 ii) The host device should be capable of immediately triggering a recovery of the
1080 symbiont’s firmware, followed by a restart of the device, in cases where
1081 corruption is detected.

1082 c) Certain hardware devices (e.g., FPGAs, CPLDs) may have field-upgradable logic
1083 rather than firmware code, often referred to as configuration bitstream. If these
1084 devices do not have the ability to support cryptographic verification or the ability to
1085 measure and report in conformance with a) or b), they shall use hardware-based
1086 mechanisms to detect device load failures.

1087 d) Other techniques (e.g., watchdog timers) may be used in combination with
1088 cryptographic integrity checks to detect other problems with the initialization process
1089 of platform devices.

1090 3) If corruption is detected, the RTD or CTD shall be capable of starting a recovery process
1091 to restore the device firmware code back to an authentic version.

1092 4) The detection mechanism should be capable of creating notifications of corruption.

1093 5) The detection mechanism should be capable of logging events when corruption is
1094 detected

26

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

1095 6) The detection mechanisms may be capable of using policies set by the Platform
1096 Administrator which define the actions taken by the RTD/CTD in the above guidelines.

1097 4.3.2 Detection of Corrupted Critical Data

1098 This section describes mechanisms to detect invalid or corrupted critical data in platform
1099 devices. As noted above, invalid critical data could render a device inoperable or disable certain
1100 critical security functionality. Verifying critical data is challenging, because data is often
1101 intended to be user-configurable. The guidelines in this section recommend either directly
1102 verifying critical data contents or implementing other mechanisms to look for symptoms of data
1103 corruption.

1104 1) The RTD or CTD shall perform integrity checks on the critical data prior to use. Integrity
1105 checks may take the form, for example, of validating the data against known valid values
1106 or verifying the hash of the data storage.

1107 2) Either as an alternative to integrity checks (for devices that cannot support such a
1108 capability) or in addition to those checks, the RTD or CTD may use watchdog timers to
1109 detect potential corruption of critical data.

1110 3) If corruption of critical data is detected, the RTD or CTD shall be capable of starting a
1111 recovery process to restore the device’s critical data.

1112 4) The detection mechanism should be capable of logging events when corruption is
1113 detected

1114 5) The RTD or CTD should be capable of creating notifications of corruption.

1115 6) The RTD or CTD may be capable of forwarding notifications of corruption.

1116 4.4 Recovery

1117 This section describes mechanisms for restoring platform firmware and critical data to a valid
1118 and authorized state in the event that any such firmware or critical data are detected to have been
1119 corrupted, or when an administrator initiates a manual recovery process.

1120 4.4.1 Recovery of Mutable Code

1121 The firmware recovery guidelines in this section specify mechanisms to recover firmware to a
1122 locally-stored backup or to a recovery image downloaded from another source. In either case,
1123 these guidelines specify using an Authenticated Update Mechanism (Section 4.2.1.1) to verify
1124 the integrity and authenticity of the image prior to recovery.

1125 1) A successful attack which corrupts the active critical data or the primary firmware image,
1126 or subverts their protection mechanisms, shall not in and of itself render the device’s
1127 firmware code unrecoverable.

1128 a) The RTRec, CTRec and authentic recovery firmware image should be protected
1129 independently of the running firmware.

1130 2) The RTRec or CTRec shall be capable of obtaining an authentic device firmware image.

27

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

1131 a) If the authentic firmware image is stored locally in non-volatile memory, the image
1132 shall be protected from unauthorized modification.

1133 3) Updates to a locally stored authentic firmware image shall be by way of an Authenticated
1134 Update Mechanism (Section 4.2.1.1) or a secure local update (Section 3.5.3).

1135 4) Non-local recovery mechanisms shall use an Authenticated Update Mechanism (Section
1136 4.2.1.1) to verify the integrity and authenticity of recovery images prior to restoring them.

1137 5) If the authentic firmware image is stored remotely, the RTRec or CTRec shall be
1138 configurable with the location of this image or via authorized administrator’s directed
1139 locations as established by recovery policies.

1140 6) If the device (a symbiont device) relies upon another platform device (a host device) to
1141 provide its RTRec or CTRec, then the host device’s RTRec or CTRec shall invoke the
1142 host/symbiont Authenticated Update Mechanism during recovery operations.

1143 7) The device shall either implement its own recovery capability, or that device (a symbiont
1144 device) and another platform device (a host device) shall together implement the
1145 symbiont device’s recovery capability.

1146 8) The recovery mechanism should be capable of logging and reporting events when
1147 recovery is performed.

1148 9) The recovery mechanism should be capable of providing notifications of recovery events
1149 and actions.

1150 10) The recovery mechanism may be capable of performing the recovery action without
1151 notification or intervention by the user or system administrator.

1152 11) The recovery mechanism may request approval from the user or system administrator to
1153 perform a recovery action.

1154 12) The platform administrator should be able to initiate recovery of mutable code. Devices
1155 should provide a method for Platform Administrators to force recovery. Devices may
1156 receive platform-level authorization to force recovery through a chain of one or more
1157 trusted devices, the first of which shall verify platform-level authorization prior to
1158 instructing downstream devices to recover.

1159 13) The recovery process should protect against unauthorized recovery to an earlier firmware
1160 version that contains a security weakness. The overall recovery process should facilitate
1161 recovery to a recent firmware version. These may be implemented as a multi-stage
1162 recovery process.

1163 4.4.2 Recovery of Critical Data

1164 This section describes mechanisms to recover critical data in platform device in the event that the
1165 device or administrator has reason to believe it has been corrupted. Because critical data can be
1166 user-configurable, recovery requires the availability of trusted, known-good backup copies of
1167 critical data. These backup copies may be stored on the device itself or by some other host
1168 device. Because these backups may also be vulnerable to attack, these guidelines also specify
1169 that devices also provide a means to restore to known-good factory defaults.

28

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

1170 1) A successful attack which corrupts the active critical data or the Primary Firmware
1171 Image, or subverts their protection mechanisms, shall not in and of itself render the
1172 device or its critical data unrecoverable.

1173 2) The device shall provide a method to backup a known good copy (or copies) of the active
1174 critical data to another location or locations. The protections on those locations shall be
1175 at least as good as that for the active critical data. The protections should be better than
1176 those for the active critical data.

1177 a) A symbiont device that cannot backup its own critical data shall make its critical data
1178 available to its host device. In this case, the host device shall backup the symbiont’s
1179 data.

1180 b) If a symbiont provides its critical data to a host device so the host device may backup
1181 the data, then the symbiont shall be able to consume the recovered critical data.

1182 3) The device may determine that its critical data is “known good” by using that data as part
1183 of a successful reboot.

1184 4) The device shall backup the critical data either automatically or when instructed by the
1185 user or when instructed to do so by another trusted device.

1186 5) The RTRec or CTRec shall be capable of recovering critical data to factory defaults.

1187 6) The RTRec or CTRec should be capable of recovering to last known good critical data.

1188 7) A device shall not use policies stored as critical data by that device to recover its own
1189 critical data. However, a symbiont may rely on policies which are provided by a host
1190 device.

1191 8) If multiple back-ups are available, the RTRec or CTRec may allow a choice of which
1192 back up to use.

1193 9) If detection of corruption of critical data is automatic, the RTRec or CTRec may gain
1194 approval from a host device or the user before replacing the current critical data.

1195 10) In the absence of the RTD or CTD triggering recovery actions, the platform administrator
1196 should be able to initiate recovery of critical data. Devices should provide a method for
1197 Platform Administrators to force recovery. Devices which receive authorized requests to
1198 force recovery may then instruct other devices with which there are established trust
1199 relationships to force recovery, either directly or through chains of trusted devices.

1200 While it is outside the scope of this document to define what constitutes an appropriate state for a
1201 platform to recover to (other than a state of integrity), examples include any of the following:

1202 • Recover to a last known good state
1203 • Reset to factory defaults
1204 • Update to the newest firmware image
1205 • Perform a partial ‘repair’ operation
1206 • Recover to an enterprise-defined ‘starting point’
1207 • Any combination of the above

29

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

1208 Note that recovery processes may require multiple stages before normal operation is restored.
1209 For example, devices may initially restore factory-default configuration data prior to recovering
1210 last-known-good configuration data.

1211 When considering how to determine which of the above states of integrity to recover a device to,
1212 using a policy-based approach necessitates the use of critical data in order to store/maintain those
1213 policies. However, if that critical data becomes corrupted, then the recovery process may either
1214 not be able to happen or it may happen incorrectly. As such, vendors should carefully consider
1215 the algorithm used to recover. As an example, a straightforward mechanism might be the use of
1216 a simple Most Recently Used (MRU) algorithm, e.g., the algorithm might first try to recover to
1217 the last known good state; if that data is not valid, then it might next try recovering to a prior
1218 saved state; if that is not available, then it might try recovering from a remote enterprise storage
1219 location; if that is not available, then it might try resetting to factory defaults. Using an
1220 algorithmic approach in this manner eliminates the need to rely on critical data being in a state of
1221 integrity during the recovery operation.

30

—

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

1222

1223 Selected acronyms and abbreviations used in this paper are defined below.

BIOS Basic Input/Output System

CoT Chain of Trust

CPLD Complex Programmable Logic Device

CTD Chain of Trust for Detection

CTRec Chain of Trust for Recovery

CTU Chain of Trust for Update

FPGA Field-Programmable Gate Array

ROM Read Only Memory

RoT Root of Trust

RTD Root of Trust for Detection

RTRec Root of Trust for Recovery

RTU Root of Trust for Update

UEFI Unified Extensible Firmware Interface

1224

Appendix A Acronyms

31

—

1225

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

Appendix B Glossary

Active Critical Data

Add-in Card

Authenticated Update

Authenticated Update
Mechanism

Authorized Update

Authorized Update
Mechanism

Boot Firmware

Chain of Trust (CoT)

Code

The copy of critical data that is used to initialize or configure a
device. Note: active critical data does not include back-ups of
critical data.

A generic term used to refer to any device which can be inserted or
removed from a platform through a connection bus, such as PCI.
Add-in cards are typically inserted within a platform’s physical
enclosure, rather than residing physically external to a platform. An
add-in card will have its own devices and associated firmware, and
may have its own Expansion ROM Firmware.

An update which uses an authenticated update mechanism.

An update mechanism which ensures that an update firmware image
has been digitally signed and that the digital signature can be verified
using one of the keys in the key store of the Root of Trust for Update
(RTU) before updating the firmware image.

An update which uses an authorized update mechanism.

An update mechanism that checks for approval before installation.
Approval could consist of checking possession of a credential,
confirmation by a physically present person or similar means.

Generic term to describe any firmware on a platform executed to
boot (start-up, initialize) a device. This may include, but is not
limited to, initialization of device memory, initialization of device
registers, initialization of connectivity interfaces, health checks of
the device, etc. The general purpose of boot firmware is to prepare a
device or platform for normal operational use.

A Chain of Trust (CoT) is a sequence of cooperative elements which
are anchored in a Root of Trust (RoT) that extend the trust boundary
of the current element by conveying the same trust properties to the
next element when it passes it control. The result is both elements
are equally able to fulfill the trusted function as though they were a
single trusted element. This process can be continued, further
extending the chain of trust. Once control is passed to code which is
not, or cannot be, verified then the Chain of Trust has ended. This is
also referred to as passing control to a non-cooperative element.

Instructions directly executed by a processor or like device (FPGA,
CPLD, etc.). Also included are instructions that are interpreted by a
program such as UEFI EBC and JVM. Source code is the human-
readable instructions that are translated into code and then executed.

32

NIST SP 800-193 (DRAFT)

Corruption

Critical Data

Critical Platform
Firmware

Device

Device Firmware

Expansion ROM
Firmware

Firmware

PLATFORM FIRMWARE RESILIENCY GUIDELINES

Corruption is a loss of integrity of firmware code, or an error or

unexpected value in critical data, which could be the result of any

one of a number of different causes, including but not limited to,

malicious activity (e.g. an attacker), poorly written code (e.g. buffer

overflows, algorithmic error), accidental events (e.g. inadvertent user

action), failure to install a security patch, unauthorized changes, or

hardware-induced (e.g. signal integrity, alpha particles, power

failures).

Critical data is mutable data which persists across power cycles and

must be in a valid state that has been authorized by the Platform

Administrator in order for the recovery and/or booting of the

platform to securely and correctly proceed.

The collection of all Platform Firmware that either (a) performs the

functions of protection, detection, recovery and update of any

Platform Firmware, (b) maintains the security of Critical Data or (c)

implements interfaces for Critical Data that are non-bypassable.

A generic term used to refer to any computing or storage element or

collection of computing or storage elements on a platform.

Examples of devices include a central processing unit (CPU),

applications processing unit (APU), embedded controller (EC),

baseboard management controller (BMC), Trusted Platform Module

(TPM), graphics processing unit (GPU), network interface controller

(NIC), hard disk drive (HDD), solid state drive (SSD), Read Only

Memory (ROM), flash ROM, etc.

The collection of non-host processor firmware and Expansion ROM

firmware that is only used by a specific device. This firmware is

typically provided by the device manufacturer.

Peripheral Component Interconnect (PCI) term for firmware

executed on a host processor which is used by an add-in device

during the boot process. This includes Option ROM Firmware,

UEFI applications, and UEFI drivers. Expansion ROM Firmware

may be bundled as part of the Host Processor Boot Firmware, or may

be separate (e.g., from an add-in card). In this document, we will

use the term Expansion ROM Firmware when referring to either

Option ROM Firmware or UEFI Drivers and Applications

generically.

Generic term to describe any code stored in a chip that either resides

at the reset vector (or equivalent) of the corresponding processor or

which is provided as extensions to other firmware (such as

Expansion ROM Firmware). General purpose operating systems that

33

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

Host Device

Host Processor

Host Processor Boot
Firmware

Immutable

Legacy BIOS (Basic
Input/Output System)

are stored in chips are generally not considered firmware in the
scope of this document.

A device that assists a symbiont device to establish the roots and
chains of trust required to meet the protection, detection, and/or
recovery guidelines in this document. The allocation of functionality
between the host and symbiont devices is implementation dependent.
The Host Device must, itself, meet the guidelines for its own
firmware on its own. Note that this should not be confused with a
Host Processor. A Host Processor may serve as a Host Device, but a
Host Device is not necessarily a Host Processor.

A host processor is the primary processing unit in a platform,
traditionally called a Central Processing Unit (CPU), now also
sometimes referred to as an Application Processing Unit (APU), or a
System on Chip (SoC). This is the processing unit on which the
primary operating system (and/or hypervisor), as well as user
applications run. This is the processor that is responsible for loading
and executing the Host Processor Boot Firmware.

Generic term used to describe firmware loaded and executed by the
Host Processor which provides basic boot capabilities for a platform.
This class of firmware includes Legacy BIOS, System BIOS and
UEFI, as well as other implementations. Where the distinction
between Legacy BIOS and UEFI is not important, the term Host
Processor Boot Firmware will be used. Where the distinction is
important, it will be referenced accordingly. Expansion ROM
firmware may also be considered as part of the Host Processor Boot
Firmware. Expansion ROM Firmware may be embedded as part of
the Host Processor Boot Firmware, or may be separate from the Host
Processor Boot Firmware (e.g., loaded from an add-in card). Host
Processor Boot Firmware includes firmware which may be available
during runtime.

Unchangeable. In the context of this document, this refers only to the
inability to make changes in the field through manufacturer intended
mechanisms and/or defined interfaces. Note that a platform or
device manufacturer may still be able to make changes through
manufacturing or service tools directly connected to a locally
(physically) present platform or device.

One form of Host Processor Boot Firmware used on x86 platforms
which uses a legacy x86 BIOS structure. This form of host
processor boot firmware has been or is being replaced by UEFI.

34

NIST SP 800-193 (DRAFT)

Mutable

Non-critical Data

Non-Host Processor

Non-Host Processor

Firmware

Option ROM Firmware

Peripheral (aka external
device)

Platform

Platform Administrator
Privilege

PLATFORM FIRMWARE RESILIENCY GUIDELINES

Changeable. In the context of this document, this refers only to the
ability to make changes in the field through manufacturer intended
mechanisms and/or defined interfaces. Such mechanisms may
require cryptographic mechanisms or unambiguous physical
presence.

Non-critical data is mutable data which persists across power cycles
but is not critical to the booting, operating, or recovery of the device.

A non-host processor is a generic term used to describe any
processing unit on a platform which is not a host processor (e.g. a
microcontroller, co-processor, etc.).

Non-host processor firmware is a generic term used to describe
firmware used by any processing unit on a platform which is not a
host processor.

Legacy term for boot firmware typically executed on a host
processor which is used by a device during the boot process. Option
ROM firmware may be included with the host processor boot
firmware or may be carried separately by device (such as an add-in
card).

A peripheral (also known as an external device) is a device which
resides physically external to a platform and is connected to a
platform, either wired or wirelessly. A peripheral is comprised of its
own devices which may have their own firmware. While
conceptually the principles and guidelines in this document could
apply equally to peripherals, they are outside of the scope of this
document.

A platform is comprised of one or more devices assembled and
working together to deliver a specific computing function, but does
not include any other software other than the firmware as part of the
devices in the platform. Examples of platforms include a notebook,
a desktop, a server, a network switch, a blade, etc.

Privileges required to manage the firmware and critical data on a
platform devices. In particular, this privilege may be needed to
authorize firmware updates, change firmware configuration settings,
and firmware recovery operations.

This privilege must be carefully controlled as compromise of
Platform Administrator Privileges can reduce the dependability of a
platform and its devices.

35

NIST SP 800-193 (DRAFT)

Platform Administrator

Platform Firmware

Primary Firmware Image

Read Only Memory

(ROM)

Root of Trust (RoT)

Runtime Firmware

Software

Symbiont Device

System

PLATFORM FIRMWARE RESILIENCY GUIDELINES

An entity with Platform Administrator Privileges.

The collection of all device firmware on a platform. In this
document the term Platform Firmware may be used when making
references to the collection of all firmware used by devices on a
platform.

The executable code stored on the device. Different parts of the
primary firmware image may be protected differently.

A memory device that once it has been initially set, cannot be
overwritten through any mechanism, making that memory
immutable (unchangeable).

An element that forms the basis of providing one or more security-
specific functions, such as measurement, storage, reporting,
recovery, verification, update, etc. A RoT is trusted to always
behave in the expected manner because its misbehavior cannot be
detected and because its proper functioning is essential to providing
its security-specific functions.

Generic term to describe any firmware on a platform
active/functional or available for use during runtime (after boot has
completed).

Software is comprised of elements required to load the operating
system, the operating system, and all user applications and user data
subsequently handled by the operating system. Refer to Figure 1 for
a graphical depiction.

A symbiont device is a device that relies wholly or partially on
another device (a host device) to establish the roots and chains of
trust required to meet the protection, detection, and recovery
guidelines in this document. The allocation of functionality between
host device and symbiont device is implementation dependent. For
example, the host device verify updates and back up critical data
while the symbiont device is responsible for meeting all other
guidelines. The symbiont property can betransitive: A device may be
a symbiont device to a host device while the two may then serve as
the host to another symbiont device and so on.

A system is the entirety of a computing entity, including all elements
in a platform (hardware, firmware) and software (operating system,
user applications, user data). A system can be thought of both as a
logical construct (e.g. a software stack) or physical construct (e.g. a

36

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

notebook, a desktop, a server, a network switch, etc.). Refer to
Figure 1 for a graphical depiction.

UEFI (Unified Extensible
Firmware Interface)

One form of Host Processor Boot Firmware which uses a Unified
Extensible Firmware Interface (UEFI) structure (as defined by the
UEFI Forum).

UEFI Drivers Standalone binary executables in PE/COFF format which are loaded
during the boot process to handle specific pieces of hardware.

Unambiguous Physical
Presence

Indicates authorization by a local person that cannot be impersonated
by malware.

1226

37

—

1227

NIST SP 800-193 (DRAFT) PLATFORM FIRMWARE RESILIENCY GUIDELINES

Appendix C References

[1] David Cooper, et al., BIOS Protection Guidelines, NIST Special Publication
(SP) 800-147, National Institute of Standards and Technology, Gaithersburg,
Maryland, April 2011, 26pp. https://doi.org/10.6028/NIST.SP.800-147

[2] Andrew Regenscheid., BIOS Protection Guidelines for Servers, NIST
Special Publication (SP) 800-147B, National Institute of Standards and
Technology, Gaithersburg, Maryland, August 2014, 26pp.
https://doi.org/10.6028/NIST.SP.800-147B

[3] Specifications, Unified Extensible Firmware Interface Forum [Web site],
http://www.uefi.org/specifications [accessed 4/21/17]

[4] TPM Main Specification, Trusted Computing Group [Web site],
https://trustedcomputinggroup.org/tpm-main-specification/ [accessed
4/21/17]

[5] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, RFC
2119, Internet Engineering Task Force, March 1997, 2pp,
https://doi.org/10.17487/RFC2119

[6] U.S. Department of Commerce. Secure Hash Standard, Federal Information
Processing Standards (FIPS) Publication 180-4, August 2015, 36pp.
https://doi.org/10.6028/NIST.FIPS.180-4

[7] U.S. Department of Commerce. Digital Signature Standard, Federal
Information Processing Standards (FIPS) Publication 186-4, July 2013,
130pp. https://doi.org/10.6028/NIST.FIPS.186-4

[8] Elaine Barker, Recommendation for Key Management, Part 1: General,
NIST Special Publication (SP) 800-57 Part 1, Rev. 4, National Institute of
Standards and Technology, Gaithersburg, Maryland, July 2016, 160pp.
https://doi.org/10.6028/NIST.SP.800-57pt1r4

[9] Elaine Barker, Recommendation for Obtaining Assurance for Digital
Signature Applications, NIST Special Publication (SP) 800-89, National
Institute of Standards and Technology, Gaithersburg, Maryland, November
2006, 38pp. https://doi.org/10.6028/NIST.SP.800-89

1228

38

https://doi.org/10.6028/NIST.SP.800-147
https://doi.org/10.6028/NIST.SP.800-147B
http://www.uefi.org/specifications
https://trustedcomputinggroup.org/tpm-main-specification/
https://doi.org/10.17487/RFC2119
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.6028/NIST.SP.800-89

	Draft NIST SP 800-193, Platform Firmware Resiliency Guidelines
	Executive Summary
	1 Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Applicability and Scope
	1.4 Document Structure

	2 Platform Architecture
	2.1 Platform Devices
	2.2 Code and Data in Platform Devices
	2.2.1 Code
	2.2.2 Data

	3 Principles and Key Concepts
	3.1 Principles Supporting Platform Resiliency
	3.2 Resiliency Properties
	3.3 Roots of Trust and Chains of Trust
	3.4 Device Relationships
	3.5 Firmware Update Mechanisms
	3.5.1 Authenticated Update Mechanism
	3.5.2 Authorized Update Mechanism
	3.5.3 Secure Local Update

	3.6 Other Considerations for Platform Resiliency
	3.6.1 Management
	3.6.2 Authorization Mechanisms
	3.6.3 Network-Assisted vs. Local Recovery
	3.6.4 Automated vs. Manual Recovery
	3.6.5 Event Logging

	4 Firmware Security Guidelines for Platform Devices
	4.1 Roots of Trust and Chains of Trust
	4.1.1 Roots of Trust (RoT) and Chains of Trust (CoT)
	4.1.2 Root of Trust for Update (RTU) and Chain of Trust for Update (CTU)
	4.1.3 Root of Trust for Detection (RTD) and Chain of Trust for Detection (CTD)
	4.1.4 Root of Trust for Recovery (RTRec) and Chain of Trust for Recovery (CTRec)

	4.2 Protection
	4.2.1 Protection and Update of Mutable Code
	4.2.2 Protection of Immutable Code
	4.2.3 Runtime Protection of Critical Platform Firmware
	4.2.4 Protection of Critical Data

	4.3 Detection
	4.3.1 Detection of Corrupted Code
	4.3.2 Detection of Corrupted Critical Data

	4.4 Recovery
	4.4.1 Recovery of Mutable Code
	4.4.2 Recovery of Critical Data

	Appendix A— Acronyms
	Appendix B— Glossary
	Appendix C— References

